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ABSTRACT: We consider an integro-differential equation, proposed in the literature as a model
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1. INTRODUCTION

Nonlinear systems of partial integro-differential equations play an important role

in the modelling of neuronal activity. A complete characterization of the solutions of

such systems is very hard to determine. However, the search for solutions through

numerical simulations allows us to reduce the initial system to a simpler one. Anal-

ysis of this new system often brings significant insight to the qualitative behavior of

the original one. This technique has been useful in the study of nonlinear partial

differential equations that arise in the modelling of neuronal systems.

Experimental research has shown that neuronal activity exhibits localized spatial

regions of high excitability, designated “bumps” or “pulses”. Such brain activity is an

indicator of selective and persistent neuronal response to stimuli. Experiments have

suggested a close link between localized patterns of brain activity and the encoding

of information such as visual cues or head direction, see Coombes et al [5], Stringer

et al [17] or Funahashi et al [7]. Realistic models must include groups of spatially

interconnected neurons exhibiting localized regions of high activity, see Murdock et

al [14] or Laing and Troy [11].

In 1977, Amari considered the following integro-differential equation

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

ω(x − y) H(u(y, t)− h) dy, (1)
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to model brain activity on a single layer of interconnected neurons (see Wilson and

Cowan [19]).

The average membrane potential, at the location x and time t, is denoted by u(x, t)

and the average synaptic strength among neurons is represented by the coupling func-

tion ω. The Heaviside function H is used to represent the firing rate and the integral

term, in equation (1), combines the activity emitted by the network and presented at

the location x. The activity occurring at position y is filtered via the action of H and

then changed by a multiplicative factor representing the neuronal synaptic strength

and denoted by ω. Throughout this paper we consider ω to approach zero rapidly

as x grows in absolute value. This assumption represents that activity occurring at

a certain location decreases its effect with distance. The synaptic impact depends

uniquely on the spatial distance, hence the system is said to be homogeneous, cf.

Amari [2].

Several researchers have investigated, both analytically and numerically, multi-

bump formation and respective linear stability (see Laing et al [12], and Guo and

Chow [8]). The numerical existence of single pulse solutions might be relatively easy

to determine (see Amari [1]), but to establish their existence analytically is far more

difficult, relying on careful estimates, cf. Botelho et al [4]. Moreover, the existence of

multi-pulse solutions is extremely complicated to determine analytically, see Murdock

et al [14]. A natural approach is to express multi-pulse solutions as a superposition

of many simple basic structures, cf. Elphick et al [6]. Inspired by this idea, we

investigate in this paper an inverse problem. We establish conditions that assure the

existence of a coupling function ω, for which the system (1) has solution u. Under

these conditions, we construct ω in terms of u and assert its uniqueness. In addition,

we show that multi-bump solutions can be generated from an initial pulse. We also

investigate rigidity questions and the system dependence on the initial pulse.

2. ONE-BUMP SOLUTIONS

In this section we discuss how a one-bump function, solution of an integro-differential

equation (1), determines the coupling function ω. Coupling functions are continuously

differentiable, integrable over R, and limx→±∞ ω(x) = 0, e.g. (1 − x2)e−x2/2. We de-

rive a decomposition of ω in terms of an initial pulse. We start with the definition of

an N−bump function or N−pulse.

Definition 2.1. A differentiable real-valued function f with integrable derivative

is called an (N, h)−bump function or pulse if the positive support of f − h (i.e.

{x : f(x) > h}) is the union of N bounded and disjoint intervals.

The following theorem states necessary and sufficient conditions for an initial one-

pulse to be a solution of the equation (1). We denote by γ a real number greater than

1.
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Theorem 2.1. If u is an integrable (1, h)-bump function with positive support (0, a),

such that |u′(x)|γ|x| is bounded, then there exists a unique ω for which u is a stationary

solution of

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

ω(x − y) H(u(y, t)− h) dy

if and only if
∑∞

j=−∞ u′(x − ja) = 0, for every x.

