EXISTENCE OF NONOSCILLATORY SOLUTIONS TENDING TO ZERO AT ∞ FOR DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENTS
 DEPENDING ON THE UNKNOWN FUNCTION

N.T. Markova ${ }^{1}$ and P.S. Simeonov ${ }^{2}$
${ }^{1}$ Technical University
Sliven, Bulgaria
${ }^{2}$ Medical University of Sofia
2 Dunav Str., Sofia, 1000, Bulgaria
e-mail: simeonovps@@yahoo.com

Communicated by S. Nenov

ABSTRACT: In this paper differential equations of the type

$$
\begin{equation*}
(-1)^{n} D_{r}^{(n)} x(t)=F\left(t, x\left(\Delta_{1}(t, x(t))\right), \ldots, x\left(\Delta_{m}(t, x(t))\right)\right) \tag{N}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n} D_{r}^{(n)} x(t)=p(t) x(\Delta(t, x(t))) \tag{L}
\end{equation*}
$$

are considered, where $n \geq 1$ and the retarded arguments $\Delta_{1}, \ldots, \Delta_{m}$ and Δ depend on the independent variable t as well as on the unknown function x.

Sufficient conditions are found under which equation (N) (or (L)) has a positive solution x such that $\lim _{t \rightarrow+\infty} D_{r}^{(k)} x(t)=0, k=0, \ldots, n-1$ monotonically.

AMS (MOS) Subject Classification: 34K15

1. INTRODUCTION

In this paper we consider the n-th order differential equations

$$
\begin{equation*}
(-1)^{n} D_{r}^{(n)} x(t)=F\left(t, x\left(\Delta_{1}(t, x(t))\right), \ldots, x\left(\Delta_{m}(t, x(t))\right)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n} D_{r}^{(n)} x(t)=p(t) x(\Delta(t, x(t))) \tag{2}
\end{equation*}
$$

with retarded arguments $\Delta_{1}, \ldots, \Delta_{m}$ and Δ which depend on the independent variable t as well as on the unknown function x.

Here $n \geq 1$ is an integer, $t \in J=[\alpha,+\infty) \subseteq \mathbb{R}_{+}=[0,+\infty)$,

$$
D_{r}^{(0)} x(t)=x(t), \quad D_{r}^{(i)} x(t)=r_{i}(t)\left(D_{r}^{(i-1)} x(t)\right)^{\prime}, \quad i=1, \ldots, n,
$$

where $r_{i}: J \rightarrow(0,+\infty), i=1, \ldots, n$.

The oscillatory and asymptotic behavior of the solutions of such type equations have been studied in the papers of Bainov et al [1], Markova and Simeonov [7], [8], [9].

The purpose here is to find sufficient conditions under which equation (1) (or (2)) possesses positive solutions tending monotonically to zero at infinity together with their first $n-1 r$-derivatives.

The main results obtained in this paper generalize similar results of Lovelady [6], Sficas [13] and Philos [11], where the case is considered when $\Delta_{1}, \ldots, \Delta_{m}$ and Δ do not depend on $x: \Delta_{j}=\sigma_{j}(t), j=1, \ldots, m, \Delta=\sigma(t)$. For related results the reader is referred to the papers of Kusano and Onose [3], [4], Philos [10], Philos and Staikos [12], Sficas [14].

2. PRELIMINARY NOTES

Introduce the following conditions:
H1. $r_{i} \in C(J,(0,+\infty)), i=1, \ldots, n-1$ and $r_{n}(t) \equiv 1, t \in J$.
H2. $F \in C\left(J \times \mathbb{R}_{+}^{m}, \mathbb{R}\right)$ and

$$
x_{1} F\left(t, x_{1}, \ldots, x_{m}\right)>0 \text { for } t \in J, x_{1} x_{j}>0, j=1, \ldots, m .
$$

