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ABSTRACT: The nonlocal functional is an integral with the integrand depending on the unknown
function at different values of arguments. These types of functionals have different applications in
physics, engineering and sciences. The Euler type conditions that arise as necessary conditions of
extrema of nonlocal functionals are the boundary value problems for functional differential equa-
tions. The analytical methods of solving of this type boundary value problems are rather difficult.
Therefore a great role play the direct approximate method of solving the problem of extremum
for nonlocal functionals. Here we apply the local variation method for approximate solution of
variational problems for mixed nonlocal functionals.

AMS (MOS) Subject Classification: 34K99, 49J40

1. INTRODUCTION

The nonlocal functional is an integral with the integrand depending on the unknown

function at different values of the argument. These types of functionals have different

applications in physics, engineering and sciences. The Euler type equations that

arise as necessary conditions of extrema of nonlocal functionals are the functional

differential equations.

The mixed nonlocal functional is an integral with the integrand depending on

the unknown function of two arguments to one of which is applied the operator of

differentiation and to the second one is applied the shift operator. The Euler type

equations for this type of functionals are the mixed functional differential equations.

Applications of mixed type equations and mixed nonlocal functionals to physics and

mechanics were mentioned already in works of J. Bernoulli, L. Euler, J.L. Laplace

and other mathematicians of 18-th and 19-th centuries. For description of some of

these works and references see Pinney [10].

Many forms of this type equations and functionals appear now in papers dedicated

to investigations of different problems of epidemiology, ecology, biology and physics

(see Thieme [13], Herod [5], Stewart [12], Hadeler [4], Buerger [3], Britton [2]).
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The survey of the theory of mixed functional differential equations and of mixed

nonlocal functionals see in Kamenskii [7].

Here we consider the problem of extremum of the functional

J(y) =

∫ t1

t0

dt

∫ s1

s0

F (t, s, u(t, s− r), u(t, s), u(t, s+ r),

u′(t, s− r), u′(t, s), u′(t, s+ r)) ds . (1)

Here r > 0, s1 − s0 > 2r, u, F ∈ R
1, u′(t, s) = ∂u

∂t
. Denote

E0 = {(t, s)|t0 ≤ t ≤ t1, s0 + r ≤ s0 − r},

E1 = {(t, s)|t0 ≤ t1, s1 − r ≤ s1 + r, }

G0 = {(t, s)|t = t0, s0 + r ≤ s0 − r},

G1 = {(t, s)|t = t1, s0 + r ≤ s1 − r},

Q = {(t, s)|t0 ≤ t < t1, s0 + r < s < s1 − r}.

On E0 and E1 there are given the boundary function ϕ and ψ and on G0 and G1

there are given the boundary functions µ0(s) and µ1(s). Functional (1) is considered

under the boundary conditions

u(t, s) = ϕ(t, s) at (t, s) ∈ E0,

u(t, s) = ψ(t, s) at (t, s) ∈ E1,

u(t0, s) = µ0(s) at s ∈ µ0,

u(t1, s) = µ1(s) at s ∈ µ1.

(2)

The unknown function supposed to be twice continuously differentiable in t, piece-

wise continuous in s and it must satisfy the restrictions

u−(t, s) ≤ u(t, s) ≤ u+(t, s) at (t, s) ∈ Q, (3)

where u−(t, s) and u+(t, s) are some given functions and u−(t, s) = u+(t, s) = ϕ(t, s)

at (t, s) ∈ E0, u
−(t, s) = u+(t, s) = ψ(t, s) at (t, s) ∈ E1, u

−(t0, s) = u+(t0, s) = µ0(s)

at s ∈ G0, u
−(t1, s) = u+(t1, s) = µ1(s) at s ∈ G1.

If on some set there are no restrictions, then we put on this set u−(t, s) = −∞

and u+(t, s) = ∞. Conditions (3) include conditions (2). Therefore we shall consider
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problem (1), (3). Define the function

Φ(t, s− r, s, s+ r, u(t, s− 2r), u(t, s− r), u(t, s), u(t, s+ r),

u(t, s+ 2r), u′(t, s− 2r), u′(t, s− r), u′(t, s), u′(t, s+ r), u′(t, s+ 2r))

=: F (t, s− r, u(t, s− 2r), u(t, s− r), u(t, s), u′(t, s− 2r),

u′(t, s− r), u′(t, s)) + F (t, s, u(t, s− r), u(t, s), u(t, s+ r),

u′(t, s− r), u′(t, s), u′(t, s+ r))F (t, s+ r, u(t, s), u(t, s+ r),

u(t, s+ 2r), u′(t, s), u′(t, s+ r), u′(ts+ 2r)).