Proof. First we show that
∑

j∈Z u′(x − ja) ≡ 0 is a sufficient condition for the

existence of ω so that u =
∫ ∞

−∞
ω(x−y) H(u(y)−h) dy. The assumption on u implies

the existence of positive constants M and λ so that, for |x| > M, |u′(x)| ≤ λγ−|x|.

Therefore the series
∑∞

j=0 u′(x − ja) and
∑∞

j=0 u′(x + ja) are pointwise convergent.

Furthermore, there exists a positive integer j0, so that for every x ∈ [−M, M ] we

have x− j0a < −M . We denote by L the maximum of |u′(x)|, for x ∈ [−M, M ]. We

have the following inequalities:

|
∞

∑

j=0

u′(x − ja)| ≤ λγx
∞

∑

j=0

γ−ja , for x ≤ −M ,

|

∞
∑

j=0

u′(x − ja)| ≤ j0 L + λγx
∞

∑

j=0

γ−ja , for x ∈ [−M, M ] ,

|

∞
∑

j=1

u′(x + ja)| ≤ λγ−x

∞
∑

j=1

γ−ja , forx > M .

Therefore, the sequence of partial sums

sn(x) =























n
∑

j=0

u′(x − ja) , if x ≤ M ,

−

n
∑

j=1

u′(x + ja) , if x > M ,

is pointwise convergent and we set ω(x) = limn sn(x). Since

−

∞
∑

j=1

u′(x + ja) =

∞
∑

j=0

u′(x − ja),

we have ω =
∑∞

j=0 u′(x − ja). In order to show that u is a stationary solution of the

equation (1) we consider the integrable function

f(x) =



















Aγx , for x ≤ −M ,

j0L + Aγx , for − M < x < M ,

Aγ−x , for x ≥ M ,
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where A =
∑∞

j=0 γ−ja. The Lebesgue Convergence Theorem implies that ω is inte-

grable and limn

∫ a

0
sn(x) dx =

∫ a

0
ω(x) dx. Therefore we have

∫ ∞

−∞

ω(x − y)H(u(y)− h) dy = lim
n

n
∑

j=0

∫ a

0

u′(x − y − ja) dy

= lim
n

(u(x) − u(x − na)).

Since −λe−x ≤ u′(x) ≤ λe−x (x > 0), given x0 > 0, we have that

−λ

∫ x

x0

e−y dy ≤

∫ x

x0

u′(y) dy ≤ λ

∫ x

x0

e−y dy ,

or equivalently

λ(e−x − e−x0) ≤ u(x) − u(x0) ≤ λ(−e−x + e−x0).

Consequently we have

−λe−x0 ≤ limx→∞u(x) − u(x0) ≤ λe−x0

and limx→∞u(x) = limx→∞u(x). Similarly it can be shown that

limx→−∞u(x) = limx→−∞u(x).

Since u is integrable then limx→±∞ u(x) = 0. Therefore limn u(x ± na) = 0. This

concludes the proof that u is a solution of equation (1). The uniqueness follows from

the construction of ω. Conversely, if u is an one-bump function over (0, a) such that

u =
∫ a

0
ω(x − y) dy then

u(x) =

∫ x

0

ω(y) dy −

∫ x

0

ω(y − a) dy.

Therefore, u′(x) = ω(x) − ω(x − a) and ω(x) =
∑∞

j=0 u′(x − ja). �

Remarks. (1) The statement above is still true under weaker conditions on u′. It

is sufficient to assume that |u′(x)P (x)| is bounded, with P a nonlinear polynomial

function.

