SOURCE TERMS AND MULTIPLICITY OF SOLUTIONS IN A NONLINEAR ELLIPTIC EQUATION

Kyeongpyo Choi¹ and Q-Heung Choi² ^{1,2}Department of Mathematics Inha University Incheon, 402-751, Korea

Communicated by D.D. Bainov

ABSTRACT: We are concerned with the multiplicity of solutions of a nonlinear elliptic equation. We investigate relations between the multiplicity of solutions and source terms in the Dirichlet problem.

AMS (MOS) Subject Classification: 35J65, 35J20, 35B10

1. INTRODUCTION

Let Ω be a bounded set in $\mathbf{R}^{\mathbf{n}}(n \ge 1)$ with smooth boundary $\partial \Omega$ and let A denote the elliptic operator

$$A = \sum_{1 \le i,j \le n} a_{i,j}(x) D_i D_j, \qquad (1.1)$$

where $a_{ij} = a_{ji} \in C^{\infty}(\overline{\Omega})$.

We consider a semilinear elliptic boundary value problem under the Dirichlet boundary condition

$$Au + bu^+ - au^- = h(x)$$
 in Ω , (1.2)
 $u = 0$ on $\partial\Omega$.

Here A is a second order elliptic differential operator and a mapping from $L^2(\Omega)$ into itself with compact inverse, with eigenvalues $-\lambda_i$, each repeated as often as multiplicity. We denote ϕ_n to be the eigenfuction corresponding to $\lambda_n (n = 1, 2, \dots)$, and ϕ_1 is the eigenfunction such that $\phi_1 > 0$ in Ω and the set $\{\phi_n | n = 1, 2, 3 \dots\}$ is an orthonormal set in H, where H is a Hilbert space with inner product

$$(u, v) = \int_{\Omega} uv, \quad u, v \in L^{2}(\Omega).$$

1083-256403.50 © Dynamic Publishers, Inc.

We suppose that $\lambda_1 < a < \lambda_2 < b < \lambda_3$. Under these assumptions, we have a concern with the multiplicity of solutions of (1.2) when h is generated by two eigenfunctions ϕ_1 and ϕ_2 . Then equation (1.2) is equivalent to

$$Au + bu^+ - au^- = h \quad \text{in} \quad H, \tag{1.3}$$

where $h = t_1\phi_1 + t_2\phi_2(t_1, t_2 \in \mathbf{R})$. Hence we will study the equation (1.3). To study equation (1.3), We use the contraction mapping principle to reduce the problem from an infinite dimensional space in H to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by $\{\phi_1, \phi_2\}$ and W be the orthogonal complement of V in H. Let P be an orthogonal projection H onto V. Then every element $u \in H$ is expressed as

$$u = v + w,$$

where v = Pu, w = (I - P)u. Hence equation (1.3) is equavelent to a system

$$Aw + (I - P)(b(v + w)^{+} - a(v + w)^{-}) = 0$$
(1.4)

$$Av + P(b(v+w)^{+} - a(v+w)^{-}) = t_1\phi_1 + t_2\phi_2.$$
(1.5)

Here we look on (1.4) and (1.5) as a system of two equation in the two unknows v and w.

For fixed $v \in V$, (1.4) has a unique solution $w = \theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous (with respect to the L²-norm) in terms of v.

The study of the multiplicity of solution of (1.3) is reduced to the study of the multiplicity of solutions of an equivalent problem

$$Av + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}) = t_{1}\phi_{1} + t_{2}\phi_{2}$$
(1.6)

defined on the two dimensional subspace V spanned by $\{\phi_1, \phi_2\}$.

While one feels intuively that (1.6) ought to be easier to solve than (1.3), there is the disadvantage of an implicitly defined term $\theta(v)$ in the equation. However, in our case, it turns out that we know $\theta(v)$ for some special v's.