H3. $F\left(t, x_{1}, \ldots, x_{m}\right) \leq F\left(t, y_{1}, \ldots, y_{m}\right)$ provided that $0<x_{j} \leq y_{j}, j=1, \ldots, m$.
H4. $\Delta_{j} \in C(J \times \mathbb{R}, \mathbb{R}), j=1, \ldots, m$ and there exist $\sigma_{j} \in C(J, \mathbb{R}), j=1, \ldots, m$ and $T \in J$ such that
$\lim _{t \rightarrow+\infty} \sigma_{j}(t)=+\infty, \quad \sigma_{j}(t) \leq \Delta_{j}(t, x)<t, \quad j=1, \ldots, m, \quad t \geq T, \quad x \in \mathbb{R}$.
H5. $\int^{+\infty} \frac{d t}{r_{i}(t)}=+\infty, i=1, \ldots, n-1$.
H6. $\Delta \in C(J \times \mathbb{R}, \mathbb{R})$ and there exist $\sigma \in(J, \mathbb{R})$ and $T \in J$ such that

$$
\lim _{t \rightarrow+\infty} \sigma(t)=+\infty, \quad \sigma(t) \leq \Delta(t, x)<t, \quad t \geq T, \quad x \in \mathbb{R}
$$

H7. $p \in C(J,(0,+\infty))$.
The domain \mathcal{D} of $D_{r}^{(n)}$ is defined to be the set of all functions $x:\left[t_{x},+\infty\right) \rightarrow \mathbb{R}$ such that the r-derivatives $D_{r}^{(k)} x(t), k=1, \ldots, n$ exist and are continuous on interval $\left[t_{x},+\infty\right) \subseteq J$. By a proper solution of equation (1) is meant a function $x \in \mathcal{D}$ which satisfies (1) for all sufficiently large t and $\sup \{|x(t)|: t \geq T\}>0$ for $T \geq$ t_{x}. We assume that equation (1) do possess proper solutions. A proper solution $x:\left[t_{x},+\infty\right) \rightarrow \mathbb{R}$ is called positive if there exists $t \geq t_{x}$ such that $x(t)>0$ for $t \geq T$.

We will need the following lemma which is a generalization of the well-known lemma of Kiguradze [2] and can be proved similarly.

Lemma 1. Suppose conditions $H 1$ and $H 5$ hold and the functions $D_{r}^{(n)} x$ and $x \in \mathcal{D}$ are of constant sign and not identically zero for $t \geq t_{*} \geq \alpha$.

Then there exist a $t_{k} \geq t_{*}$ and an integer $k, 0 \leq k \leq n$ with $n+k$ even for $x(t) D_{r}^{(n)} x(t)$ nonnegative and $n+k$ odd for $x(t) D_{r}^{(n)} x(t)$ nonpositive and such that for every $t \geq t_{k}$

$$
\begin{aligned}
x(t) D_{r}^{(i)} x(t) & >0, & i=0,1, \ldots, k, \\
(-1)^{k+i} x(t) D_{r}^{(i)} x(t) & >0, & i=k, k+1, \ldots, n-1
\end{aligned}
$$

3. MAIN RESULTS

Theorem 1. Assume conditions H1-H4 hold and y is a positive and strictly decreasing solution of the integral inequality

$$
\begin{array}{r}
y(t) \geq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} F\left(s, y\left(\sigma_{1}(s)\right), \ldots, y\left(\sigma_{m}(s)\right)\right) d s \ldots d s_{1} \\
t \geq T \tag{3}
\end{array}
$$

Then there exists a positive solution x of differential equation (1) such that $x(t) \leq y(t)$ for t sufficiently large and

$$
\lim _{t \rightarrow+\infty} D_{r}^{(i)} x(t)=0 \quad \text { monotonically, } \quad i=0, \ldots, n-1
$$

Proof. Let y be a positive and strictly decreasing solution of integral inequality (3) on the interval $[\tau,+\infty) \subseteq J$. From condition H 4 it follows that there exists a $T>\tau$ such that $\Delta_{j}(t, x) \geq \sigma_{j}(t) \geq \tau$ for $t \geq T, x \in \mathbb{R}, j=1, \ldots, m$.

Consider the set

$$
X=\left\{x \in C\left([T,+\infty), \mathbb{R}_{+}\right): x(t) \leq y(t), t \geq T\right\}
$$

with the norm $\|x\|=\sup \{|x(t)|: t \geq T\}$ of $x \in X$.
For any $x \in X$ we set

$$
\widetilde{x}(t)= \begin{cases}x(t), & t \geq T \\ x(T)+y(t)-y(T), & \tau \leq t \leq T\end{cases}
$$

and define the operator $S: X \rightarrow C\left([T,+\infty), \mathbb{R}_{+}\right)$by the formula

$$
\begin{align*}
S x(t)= & \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \\
& \int_{s_{n-1}}^{\infty} F\left(s, \widetilde{x}\left(\Delta_{1}(s, x(s))\right), \ldots, \widetilde{x}\left(\Delta_{m}(s, x(s))\right)\right) d s \ldots d s_{1}, \quad t \geq T \tag{4}
\end{align*}
$$