(2) We also observe that Theorem 2.1 can be restated in an “almost everywhere”

setting. In fact, the same proof will also assert that, under the weaker assumption

u′(x)γ|x| ∈ L∞(R) (or ‖u′(x)γ|x|‖∞ < +∞), there exists ω uniquely defined almost

everywhere so that ∂u(x,t)
∂t

= −u(x, t) +
∫ ∞

−∞
ω(x − y) H(u(y, t)− h) dy if and only if

∑∞
j=−∞ u′(x − ja) = 0, for almost every x.
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We describe a class A of initial one-pulses that satisfies the conditions of the the-

orem. A function un
m ∈ A is defined to be:

un
m(x) =























xe−
x2n

2 − (x − 1)e−
(x−1)2n

2 , x > 1 ,

xe−
x2n

2 − (x − 1)e−
(x−1)2m

2 , 0 ≤ x ≤ 1 ,

xe−
x2m

2 − (x − 1)e−
(x−1)2m

2 , x < 0 ,

m, n ∈ Z+.

Proposition 2.1. For every un
m ∈ A there exists a unique ωn

m so that un
m is a

(1, e−
1
2 )−bump solution of the equation

un
m(x, t) =

∫ ∞

−∞

ωn
m(x − y) H(un

m(y, t) − h) dy.

Proof. First, we observe that un
m(0) = un

m(1) = e−
1
2 , u′n

m(0) = 1 − (1 − m)e−
1
2 and

u′n
m(1) = (1− n)e−

1
2 − 1 < 0. We set zm = −

(

1
m

)
1

2m and zn =
(

1
n

)
1
2n . Moreover, (1−

nx2n)e−x2n/2 is positive implying that xe−x2n/2 is strictly increasing on the open inter-

val (0, zn); (1−m(x−1)2m)e−(x−1)2m/2 is negative, thus (x−1)e−(x−1)2m/2 is strictly de-

creasing over the open interval (1+zm, 1); and the product (1−nx2n)e−x2n/2(1−m(x−

1)2m)e−(x−1)2m/2 is negative over the union (0, max{zn, −zm})∪(1+max{−zn, zm}, 1).

Therefore u′n
m(x) is equal to zero at some point x ∈ (zn, 1 + zm), which is the unique

critical point of u in (0, 1). Next, we establish that un
m(x) < e−

1
2 on the com-

plement of the closed interval [0, 1]. We observe that zne−z2n
n /2 ≤ e−1/2, therefore

un
m(x) − e−

1
2 ≤ 0, for x > 1. Similarly, it can be shown for x < 0. A telescoping

argument implies that limN→∞

∑N
j=−N u′n

m(x− j) = 0, therefore Theorem 2.1 assures

the existence of a unique ωn
m so that un

m is a stationary solution of the equation

un
m(x, t) =

∫ ∞

−∞

ωn
m(x − y) H(un

m(y, t) − h) dy.

Furthermore, a similar telescoping argument also implies that

ωn
m(x) =

∞
∑

j=0

u′n
m(x − j) =







(

1 − nx2n
)

e−
x2n

2 , x ≥ 0 ,

(

1 − mx2m
)

e−
x2m

2 , x < 0 .

�

Remark. Every function u in class A, determines a unique coupling function ω for

which that function is an (1, h)-bump solution of

u(x) =

∫ ∞

−∞

ω(x − y) H(u(y)− h) dy.

This class provides examples of asymmetric pulses and coupling functions. As a

consequence of Theorem 2.1 and Proposition 2.1, we have provided an analytical

proof that the connection given above supports stationary solutions of equation (1).

Moreover, for m 6= n, ωn
m is not symmetric hence Amari’s Theorem on existence of

one-bump solutions does not imply our result. In a later section we will show that

this stationary solution is linearly stable.
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The following two corollaries of Theorem 2.1 investigate the inter-dependence be-

tween initial pulse and coupling function. They are stated for a (1, h)-bump function

u with positive support over the open interval (0, a) and |u′(x)|γ|x| (γ > 1) bounded.