If $v \ge 0$ or $v \le 0$, then $\theta(v) \equiv 0$. For example, let us take $v \ge 0$ and $\theta(v) = 0$. Then equation (1.4) reduces to

$$A0 + (I - P)(bv^{+} - av^{-}) = 0,$$

which is satisfied because $v^+ = v, v^- = 0$ and (I - P)v = 0, since $v \in V$. Since the subspace V is spanned by $\{\phi_1, \phi_2\}$ and ϕ_1 is a positive eigenfunction, there exists a cone C_1 defined by

$$C_1 = \{ v = c_1 \phi_1 + c_2 \phi_2 \mid c_1 \ge 0, |c_2| \le qc_1 \}$$

for some q > 0 so that $v \ge 0$ for all $v \in C_1$ and a cone C_3 defined by

$$C_3 = \{ v = c_1 \phi_1 + c_2 \phi_2 \mid c_1 \le 0, |c_2| \le q |c_1| \},\$$

so that $v \leq 0$ for all $v \in C_3$.

Thus, even if we do not know $\theta(v)$ for all $v \in V$, we know $\theta(v) \equiv 0$ for $v \in C_1 \cup C_3$. Now we define a map $\Pi: V \to V$ given by

$$\Pi(v) = Av + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}), \quad v \in V.$$
(1.7)

2. THE NONLINEARITY CROSSES ONE EIGENVALUE

Theorem 2.1. $\Pi(cv) = c\Pi(v)$ for $c \ge 0$. **Proof.** Let $c \ge 0$. If v satisfies

$$A(\theta(v)) + (I - P)(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}) = 0,$$

then

$$A(c\theta(v)) + (I - P)(b(cv + c\theta(v))^{+} - a(cv + c\theta(v))^{-}) = 0$$

and hence $\theta(cv) = c\theta(v)$. Therefore we have

$$\Pi(cv) = A(cv) + P(b(cv + \theta(cv))^+ - a(cv + \theta(cv))^-)$$
$$= cAv + P(b(cv + c\theta(v))^+ - a(cv + c\theta(v))^-)$$
$$= c\Pi(v).$$

We investigate the image of the cones C_1, C_3 under Π . First, we consider the image of cone C_1 . If $v = c_1\phi_1 + c_2\phi_2 \ge 0$, we have

$$\Pi(v) = Av + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-})$$

= $-c_1\lambda_1\phi_1 - c_2\lambda_2\phi_2 + b(c_1\phi_1 + c_2\phi_2)$
= $c_1(b - \lambda_1)\phi_1 + c_2(b - \lambda_2)\phi_2.$

Thus the image of the rays $c_1\phi_1 \pm qc_1\phi_2(c_1 \ge 0)$ can explicitly calculated and they are

$$c_1(b-\lambda_1)\phi_1 \pm qc_1(b-\lambda_2)\phi_2 \quad (c_1 \ge 0).$$
 (2.1)

Therefore If $\lambda_1 < a < \lambda_2 < b < \lambda_3$, then Π maps C_1 onto the cone

$$R_{1} = \left\{ d_{1}\phi_{1} + d_{2}\phi_{2} \mid d_{1} \ge 0, |d_{2}| \le q\left(\frac{b-\lambda_{2}}{b-\lambda_{1}}\right)d_{1} \right\}.$$

Second, we consider the image of the cone C_3 . If

 $v = -c_1\phi_1 + c_2\phi_2 \le 0$ $(c_1 \ge 0, |c_2| \le qc_1),$

the image of the rays $-c_1\phi_1 \pm qc_1\phi_2(c_1 \ge 0)$ are

$$c_1(\lambda_1 - a)\phi_1 \pm qc_1(\lambda_2 - a)\phi_2 \quad (c_1 \ge 0).$$
 (2.2)

Therefore, if $\lambda_1 < a < \lambda_2 < b < \lambda_3$, then Π maps the cone C_3 onto the cone

$$R_3 = \left\{ d_1 \phi_1 + d_2 \phi_2 \ \middle| \ d_1 \le 0, |d_2| \le q \left(\frac{\lambda_2 - a}{\lambda_1 - a} \right) d_1 \right\}.$$

Now we set

$$C_2 = \{ v = c_1 \phi_1 + c_2 \phi_2 \mid c_2 \ge 0, c_2 \ge q |c_1| \},\$$

$$C_4 = \{ v = c_1 \phi_1 + c_2 \phi_2 \mid c_2 \le 0, |c_2| \ge q |c_1| \},\$$

Then the union of C_1, C_2 , and C_3, C_4 are the space V.