From (4), (3) and conditions H2-H4 we obtain

$$
0 \leq S x(t) \leq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots
$$

$$
\int_{s_{n-1}}^{\infty} F\left(s, y\left(\sigma_{1}(s)\right), \ldots, y\left(\sigma_{m}(s)\right)\right) d s \ldots d s_{1} \leq y(t), \quad t \geq T
$$

which means that $S X \subseteq X$.
It is standard to verify that the other conditions of the Schauder's Second Fixed Point Theorem [5] are fulfilled and therefore there exists $x \in X$ such that $x=S x$, that is, for every $t \geq T$

$$
\begin{align*}
& x(t)=\int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \\
& \quad \int_{s_{n-1}}^{\infty} F\left(s, \widetilde{x}\left(\Delta_{1}(s, x(s))\right), \ldots, \widetilde{x}\left(\Delta_{m}(s, x(s))\right)\right) d s \ldots d s_{1} \tag{5}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} D_{r}^{(i)} x(t)=0, \quad \text { monotonically }, \quad i=0,1, \ldots, n-1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n} D_{r}^{(n)} x(t)=F\left(t, \widetilde{x}\left(\Delta_{1}(t, x(t))\right), \ldots, \widetilde{x}\left(\Delta_{m}(t, x(t))\right)\right), \quad t \geq T \tag{7}
\end{equation*}
$$

From condition H 4 there exists a $T_{1} \geq T$ such that $\Delta_{j}(t, x) \geq \sigma_{j}(t) \geq T$ for $t \geq T_{1}, j=1, \ldots, m$ and hence the function $x(t)$ is a solution of equation (1) for $t \geq T_{1}$. We have that $x(t) \leq y(t), t \geq T$ and $\widetilde{x}(t)>0, \tau \leq t<T$. We prove that $\widetilde{x}(t)>0$ for $t \geq T$. Assume the opposite. Then there exists a $T_{*} \geq T$ such that $\widetilde{x}(t)>0, \tau \leq t<T_{*}$ and $x\left(T_{*}\right)=\widetilde{x}\left(T_{*}\right)=0$. Since $\tau \leq \sigma_{j}\left(T_{*}\right) \leq \Delta_{j}\left(T_{*}, x\left(T_{*}\right)\right)<T_{*}$, $j=1, \ldots, m$ (by condition H4), then $\widetilde{x}\left(\Delta_{j}\left(T_{*}, x\left(T_{*}\right)\right)\right)>0$ and

$$
F\left(T_{*}, \widetilde{x}\left(\Delta_{1}\left(T_{*}, x\left(T_{*}\right)\right)\right), \ldots, \widetilde{x}\left(\Delta_{m}\left(T_{*}, x\left(T_{*}\right)\right)\right)\right)>0 .
$$

Hence by (7) we obtain $D_{r}^{(n)} x\left(T_{*}\right) \neq 0$. Furthermore, we have that x is nonnegative and strictly decreasing on $[T,+\infty)$. Hence $x(t)=0$ for $t \geq T_{*}$ since $x\left(T_{*}\right)=0$. This implies $D_{r}^{(n)} x\left(T_{*}\right)=0$. which is a contradiction. Therefore $\widetilde{x}(t)>0$ for $t \geq T$ and $x(t)$ is a positive solution of equation (1) for $t \geq T_{1}$.

Corollary 1. Assume conditions H1-H5 hold and y is a positive bounded solution of the differential inequality

$$
\begin{equation*}
(-1)^{n} D_{r}^{(n)} y(t) \geq F\left(t, y\left(\sigma_{1}(t)\right), \ldots, y\left(\sigma_{m}(t)\right)\right) \tag{8}
\end{equation*}
$$

Then there exists a positive solution x of differential equation (1) such that $x(t) \leq y(t)$ for t sufficiently large and $\lim _{t \rightarrow+\infty} D_{r}^{(i)} x(t)=0$ monotonically, $i=0,1, \ldots, n-1$.