Corollary 2.1. u is symmetric relatively to a
2

(i.e. u(a
2

+ x) = u(a
2
− x)) if and only

if ω is symmetric (i.e. ω(x) = ω(−x)).

Proof. This statement follows directly from the theorem, since

ω(x) =
∞

∑

j=0

u′(x − ja) = −
∞

∑

j=0

u′(−x + (j + 1)a)

= −

∞
∑

j=1

u′(−x + ja) =

0
∑

j=−∞

u′(−x + ja)

=

∞
∑

j=0

u′(−x − ja) = ω(−x). �

Corollary 2.2. If u(x) = F (x)−F (x− a) for some continuously differentiable func-

tion F (x) so that limx→±∞ F ′(x) = 0, then
∑∞

j=−∞ u′(x − ja) = 0, ω(x) = F (x) =
∑∞

j=0 u′(x − ja), and u = ω ∗ H(u − h).

Proof. We notice that
∞

∑

j=−∞

u′(x − ja) = lim
N→∞

[F ′(x + Na) − F ′(x − (N + 1)a)] = 0,

therefore the statement in the corollary follows from Theorem 2.1. �

3. ILLUSTRATIVE EXAMPLES

In this section we investigate the applicability of the conditions stated in Theorem

2.1 to some particular classes of examples. Our first example considers the function

u(x) = (1 − (1 − x)2)e−(x−1)2/2 representing an initial pulse positive over the inter-

val (0, 2). Though, a priori this function is candidate for a one-bump stationary

solution to an equation of type (1), we show that in fact it does not satisfy the con-

volution equation u(x) =
∫ ∞

−∞
ω(x− y) H(u(y)− h) dy, for every coupling function ω

that is continuously differentiable, integrable over R, and limx→±∞ ω(x) = 0. This

follows from the fact that u does not satisfy the condition stated in Theorem 2.1,
∑∞

j=−∞ u′(x − 2j) = 0. We show that

∞
∑

j=−∞

u′(x − 2j) =

∞
∑

j=−∞

[−3(x − 2j − 1) + (x − 2j − 1)3]e−(x−2j−1)2/2,

defines a nontrivial period two function that is equal to zero at every even integer.
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If x = 1/2 we have

∞
∑

j=−∞

[−3(−2j −
1

2
) + (−2j −

1

2
)3]e−(2j+ 1

2
)2/2

=

(

11

8

)

e−
1
8 +

∞
∑

j=1

[3(2j +
1

2
) − (2j +

1

2
)3]e−(2j+ 1

2
)2/2

+
∞

∑

j=1

[3(−2j +
1

2
) − (−2j +

1

2
)3]e−(2j− 1

2
)2/2.

We estimate these two infinite sums as follows:

∞
∑

j=1

(

3(2j +
1

2
) − (2j +

1

2
)3

)

e−(2j+ 1
2
)2/2

=
[

7.5 − 2.53
]

e−
2.52

2 +

∞
∑

j=2

[3(2j +
1

2
) − (2j +

1

2
)3]e−(2j+ 1

2
)2/2

≥ −.4 +

∫ ∞

2.5

(3x − x3)e−x2/2dx ≥ −.7,

and

∞
∑

j=1

[

3

(

−2j +
1

2

)

−

(

−2j +
1

2

)3
]

e−(2j− 1
2
)2/2

= (3(−1.5) + 1.53)e−1.52/2 +

∞
∑

j=2

(3(−2j +
1

2
) − (−2j +

1

2
)3)e−(2j− 1

2
)2/2

≥ −.4 +

∫ −3.5

−∞

(3x − x3)e−x2/2dx = −.4 + (3.52 − 1)e−3.52/2 ≥ −.4.

These inequalities imply that
∑∞

j=−∞ u′(x − 2j) 6= 0, as asserted.