We remember the map $\Pi: V \to V$ given by

$$\Pi(v) = Av + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}), \quad v \in V.$$

Let R_i $(1 \le i \le 4)$ be the image of $C_i (1 \le i \le 4)$ under Π .

Theorem 2.2. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$. If h belongs to R_1 , then equation (1.2) has a pointive solution and no negative solution. If h belongs to R_3 , then equation (1.2) has a negative solution.

Proof. From (2.1) and (2.2), if *h* belongs to R_1 , the equation $\Pi(v) = t_1\phi_1 + t_2\phi_2$ has a positive solution in the cone C_1 , namely $\frac{t_1}{b-\lambda_1}\phi_1 + \frac{t_2}{b-\lambda_2}\phi_2$, and if *h* belongs to R_3 , the equation $\Pi(v) = t_1\phi_1 + t_2\phi_2$ has a negative solution in C_3 , namely $-\frac{t_1}{\lambda_1-a}\phi_1 - \frac{t_2}{\lambda_2-a}\phi_2$.

Lemma 2.1 means that the images $\Pi(C_2)$ and $\Pi(C_4)$ are the cones in the plane V. Before we investigate the images $\Pi(C_2)$ and $\Pi(C_4)$, we set

$$\begin{aligned} R_2^* &= \left\{ d_1 \phi_1 + d_2 \phi_2 \ \left| \ d_2 \ge 0, -q^{-1} \mid \frac{\lambda_1 - a}{\lambda_2 - a} \mid d_2 \le d_1 \le q^{-1} \mid \frac{b - \lambda_1}{b - \lambda_2} \mid d_2 \right\}, \\ R_4^* &= \left\{ d_1 \phi_1 + d_2 \phi_2 \ \left| \ d_2 \le 0, -q^{-1} \mid \frac{\lambda_1 - a}{\lambda_2 - a} \mid |d_2| \le d_1 \le q^{-1} \mid \frac{b - \lambda_1}{b - \lambda_2} \mid |d_2| \right\}. \end{aligned} \end{aligned}$$

Then the union of R_1, R_2^*, R_3, R_4^* is the plane V.

To investigate a relation between the multiplicity of solutions and source terms in a nonlinear elliptic differential equation

$$Au + bu^+ - au^- = h \quad \text{in} \quad H,$$

we consider the restriction $\Pi|_{C_i} (1 \le i \le 4)$ of Π to the cone C_i . Let $\Pi_i = \Pi|_{C_i}$, i.e.,

$$\Pi_i: C_i \to V.$$

Theorem 2.3. For i = 1, 3, the image of Π_i is R_i and $\Pi_i : C_i \to R_i$ is bijective. **Proof.** We consider the restriction Π_1 . By (2.4), the restriction Π_1 maps C_1 onto R_1 . Let l_1 be the segment defined by

$$l_1 = \left\{ \phi_1 + d_2 \phi_2 \middle| |d_2| \le q \left(\frac{b - \lambda_2}{b - \lambda_1} \right) \right\}.$$

Then the inverse image $\Pi_1^{-1}(l_1)$ is a segment

$$L_1 = \left\{ \frac{1}{b - \lambda_1} (\phi_1 + c_2 \phi_2) \middle| |c_2| \le q \right\}.$$

It follows from Theorem 2.1 that $\Pi_1 : C_1 \to R_1$ is bijective. Similarly, $\Pi_3 : C_3 \to R_3$ is also a bijection.

146

We have investigated next lemma in [5].

Lemma 2.4. Let Q_2 be one of the sets $R_1 \cup R_4^*$ or $R_2^* \cup R_3$ such that it is contained in $\Pi(C_2)$ and let Q_4 be one of the sets $R_1 \cup R_2^*$ or $R_3 \cup R_4^*$ such that it is contained in $\Pi(C_4)$. Let $\gamma_i (i = 2, 4)$ be any simple path in Q_i with end points on ∂Q_i , where each ray (starting from the origin) in Q_i intersects only one point of γ_i . Then the inverse image $\Pi_i^{-1}(\gamma_i)$ of γ_i is a simple path in C_i with end points on ∂C_i , where any ray (starting from the origin) in C_i intersects only one point of this path.

