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ABSTRACT: In the present paper the equivalence of the oscillation of the equations

[x(t) − x(t − τ)](n) + q(t)x(g(t)) = 0 and x(n+1)(t) +
q(t)

τ
x(t) = 0

is established, where q(t) ≥ 0, n ≥ 1 is an odd integer, τ > 0 and t − σ ≤ g(t) ≤ t + σ, t ≥ T for
some σ > 0 and T ≥ 0.

As a consequence some new oscillation criteria for the equation

[x(t) − x(t − τ)](n) + q(t)x(∆(t, x(t))) = 0 ,

are obtained, where ∆(t, x) ≥ t − σ, t ≥ T for some σ > 0 and T ≥ 0.
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1. INTRODUCTION

Consider the neutral differential equations with deviating arguments

[x(t) − x(t − τ)](n) + q(t)x(g(t)) = 0 , t ∈ J , (1)

[x(t) − x(t − τ)](n) + q(t)x(∆(t, x(t))) = 0 , t ∈ J , (2)

and the ordinary differential equation

x(n+1)(t) +
q(t)

τ
x(t) = 0 , t ∈ J , (3)

where τ > 0, n ≥ 1 is an odd integer and q(t) ≥ 0 for t ∈ J = [α, +∞) ⊆ [0, +∞) =

R+.

As is customary, a solution of equation (1) (or (2)) is said to be proper, if it is defined

on some interval [Tx, +∞) and sup{|x(t)| : t ≥ T} > 0 for each T ≥ Tx. A proper

solution of equation (1) is said to be oscillatory if it is neither eventually positive nor

Received December 6, 2006 1083-2564 $03.50 c© Dynamic Publishers, Inc.



104 Simeonov

eventually negative. If every proper solution of equation (1) is oscillatory, equation

(1) itself is said to be oscillatory; otherwise equation (1) is said to be nonoscillatory.

It is proved in the main Theorem 1 that equation (1) is oscillatory if and only

if equation (3) is oscillatory. As a consequence of Theorem 1 some new oscillation

criteria for equation (2) are found.

The obtained results extend the results of B.G. Zhang and Bo Yang [5] who consider

equation (1) in the case g(t) = t − σ (σ ∈ R).

2. PRELIMINARY NOTES

Introduce the following conditions:

H1. q ∈ C(J, R+) and sup{q(t) : t ≥ T} > 0 for each T ∈ J .

H2. g ∈ C(J, R) and there exist constants T ∈ J and σ > 0 such that t − σ ≤

g(t) ≤ t + σ, t ≥ T .

H3. ∆ ∈ C(J × R, R) and there exist constants T ∈ J and σ > 0 such that

∆(t, x) ≥ t − σ , t ≥ T , x ∈ R.

H4. ∆ ∈ C(J × R, R) and there exist constants T ∈ J and σ > 0 such that

t − σ ≤ ∆(t, x) ≤ t + σ, t ≥ T , x ∈ R.

We need the following lemmas.

Lemma 1. Let x(t) be an n times differentialble function on J of constant sign,

x(n)(t) be of constant sign and not identically zero in any interval [t∗, +∞) ⊆ J .

Then there exist a tk ≥ t∗ and an integer k, 0 ≤ k < n with n + k even for

x(t)x(n)(t) nonnegative and n + k odd for x(t)x(n)(t) nonpositive such that for every

t ≥ tk

x(t)x(i)(t) > 0 , i = 0, 1, . . . , k ,

(−1)k+ix(t)x(i)(t) > 0 , i = k, k + 1, . . . , n − 1 .

The proof of Lemma 1 is given in Kiguradze [2] and [4], Lemma 5.2.1 and Lemma

5.2.2.