We describe next a natural construction to extend an observable pulse defined

over a finite spatial interval in order to obtain a a function over R that satisfies the

conditions stated in Theorem 2.1. For simplicity of exposition the initial pulse is

differentiable but not continuously differentiable, however a careful perturbation will

yield a continuously differentiable one. We outline this construction for a particular

example. The activation function u(x) = x(2 − x), 0 ≤ x ≤ 2 has derivative 2 − 2x,

hence we extend its derivative as follows:

u′(x) =



















2 − 2x , 0 ≤ x < 2 ,

2x − 6 , 2 ≤ x < 4 ,

0 , elsewhere .

The proof of Theorem 2.1 implies that

∞
∑

j=−∞

u′(x − 2j) = 0,
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ω(x) =



















0 , x < 0 ,

2 − 2x , 0 ≤ x < 2 ,

0 , x ≥ 2 ,

and u satisfies u(x) =
∫ ∞

−∞
ω(x − y)H(u(y)) dy.

4. RELATING STATIONARY SOLUTIONS

In this section we establish necessary conditions for the co-existence of distinct

one-bump stationary solutions for the same equation. We observe that if v is another

one-pulse function obtained from u via a spatial translation, i.e. v(x) = u(x − r),

then v is also a solution of equation (1) and the positive support of v is the interval

(r, r + a) and

ω(x) =
∞

∑

j=0

v(x + r − ja) =
∞

∑

j=0

u(x − ja).

Proposition 4.1. If u1 and u2 are one-bump stationary solutions of

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

ω(x − y) H(u(y, t)− h) dy,

with positive supports (0, a) and (0, b) respectively, then:

(1) a

∫ ∞

−∞

u2(x) dx = b

∫ ∞

−∞

u1(x) dx,

(2) u1(a + b) = u2(a + b),

(3) −

∫ a

0

ω(s) ds =

∫ −a

0

ω(s) ds = −

∫ b

0

ω(s) ds =

∫ −b

0

ω(s) ds = h,

(4) u2(x) =
∞

∑

j=0

(u1(x − ja) − u1(x − b − ja)).

Proof. If u1 is a solution of the equation above then u1 =
∫ ∞

−∞
ω(x − y) H(u1(y) −

h) dy with Fourier transform F(u1)(ξ) = F(ω)(ξ) 1−e−iaξ

iξ
. Equivalently i ξ F(u1)(ξ) =

F(ω)(ξ) (1− e−iaξ). Differentiating this last equation and setting ξ = 0 we prove the

statement in part (1). On the other hand, we also have that (1 − e−ibξ)F(u1)(ξ) =

(1− e−iaξ)F(u2)(ξ). The inverse Fourier transform applied to the last equation yields

u1(x) − u1(x − b) = u2(x) − u2(x − a) and for x = a + b we derive part (2). Part

(3) follows from u1(0) = u1(a) = u2(0) = u2(b) = h. Moreover, we also have that

iξ (1 − e−ibξ)F(u1)(ξ) = iξ (1 − e−iaξ)F(u2)(ξ) and therefore u2 can be written in

terms of u1 as stated in (4). This concludes the proof. �

Similarly an N−bump solution can be generated from a given one-bump function.

Proposition 4.2. If u and v are stationary solutions of equation (1) and u is a

one-pulse over (0, a) and v a N−pulse over the intervals

(b1, c1), (b2, c2), . . . , (bN , cN) ,
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then

v(x) =

∞
∑

j=0

N
∑

k=1

[u(x − bk − ja) − u(x − ck − ja)].

Proof. We observe that v′(x) =
∑N

j=1 (w(x−bj)−w(x−cj)) and Fourier transformed

F(v)(ξ) = F(ω)(ξ)

N
∑

j=1

e−ibjξ − e−icjξ

iξ
.

Since F(ω)(ξ) = i ξ
1−e−iaξF(u)(ξ) we have that

F(v)(ξ) = F(u)(ξ)

N
∑

j=1

(e−ibjξ − e−icjξ).