(4)

If

Φ = Φ(t, s− r, s, s+ r, v1, v2, . . . , v10),

then

Φu(t,s) =
∂Φ

∂v3

at

v1 = u(t, s− 2r), v2 = u(t, s− r), v3 = u(t, s),

v4 = u(t, s+ r), v5 = u(t, s+ 2r),

v6 = u′(t, s− 2r), v7 = u′(t, s− r), v8 = u′(t, s),

v9 = u′(t, s+ r), v10 = u′(t, s+ 2r).

(5)

In the same way

Φu′(t,s) =
∂Φ

∂v8

at the values (5).

The following theorem was proved in Kamenskii [6].

Theorem 1. If functional (1) under conditions (2) attains an extremum on the

function u∗, then u∗ satisfies on Q the equation

Φu(t,s) −
Φu′(t,s)

dt
= 0. (6)

The analytical methods of solving boundary value problem (6), (2) are rather dif-

ficult. Therefore, the approximate methods of solving this problem and the direct

approximate method of solving the problem of extremum for functionals of the type

(1) play a great role.

The finite differences method for solving of linear mixed functional differential

equations was worked out in Kopylov [9]. The projective methods for solution of

variational problems for mixed nonlocal functionals was developed in Kamenskii and

Varfolomejev [8].



82 Kamenskii

Here we apply the local variation method for approximate solution of variational

problems for mixed nonlocal functionals (see also Ardova and Kamenskii [1]).

Divide the interval (t0, t1) on m equal parts of the length ∆t and denote

i0 = t0, i1 = i0 + ∆t, ik = ik−1 + ∆t, . . . , im = i0 +m∆t = t1.

Divide the interval (s0 + r, s1 − r) on n equal parts of the length ∆s and denote

j0 = s0 + r,

j1 = j0 + ∆s,

...

jk = jk−1 + ∆s,

...

jn = j0 + n∆s = s1 − r.

Let r = pm and for sufficient small ∆s we can suppose that p is an integer. We

denote then

j−1 = j0 − ∆s, . . . , j−k = j−k+1 − ∆s, . . . , j−p = j0 − n∆s,

jn+1 = jn + ∆s, . . . jk = jk−1 + ∆s, . . . , jn+p = jn + p∆s.

The approximate solution of problem (1), (3) we seek as the function u(ti, sj)

defined on the above described net, which we denote by S. We must find u(ti, sj)

for i = 1, . . . , i = m − 1 and j = 1, . . . , j = n − 1. The values of u(ti, sj) for

i = 0, i = m, j = −p, . . . , 0, j = n, . . . , n + p are known from boundary conditions

(2).

The approximate value of (1) is

J(u) ≈

m
∑

i=0

n
∑

j=0

F (ti, sj, u(ti, sj−p), u(ti, sj), u(ti, uj+p),

u(ti, sj−p+1) − u(ti, sj−p)

∆s
,

u(ti, sj+1) − u(ti, sj)

∆s
,
u(ti, sj + p+ 1) − u(ti, sj + p)

∆s
)∆t∆s.

(7)

To begin the process we must assign the arbitrary chosen function ũ(ti, sj) on S.

Fix the numbers i and j and to u(ti, sj) add a number q. Denote

Ji,j(ũ, q) (8)

the value of (7) when instead of ũ(ti, sj) is substituted ũ(ti, sj) + q.
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Denote

Fi,j(ũ, q) = F (ti, sj, ũ(ti, sj−p), ũ(ti, sj) + q, ũ(ti, sj+p),

ũ(ti, sj−p+1) − ũ(ti, sj−p)

∆s
,

ũ(ti, sj+1) − ũ(ti, sj) − q

∆s
,
ũ(ti, sj+p+1) − ũ(ti, sj+p)

∆s
) ,

(9)

Fi,j−1(ũ, q) = F (ti, sj−1, ũ(ti, sj−p−1), ũ(ti, sj−1), ũ(ti, sj+p−1),

ũ(ti, sj−p+1) − ũ(ti, sj−p)

∆s
,

ũ(ti, sj) + q − ũ(ti, sj−1)