Proof. Let y be a positive bounded solution of inequality (8) on an interval $[\tau,+\infty) \subseteq$ J and $T>\tau$ be chosen so that

$$
\Delta_{j}(t, x) \geq \sigma_{j}(t) \geq \tau \quad \text { for } \quad t \geq T, \quad j=1, \ldots, m
$$

From (8) and condition H2 it follows that $(-1)^{n} D_{r}^{(n)} y(t)>0$ for $t \geq \tau$. Then by Lemma 1 there exist a $t_{k} \geq \tau$ and an integer $k, 0 \leq k \leq n$ which is even such that for $t \geq t_{k}$

$$
\begin{align*}
D_{r}^{(i)} y(t) & >0, & & i=0,1, \ldots, k \\
(-1)^{k+i} D_{r}^{(i)} y(t) & >0, & i & =k, k+1, \ldots, n-1 \tag{9}
\end{align*}
$$

Since $y(t)$ is bounded the case $k \geq 2$ is impossible. Hence $k=0$ and $D_{r}^{(1)} y(t)<0$, $t \geq t_{k}$, that is, $y(t)$ is strictly decreasing on $\left[t_{k},+\infty\right)$. Moreover, it follows from (8) and (9) with $k=0$, that

$$
y(t) \geq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} F\left(s, y\left(\sigma_{1}(s)\right), \ldots, y\left(\sigma_{m}(s)\right)\right) d s \ldots d s_{1}, \quad t \geq t_{k}
$$

Hence Corollary 1 follows from Theorem 1.
Corollary 2. Let conditions H1, H6 and H7 hold and

$$
\sup _{t \geq T} \int_{\sigma(t)}^{t} p(s) d s \leq \begin{cases}\frac{1}{e}, & \text { if } \tag{10}\\ n=1 \\ \frac{n}{e}\left(\prod_{i=1}^{n-1} Q_{i}\right)^{\frac{1}{n}}, & \text { if } \\ n>1\end{cases}
$$

where $Q_{i}=\inf _{t \geq T}\left\{p(t) r_{i}(t)\right\}>0, i=1, \ldots, n-1$ and $T \geq \alpha$ is such that $\sigma(t) \geq \alpha$ for $t \geq T$.

Then there exists a positive solution x of differential equation (2) such that $\lim _{t \rightarrow+\infty} D_{r}^{(i)} x(t)=0$ monotonically, $i=0, \ldots, n-1$.

Proof. Set

$$
\begin{gathered}
M_{T}=\sup _{t \geq T} \int_{\sigma(t)}^{t} p(s) d s \quad \text { and } \\
y(t)=\exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{t} p(s) d s\right) \quad \text { for } \quad t \geq \alpha
\end{gathered}
$$

For every $t \geq T$ we have

$$
\begin{aligned}
& y(\sigma(t))=\exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{\sigma(t)} p(s) d s\right) \\
& =\exp \left(\frac{n}{M_{T}} \int_{\sigma(t)}^{t} p(s) d s\right) \exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{t} p(s) d s\right) \leq e^{n} \exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{t} p(s) d s\right) .
\end{aligned}
$$

For $n=1$ and $t \geq T$ we have $e M_{T} \leq 1$ and

$$
\begin{aligned}
\int_{t}^{\infty} p(s) y(\sigma(s)) d s & \leq e \int_{t}^{\infty} p(s) \exp \left(-\frac{1}{M_{T}} \int_{\alpha}^{s} p(u) d u\right) d s \\
& =e M_{T} \exp \left(-\frac{1}{M_{T}} \int_{\alpha}^{t} p(s) d s\right)=e M_{T} y(t) \leq y(t)
\end{aligned}
$$

For $n>1$ and $t \geq T$ we have $e^{n}\left(\frac{M_{T}}{n}\right)^{n}\left(\prod_{i=1}^{n-1} Q_{i}\right)^{-1} \leq 1$ and