The inverse of the Fourier transform applied to this last equation yields the statement

in the proposition. �

5. STABILITY

We consider an initial pulse u0 over the interval (0, a) that determines a unique ω

under which the system has u0 as stationary solution. Now, we search for a solution

the system of the form u(x, t) = u0 + v(x, t), we linearize around u0 and derive a

condition for the local linear stability of this initial pulse. If u(x, t) = u0 + v(x, t) is

a solution of equation (1) then we have:

∂v(x, t)

∂t
= −v(x, t) +

∫ ∞

−∞

[ω(x − y) H(u0 + v(y, t) − h) − H(u0(y) − h)] dy

≈ −v(x, t) +
ω(x)

u′
0(0)

v(0, t) −
ω(x − a)

u′
0(a)

v(a, t).

We solve the linear equation

∂v(x, t)

∂t
= −v(x, t) +

ω(x)

u′
0(0)

v(0, t) −
ω(x − a)

u′
0(a)

v(a, t). (2)

A solution to equation (2) must also satisfy, for x = 0 and x = a, the system















v̇(0, t) = −v(0, t) +

∑∞
j=0 u′

0(−ja)

u′
0(0)

v(0, t) −

∑∞
j=0 u′

0(−a − ja)

u′
0(a)

v(a, t) ,

v̇(a, t) = −v(a, t) +

∑∞
j=0 u′

0(a − ja)

u′
0(0)

v(0, t) −

∑∞
j=0 u′

0(−ja)

u′
0(a)

v(a, t) ,

with the matrix of coefficients equal to

M =









−1 +

∑∞
j=0 u′

0(−ja)

u′
0(0)

−

∑∞
j=0 u′

0(−a − ja)

u′
0(a)

∑∞
j=0 u′

0(a − ja)

u′
0(0)

−1 −

∑∞
j=0 u′

0(−ja)

u′
0(a)









.
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Definition 5.1. The solution u0(x) is said to be linearly stable along a vector space

V if V is an invariant space of M and the point spectra of M restricted to V, σp(L|V )

has negative real parts.

We set the quantities A = ω(0)
u′

0(0)
and B =

u′

0(0)

u′

0(a)
and

M =





−1 + A −AB + B

1/B + A −1 − AB



 ,

with eigenvalues λ1 = 0 and λ2 = A−AB−2. We conclude that u0 is a linearly stable

stationary solution provided that A − AB < 2 and linearly unstable if A − AB > 2.

We summarize these considerations in the next proposition.

Proposition 5.1. If u0 is a one pulse stationary solution of

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

ω(x − y) H(u(y, t)− h) dy, (3)

so that
∑∞

j=−∞ u′
0(x− ja) ≡ 0 for all x, then

∑∞
j=0 u′

0(−ja)
[

1
u′

0(0)
− 1

u′

0(a)

]

< 2 if and

only if u0 is linearly stable.

Remark. If u0 is a one pulse function so that

∞
∑

j=−∞

u′
0(x − ja) ≡ 0

for all x and ω(0)ω(a) − 2ω(−a)ω(a) + ω(−a)ω(0) < 0 then there exists a unique

system of form (3) for which u0 is a linearly stable. If ω(0) > 0 and both ω(a) < 0

and ω(−a) < 0, then u0 is a linearly stable stationary solution.

Example. We consider un
m ∈ A, presented in Proposition 2.1. This function is

one-bump stationary solution of equation (1) for

ω(x) = ωn
m(x) =

∞
∑

j=0

u′n
m(x − j) =







(1 − nx2n) e−
x2n

2 , x ≥ 0 ,

(1 − mx2m) e−
x2m

2 , x < 0.

Therefore the quantity

ωn
m(0)

[

1

u′
0(0)

−
1

u′
0(a)

]

= e1/2

[

1

e1/2 − 1 + m
+

1

e1/2 − 1 + n

]

< 2,

unless m = n = 1.
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