Lemma 2. Assume that conditions H1 and H3 hold, τ ∈ (0, +∞), n ≥ 1 is an odd

integer, p ∈ C(J, R+) and 0 ≤ p(t) ≤ 1, t ∈ J . Let x(t) be an eventually positive

solution of the inequality

[x(t) − p(t)x(t − τ)](n) + q(t)x(∆(t, x(t))) ≤ 0 (4)

and set

y(t) = x(t) − p(t)x(t − τ) . (5)

Then y(t) > 0 eventually.
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The proof is quite easy and similar to that of Erbe et al [1], Lemma 5.1.4 and we

omit it.

Lemma 3. (see Zhand and Yang [5]) Let m ≥ 2 be an even integer and Q ∈ C(J, R+).

Then the equation

x(m)(t) + Q(t)x(t) = 0 (6)

is oscillatory if and only if the inequality

x(m)(t) + Q(t)x(t) ≤ 0 (7)

has no eventually positive solution.

Lemma 4. Assume that conditions H1 and H2 hold, τ ∈ (0, +∞) and n ≥ 1 is an

odd integer. Then the equation

[x(t) − x(t − τ)](n) + q(t)x(g(t)) = 0 (8)

is oscillatory if and only if the inequality

[x(t) − x(t − τ)](n) + q(t)x(g(t)) ≤ 0 (9)

has no eventually positive solution.

The proof of Lemma 4 is quite similar to that of Erbe et al [1], Theorem 5.5.1; only

a slight modification is needed and we omit it.

3. MAIN RESULTS

Theorem 1. Assume that conditions H1 and H2 hold, τ ∈ (0, +∞) and n ≥ 1 is an

odd integer. Then equation (1) is oscillatory if and only if equation (3) is oscillatory.

Proof. Without loss of generality we assume n = 3. That is, we will prove that the

oscillation of the equations

[x(t) − x(t − τ)]′′′ + q(t)x(g(t)) = 0 (10)

and

x′′′′(t) +
q(t)

τ
x(t) = 0 (11)

is equivalent.

Sufficiency. Let equation (11) be oscillatory. We will prove that equation (10) is

oscillatory. Suppose to the contrary that equation (10) has an eventually positive

solution x(t). Set y(t) = x(t) − x(t − τ). Then from (10) and Lemma 2 we have

that y′′′(t) ≤ 0 and y(t) > 0 eventually. It follows from Lemma 1 that there exists a

T0 ≥ T such that either

x(t) > 0 , y(t) > 0 , y′(t) < 0 , y′′(t) > 0 , t ≥ T0 − τ , (12)

or

x(t) > 0 , y(t) > 0 , y′(t) > 0 , y′′(t) > 0 , t ≥ T0 − τ . (13)
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Let conditions (12) hold. Then we obtain by induction that

x(t) = y(t) + y(t − τ) + · · ·+ y(t − nτ) + x(t − nτ − τ) (14)

for T0 + nT ≤ t ≤ T0 + nτ + τ , n = 0, 1, 2, . . . . Since the function y(t) is decreasing

for t ≥ T0 − τ and y(t) ≥ 1
τ

∫ t+τ

t
y(s)ds, t ≥ T0 it follows from (14) that

x(t) ≥
1

τ

∫ t

T0+τ

y(s)ds , t ≥ T0 + τ .

Then condition H2 implies

x(g(t)) ≥
1

τ

∫ g(t)

T0+τ

y(s)ds ≥
1

τ

∫ t−σ

T0+τ

y(s)ds

≥
1

τ

∫ t

T∗

y(s)ds for t ≥ T∗ = T0 + τ + σ . (15)

From (15) and (10) we get

y′′′(t) +
q(t)

τ

(
∫ t

T∗

y(s)ds

)

≤ 0 , t ≥ T∗ .

Then the function z(t) =
∫ t

T∗

y(s)ds, t ≥ T∗ is a positive solution of the inequality

z′′′′(t) +
q(t)

τ
z(t) ≤ 0 . (16)

By Lemma 3 equation (11) has a nonoscillatory solution, which is a contradiction.

Let conditions (13) hold. Since y(t) is increasing and y(t) ≥ 1
τ

∫ t

t−τ
y(s)ds, it follows

from (14) that

x(t) ≥
1

τ

∫ t

T

y(s)ds , t ≥ T∗ = T + τ .