$$
\begin{aligned}
& \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{\infty} p(s) y(\sigma(s)) d s d s_{n-1} \ldots d s_{1} \\
& \leq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{\infty} p(s) e^{n} \\
& \times \exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{s} p(u) d u\right) d s d s_{n-1} \ldots d s_{1} \\
& =\int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \\
& \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}\left(s_{n-1}\right)} \int_{s n-1}^{\infty} e^{n}\left(-\frac{M_{T}}{n}\right) d \exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{s} p(u) d u\right) d s_{n-1} \ldots d s_{1} \\
& =\int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \text {. } \\
& \int_{s_{n-2}}^{\infty} \frac{1}{r_{n-1}\left(s_{n-1}\right)} e^{n} \frac{M_{T}}{n} \exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{s_{n-1}} p(u) d u\right) d s_{n-1} \ldots d s_{1} \\
& \leq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \\
& \int_{s_{n-2}}^{\infty} \frac{e^{n} M_{T}}{n Q_{n-1}} p\left(s_{n-1}\right) \exp \left(-\frac{n}{M_{T}} \int_{\alpha}^{s_{n-1}} p(u) d u\right) d s_{n-1} \ldots d s_{1} \\
& \leq \frac{e^{n}\left(\frac{M_{T}}{n}\right)^{n}}{Q_{n-1} \ldots Q_{1}} y(t) \leq y(t) .
\end{aligned}
$$

Then for every $t \geq T$ we obtain

$$
y(t) \geq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s) y(\sigma(s)) d s \ldots d s_{1}
$$

and hence Corollary 2 follows from Theorem 1.
Remark 1. Corollary 2 generalizes Proposition 1^{\prime} from [11] where equation (2) is considered in the case $\Delta=\sigma(t)$ and instead of condition (10) the following condition

$$
\begin{equation*}
\sup _{t \geq T} \int_{\sigma(t)}^{t} p(s) d s \leq \frac{n}{e}\left(P_{T}^{n-1} \prod_{i=1}^{n-1} R_{i, T}\right)^{\frac{1}{n}} \tag{11}
\end{equation*}
$$

is assumed, where

$$
P_{T}=\inf _{t \geq T} p(t)>0 \quad \text { and } \quad R_{i, T}=\inf _{t \geq T} r_{i}(t)>0, \quad i=1, \ldots, n-1
$$

We note that condition (10) of Corollary 2 is better than condition (11) since $P_{T} R_{i, T} \leq Q_{i}, i=1, \ldots, n-1$.

Example 1. Consider the equation

$$
\begin{equation*}
\left(t x^{\prime}(t)\right)^{\prime}=\frac{1}{t} x(t-1), \quad t>0 \tag{12}
\end{equation*}
$$

Here

$$
\begin{gathered}
n=2, \quad r_{1}(t)=t, \quad p(t)=\frac{1}{t}, \quad \sigma(t)=(t-1) \\
M_{T}=\sup _{t \geq T} \int_{\sigma(t)}^{t} p(s) d s=\ln \frac{T}{T-1}, \quad \text { for } \quad T>1 \\
Q_{1}=\inf _{t \geq T}\left\{p(t) r_{1}(t)\right\}=1, \quad \text { for } \quad T>1 \\
P_{T}=\inf _{t \geq T} p(t)=0, \quad R_{1, T}=\inf _{t \geq T} r_{1}(t)=T
\end{gathered}
$$

Hence Proposition 1^{\prime} from [11] does not work in this case since $P_{T}=0$ and $M_{T}>$ $\frac{2}{e}\left(P_{T} R_{1, T}\right)^{\frac{1}{2}}=0$. On the other hand condition (10) of Corollary 2 is satisfied for T sufficiently large:

$$
M_{T}=\ln \frac{T}{T-1} \leq \frac{2}{e}=\frac{2}{e}\left(Q_{1}\right)^{\frac{1}{2}} .
$$

Consequently by Corollary 2 equation (12) has a positive solution $x(t)$ such that

$$
\lim _{t \rightarrow+\infty} x(t)=\lim _{t \rightarrow+\infty} t x^{\prime}(t)=0 \quad \text { monotonically. }
$$

Corollary 3. Let conditions H1, H6 and H7 hold and

$$
\begin{equation*}
\sup _{t \geq T} t \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} \frac{p(s)}{\sigma(s)} d s \ldots d s_{1} \leq 1 \tag{13}
\end{equation*}
$$

where $t \geq \alpha$ is such that $\sigma(t)>0$ for $t \geq T$.
Then there exists a positive solution x of differential equation (2) such that $\lim _{t \rightarrow+\infty} D_{r}^{(i)} x(t)=0$ monotonically, $i=0, \ldots, n-1$.