∆s
,
ũ(ti, sj+p) − ũ(ti, sj+p−1)

∆s
) ,

(10)

Fi,j−p(ũ, q) = F (ti, sj−p, ũ(ti, sj−2p), ũ(ti, sj−p), ũ(ti, sj) + q,

ũ(ti, sj−2p+1) − ũ(ti, sj−2p)

∆s
,

ũ(ti, sj−2p+1) − ũ(ti, sj−2p)

∆s
,
ũ(ti, sj+1) − ũ(ti, sj) − q

∆s
) ,

(11)

Fi,j−p−1(ũ, q) = F (ti, sj−p−1, ũ(ti, sj−2p−1), ũ(ti, sj−p−1), ũ(ti, sj−1),

ũ(ti, sj−2p) − ũ(ti, sj−2p−1)

∆s
,

ũ(ti, sj−2p) − ũ(ti, sj−2p−1)

∆s
,
ũ(ti, sj) − ũ(ti, sj−1)

∆s
) ,

(12)

Fi,j+p+1(ũ, q) = F (ti, sj+p+1, ũ(ti, sj+1), ũ(ti, sj+p+1), ũ(ti, sj+2p+1),

ũ(ti, sj+1) − ũ(ti, sj) − q

∆s
,

ũ(ti, sj+p+1) − ũ(ti, sj+p)

∆s
,
ũ(ti, sj+2p+1) − ũ(ti, sj+2p)

∆s
) ,

(13)

Fi,j+p(ũ, q) = F (ti, sj+p, ũ(ti, sj) + q, ũ(ti, sj+p), ũ(ti, sj+2p),

ũ(ti, sj) + q − ũ(ti, sj−1)

∆s
,

ũ(ti, sj+p) − ũ(ti, sj+p−1)

∆s
,
ũ(ti, sj+2p) − ũ(ti, sj+2p−1)

∆s
) .

(14)

Denote

Φ(j)(q) = (11) + (9) + (13)

and

Φ(j−1)(q) = (12) + (10) + (14) .
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Then

∆Jij(ũ, q) = Ji,j(ũ, q) − Ji,j(ũ, 0) = Φ(j)(q) − Φ(j)(0)

+ Φ(j−1)(q) − Φ(j−1)(0). (15)

The method of local variations is based on formula (15) and it acts as follows. We

take the arbitrary chosen ũ and make successive local variations at the points ti, sj

successively through all set S. If ∆Jij(ũ, q) > 0 at the point ti, sj, then we substitute

ũ(ti, sj) + q for ũ(ti, sj) in ũ and check condition (3). In case when this condition is

satisfied, we obtain the next approximation to the solution. We continue this process

several times till we get no new diminution of ∆Jij(ũ, q). Then we can take q/2

instead of q or ∆s/2 instead of ∆s and continue computations.

Suppose now that the successive approximations converge to some function and

problem (1), (3) has a unique solution. We show now that the approximate solu-

tions obtained by the method of local variations at a fixed ∆s,∆t satisfy the finite

differences equation, which approximate the generalized Euler equation for consid-

ered problem. In Kopylov [9] there are proved sufficient conditions for convergence

of solutions of the finite differences equations to the generalized solution of the Euler

equation for quadratic mixed nonlocal functionals. It follows that in this case the ap-

proximate solutions received by the method of local variations converge to solutions

of the generalized Euler equation.

Take the linear part of the Taylor expansion of (15) and receive for a fixed q

q

[

1

2
(Φi,j−1

u(t,s)(q) + Φi,j

u(t,s)(q) −
1

∆t
(Φi,j

u′(t,s)(q) − Φi,j−1
u′(t,s)(q)

]

+O
(

q2, (
q

∆t
)2

)

≥ 0. (16)

It follows from (16) that if q → 0, then

1

2
(Φi,j−1

u(t,s) + Φi,j

u(t,s)) −
1

∆t
(Φi,j

u′(t,s) − Φi,j−1
u′(t,s)) = 0. (17)

This equation is the finite differences equation analog to the generalized Euler equa-

tion (6).
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[12] I.V. Stewart, A global existence for general coagulation-fragmentation equation with un-
bounded kernels, Math. Mech. Appl. Sci., 11 (1989), 627-648.

[13] H.R. Thieme, A differential-integral equation modeling the dynamics of population with a rank
structure, Lect. Notes Biomath., 68 (1986), 496-511.



86 Kamenskii