Then

x(g(t)) ≥
1

τ

∫ g(t)

T

y(s)ds ≥
1

τ

∫ t−σ

T

y(s)ds

=
1

τ

(
∫ t

T

y(s)ds −

∫ t

t−σ

y(s)ds

)

, t ≥ T∗ . (17)

From y′′ > 0, y′′′(t) ≤ 0 we conclude that there exists the limit limt→+∞ y′′(t) = k ∈

R+.

In the following we will distinguish three cases.

Case 1. limt→+∞ y′′(t) = k > 0. Then

y′(t) = kt + o(t) , y(t) =
kt2

2
+ o(t2) and

t
∫

T

y(s)ds =
kt3

6
+ o(t3) ,

as t → +∞. This implies
∫ t

t−σ

y(s)ds ≤ kσt2 ,

∫ t

T

y(s)ds > kσt2 (18)
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for t ≥ T1, where T1 ≥ T∗ is sufficiently large.

From (17) and (18) it follows that

x(g(t)) ≥
1

τ

(
∫ t

T

y(s)ds − kσt2
)

> 0 , t ≥ T1 .

Then the function z(t) =
∫ t

T
y(s)ds−kσt2, t ≥ T1 is a positive solution of inequality

(16), and applying Lemma 3 we get a contradiction.

Case 2. limt→+∞ y′′(t) = 0, limt→+∞ y′(t) = k > 0. Then

y(t) = kt + o(t) ,

∫ t

T

y(s)ds =
kt2

2
+ o(t2) as t → +∞

and
∫ t

t−σ

y(s)ds < 2σkt eventually.

Then

x(g(t)) ≥
1

τ

(
∫ t

T

y(s)ds − 2σkt

)

> 0 eventually

and the function z(t) =
∫ t

T
y(s)ds−2σkt is an eventually positive solution of inequality

(16). Applying Lemma 3 we get a contradiction.

Case 3. limt→+∞ y′′(t) = 0, limt→+∞ y′(t) = +∞. Then

y′(t) = o(t) , y(t) = o(t2) , t = o(y(t)) ,
∫ t

T

y(s)ds = o(t3) , t2 = o

(
∫ t

T

y(s)ds

)

as t → +∞. So we have
∫ t

t−σ

y(s)ds < t2 eventually.

Then

x(g(t)) ≥
1

τ

(
∫ t

T

y(s)ds − t2
)

> 0 eventually

and the function z(t) =
∫ t

T
y(s)ds − t2 is an eventually positive solution of inequlity

(16), which leads to a contradiction as above.

The proof of the sufficiency is complete.

Necessity. That is, the oscillation of equation (10) implies that for equation (11).

Suppose to the contrary that equation (11) has an eventually positive solution y.

Then y′′′′(t) ≤ 0 eventually. From Lemma 1 there exists a T∗ ≥ T such that either

y′(t) > 0 , y′′(t) < 0 , y′′′(t) > 0 , t ≥ T∗ , (19)

or

y′(t) > 0 , y′′(t) > 0 , y′′′(t) > 0 , t ≥ T∗ . (20)

Let conditions (19) hold. Since y(t) is increasing and y ′(t) is decreasing for t ≥ T∗,

there exists a T ∗ ≥ T∗ such that y(t) > M and y′(t) < M
1+σ

for t ≥ T ∗.
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Set T0 = T ∗ + τ + σ, Tk = T0 + kτ , k = −1, 0, 1, 2 . . . , and define the functions

λ(t) =
y′(T0)

τ
(t − T0 + τ)

and

z(t) =



























0 , t ≤ T−1 ,

λ(t) , t ∈ [T−1, T0] ,

λ(t − kτ) +

k−1
∑

j=0

y′(t − jτ) , t ∈ [Tk−1, Tk] , k = 1, 2, . . . .