Proof. If we set $y=\frac{1}{t}$ for $t>0$, then for every $t \geq T$ we have

$$
y(t) \geq \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s) y(\sigma(s)) d s \ldots d s_{1}
$$

and Corollary 3 follows from Theorem 1.
Remark 2. Condition (13) is satisfied, if

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \sup t \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} \frac{p(s)}{\sigma(s)} d s \ldots d s_{1}<1 \tag{14}
\end{equation*}
$$

Corollary 4. Let conditions H1, H6 and H7 hold and

$$
\begin{equation*}
\int_{\alpha}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s) d s \ldots d s_{1}<+\infty \tag{15}
\end{equation*}
$$

Then there exists a positive solution x of differential equation (2) such that $\lim _{t \rightarrow+\infty} D_{r}^{(i)} x(t)=0$ monotonically, $i=0, \ldots, n-1$.

Proof. Let $y(t)=1+\frac{1}{t}$ for $t \geq 1$ and $T=\max \{\alpha, 1\}$ be such that $\sigma(t) \geq 1$ for $t \geq T$ and

$$
\int_{T}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s) d s \ldots d s_{1} \leq \frac{1}{2}
$$

Then for every $t \geq T$ we have

$$
\begin{aligned}
& \int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s) y(\sigma(s)) d s \ldots d s_{1} \\
& \quad=\int_{t}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s)\left[1+\frac{1}{\sigma(s)}\right] d s \ldots d s_{1} \\
& \quad \leq 2 \int_{T}^{\infty} \frac{1}{r_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{r_{2}\left(s_{2}\right)} \ldots \int_{s_{n-1}}^{\infty} p(s) d s \ldots d s_{1} \leq 1 \leq y(t)
\end{aligned}
$$

Hence Corollary 4 follows from Theorem 1.

References

[1] D.D. Bainov, N.T. Markova, and P.S. Simeonov, Asymptotic behaviour of the nonoscillatory solutions of differential equations of second order with delay depending on the unknown function, Journal of Computational and Applied Mathematics, 91 (1998), 87-96.
[2] I.T. Kiguradze, On the oscillation of solutions of the equation $\frac{d^{m} u}{d t^{m}}+a(t)|u|^{n} \operatorname{sign} u=0$, Math. Sb., 65 (1964), no. 2, 172-187, In Russian.
[3] T. Kusano and H. Onose, Asymptotic behavior of nonoscillatory solutions of functional differential equations of arbitrary order, J. London Math. Soc., 14 (1976), 106-112.
[4] T. Kusano and H. Onose, Nonoscillation theorems for differential equations with deviating argument, Pacific J. Math., 63 (1976), 185-192.
[5] G.S. Ladde, V. Lakshmikantham, and B.G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Pur and Appl. Math., 110, Marcel Dekker, New York, 1987.
[6] D.L. Lovelady, Positive bounded solutions for a class of linear delay differential equations, Hiroshima Math. J., 6, (1976), 451-456.
[7] N.T. Markova and P.S. Simeonov, Asymptotic and oscillatory properties of the solutions of differential equations with delay depending on the unknown function, Invited lectures delivered at the VII-th Int. Colloquium on Differential Equations, August 18-23, 1996, Plovdiv, Bulgaria, vol. II (1996), 71-78.
[8] N.T. Markova and P.S. Simeonov, On the asymptotic behaviour of the solutions of a class of differential equations with delay depending on the unknown function, Invited lectures delivered at the VII-th Int. Colloquium on Differential Equations, August 18-23, 1996, Plovdiv, Bulgaria, vol. I (1996), 89-100.
[9] N.T. Markova and P.S. Simeonov, Oscillation theorems for n-th order nonlinear differential equations with forcing terms and deviating arguments depending on the unknown function, Communications in Applied Analysis, 9, (2005) no. 3, 417-428.
[10] Ch.G. Philos, Oscillatory and asymptotic behavior of all solutions of differential equations with deviating arguments, Proc. Roy. Soc. Edinburgh Sect. A, 81 (1978), 195-210.
[11] Ch.G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math., 36 (1981), 168-178.
[12] Ch.G. Philos and V.A. Staikos, Asymptotic properties of nonoscillatory solutions of differential equations with deviating argument, Pacific J. Math., 70 (1977), 221-242.
[13] Y.G. Sficas, Strongly monotone solutions of retarded differential equation, Canad. Math. Bull., 22 (1979), 403-412.
[14] Y.G. Sficas, On the behavior of nonoscillatory solutions of differential equations with deviating argument, J. Nonlinear Anal., 3 (1979), 379-394.