It is easy to verify that z ∈ C(R, R+), z(t) > 0 for t > T−1 and

z(t) − z(t − τ) = y′(t) for t ≥ T0 . (21)

Let m1 = max[T−1,T0] λ(t). Then m1 = y′(T0) ∈ (0, M
1+σ

).

Since y′(t) is decreasing for t ≥ T−1 we have for t ∈ [Tk−1, Tk], k = 1, 2, . . . that

z(t) ≤ m1 + y′(t − (k − 1)τ) + · · ·+ y′(t) ≤ m1 +

∫ t

t−kτ

y′(s)ds

= m1 + y(t) − y(t − kτ) ≤ m1 + y(t) − M .

Since g(t) ≤ t + σ, t ≥ T , y(t) is increasing and y′(t) is decreasing for t ≥ T∗ we

obtain that for t ≥ T0 + σ

z(g(t)) ≤ m1 − M + y(g(t)) ≤ m1 − M + y(t + σ) = m1 − M + y(t) +

∫ t+σ

t

y′(s)ds

≤ m1 − M + y(t) + y′(t)σ ≤
M

1 + σ
− M + y(t) +

Mσ

1 + M
= y(t) .

Substituting the above inequality and (21) into (11) we get

[z(t) − z(t − τ)]′′′ + q(t)z(g(t)) ≤ 0 , t ≥ T0 + σ .

Then by Lemma 4 equation (10) has an eventually positive solution, which leads to

a contradiction.

Let conditions (20) hold. Then limt→+∞ y′′′(t) = k ∈ R+. Define the functions λ(t)

and z(t) as above and set m1 = max[T−1,T0] λ(t), m0 = max[T−1,T0] y(t). Now y′(t) is

increasing for t ≥ T−1. Then we have for t ∈ [Tk−1, Tk], k = 1, 2, . . .

z(t) = λ(t − kτ) + y′(t − (k − 1)τ) + · · ·+ y′(t) ≤ m1 +

∫ t+τ

t−(k−1)τ

y′(s)ds

≤ m1 + y(t + τ) − y(t − (k − 1)τ) ≤ m1 + y(t + τ) ,

z(t) ≥

∫ t

t−kτ

y′(s)ds = y(t) − y(t − kτ) ≥ y(t) − m0 ,

that is,

y(t) − m0 ≤ z(t) ≤ m1 + y(t + τ) , t ≥ T0 . (22)
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Hence

z(g(t)) ≤ m1 + y(g(t) + τ) ≤ m1 + y(t + τ + σ) = m1 + y(t) +

∫ t+τ+σ

t

y′(s)ds

≤ m1 + y(t) + y′(t + τ + σ)σ , t ≥ T0 + σ . (23)

In the following, we will distinguish three cases.

Case 1. Let k > 0. Then

y′′(t) = kt + o(t) , y′(t) =
k

2
t2 + o(t2) and y(t) =

kt3

6
+ o(t3) as t → +∞ .

From (22) it follows that z(t) = k
6
t3 + o(t3) as t → +∞. This and (23) imply that for

all sufficiently large t

z(g(t)) ≤ m1 + y(t) + kσt2 .

Let

u(t) = z(t) − kσ(t + σ)2 − m1 .

Then u(t) > 0 eventually, y(t) ≥ u(g(t)) and

y′′′′(t) = [z(t) − z(t − τ)]′′′ = [u(t) − u(t − τ)]′′′ .

Therefore it follows from (11) that

[u(t) − u(t − τ)]′′′ + q(t)u(g(t)) ≤ 0 eventually.

From Lemma 4 it follows that equation (10) has an eventually positive solution, which

is a contradiction.

Case 2. Let k = 0 and limt→+∞ y′′(t) = λ > 0. Then

y′(t) = λt + o(t) and y(t) =
λt2

2
+ o(t2) as t → +∞ .

Obviously z(t) = λ
2
t2 + o(t2) as t → +∞. Hence for all sufficiently large t

z(g(t)) ≤ m1 + y(t) + 2λσt .

Let

u(t) = z(t) − m1 − 2λσ(t + σ) .

Then u(t) > 0 eventually and y(t) ≥ u(g(t)). Repeating the same arguments as in

Case 1, we get a contradiction.

Case 3. Let k = 0 and limt→+∞ y′′(t) = +∞. Then

y′′(t) = o(t) , y′(t) = o(t2) , t = o(y′(t)) , y(t) = o(t3) , t2 = o(y(t))

as t → +∞.

Obviously, z(t) = o(t3) and t2 = o(z(t)) as t → +∞. Hence

z(g(t)) ≤ m1 + y(t) + σt2 eventually.

Let

u(t) = z(t) − m1 − σ(t + σ)2 .
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Then u(t) > 0 eventually and y(t) ≥ u(g(t)). Repeating the same arguments as in

Case 1, we get a contradiction. �

Proceeding as in the proof of Theorem 1 and using the function ∆(t, x(t)) instead

of g(t) one can prove the following two theorems.

Theorem 2. Assume that:

1. Conditions H1 and H3 hold, τ ∈ (0, +∞) and n ≥ 1 is an odd integer.

2. Equation (3) is oscillatory.

Then equation (2) is oscillatory.

Theorem 3. Assume that:

1. Conditions H1 and H4 hold, τ ∈ (0, +∞) and n ≥ 1 is an odd integer.

2. Equation (3) has an eventually positive solution.

Then the inequality

[x(t) − x(t − τ)](n) + g(t)x(∆(t, x(t))) ≤ 0 (24)

has an eventually positive solution.

Remark 1. Let conditions H1 and H4 hold. In order to prove that the oscillations

of equations (2) and (3) are equivalent it remains to prove that equation (2) has an

eventually positive solution if inequality (24) has such a solution . This is an open

problem for now.

Consider the equations

x(m)(t) + q(t)x(∆(t, x(t))) = 0 (25)

and

x(m)(t) + q(t)x(t) = 0 . (26)

Theorem 4. Assume that:

1. Conditions H1 and H3 hold and m ≥ 2 is an even integer.

2. Equation (26) is oscillatory.

Then equation (25) is oscillatory.

Proof. Assume the opposite. Then equation (25) has an eventually positive solution

x(t) and x(m)(t) ≤ 0 eventually. Since m ≥ 2 is even, then by Lemma 1 x′(t) > 0

eventually and the function x(t) is increasing. Therefore x(∆(t, x(t))) ≥ x(t−σ) and

the inequality

x(m)(t) + q(t)x(t − σ) ≤ 0

has an eventually positive solution. By Zhang and Yang [5], Theorem 2.5, equation

(26) also has an eventually positive solution, which is a contradiction. �

Let Hm denote the maximum of P (x) = x(1 − x) . . . (m − 1 − x) on (0, 1). The

following lemma is known.
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Lemma 5. (see Kiguradze and Chanturia [3]) Let m ≥ 2 be even and q ∈ C(J, R+).

Then equation (26) is oscillatory if one of the following conditions is fulfillled:

lim
t→+∞

inf t

∫

∞

t

sm−2q(s)ds > Hm , (27)

or

lim
t→+∞

sup t

∫

∞

t

sm−2q(s)ds > (m − 1)! . (28)

Combining Theorems 2 and 4 with Lemma 5 we get the following theorems.

Theorem 5. Let conditions H1 and H3 hold, τ ∈ (0, +∞) and n ≥ 1 be an odd

integer. Then equation (2) is oscillatory if one of the following conditions is fulfilled:

lim
t→+∞

inf t

∫

∞

t

sn−1q(s)ds > τHn+1 , (29)

or

lim
t→+∞

sup t

∫

∞

t

sn−1q(s)ds > τn! . (30)

Theorem 6. Let conditions H1 and H3 hold and m ≥ 2 be an even integer. Then

equation (25) is oscillatory if one of the conditions (27) or (28) is fulfilled.
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