By Lemma 2.4, we have the following theorem.

Theorem 2.5. For i = 2, 4, if we let $\Pi_i(C_i) = R_i$, then R_2 is one of the sets $R_1 \cup R_4^*$ or $R_2^* \cup R_3$, and R_4 is one of the sets $R_3 \cup R_4^*$ or $R_1 \cup R_2^*$. Furthermore the restriction Π_i maps C_i onto R_i .

3. SOLUTIONS AND APPLICATIONS OF CRITICAL POINTS THEORY

We investigate the multiplicity of solutions of a nonlinear elliptic differential equation

$$Au + bu^+ - au^- = t\phi_1 \quad \text{in} \quad H, \tag{3.1}$$

where $\lambda_1 < a < \lambda_2 < b < \lambda_3$ and t > 0.

Henceforth, let F denote the functional defined by

$$F(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - G(u) + t\phi_1 u \right] dx, \qquad (3.2)$$

where $G(u) = \frac{1}{2} (b(u^+)^2 + a(u^-)^2)$ and $u \in E$. Then,

$$DF(u)y = F'(u)y = \int_{\Omega} \left(\nabla u \cdot \nabla y - g(u)y + t\phi_1 y\right) dx$$
 for all $y \in E$

and solutions of (3.1) coincide with solutions of

$$DF(u) = 0, (3.3)$$

where $g(u) = G'(u) = bu^{+} - au^{-}$.

Therefore, we shall investigate critical points of F.

Theorem 3.1. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3, h \in V$. Let $v \in V$ be given. Then there exists a unique solution $z \in W$ of the equation

$$Az + (I - P)(b(v + z)^{+} - a(v + z)^{-} - h) = 0 \quad in \quad W.$$
(3.4)

If $z = \theta(v)$, then θ is continuous on V and we have $DF(v + \theta(v))(w) = 0$ for all $w \in W$. In particular $\theta(v)$ satisfies a uniform Lipschitz in v with respect to the L^2 -norm. If $\tilde{F} : V \to R$ is defined by $\tilde{F}(v) = F(v + \theta(v))$, then \tilde{F} the has continuous Frechét derivative $D\tilde{F}$ with respect to v and

$$DF(v)(r) = DF(v + \theta(v))(r)$$
 for all $r \in V$.

If v_0 is a critical point of \tilde{F} , then $v_0 + \theta(v_0)$ is a solution of (3.1) and conversely every solution of (3.1) is $D\tilde{F}(v_0) = 0$.

Proof. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3, \alpha = \frac{1}{2}(a+b)$, and $g(u) = bu^+ - au^-$. If $g_1(u) = g(u) - \alpha u$, then equation (3.4) is equavalent to

$$z = (-A - \alpha)^{-1} (I - P)(g_1(v + w)).$$
(3.5)

The right hand side of (3.5) defines, for fixed $v \in V$, a Lipschitz mapping of (I - P)Hinto itself with Lipschitz cosntant $\gamma < 1$. Therefore, by the contraction mapping principle, for given $v \in V$, there exists a unique $z \in (I - P)H$ which satisfies (3.5). If $\theta(v)$ denotes the unique $\in (I - P)H$ which solves (3.5) then θ is continuous (with respect to the L^2 -norm) in V. In fact, $z_1 = \theta(v_1)$ and $z_2 = \theta(v_2)$, then we have

$$z_1 - z_2 = (-A - \alpha)^{-1} (I - P) [(g_1(v_1 + z_1) - g_2(v_2 + z_2)] = (-A - \alpha)^{-1} (I - P) [(g_1(v_1 + z_1) - (g_1(v_1 + z_2))] + (-A - \alpha)^{-1} (I - P) [(g_1(v_1 + z_2) - (g_1(v_2 + z_2))].$$

Since $|g_1(u_1) - g_1(u_2)| \le (b - \alpha)|u_1 - u_2|$, it follows that if $\beta = \max\{(\lambda_m - \alpha)^{-1} | m \ge 3, m \in N\} = (\lambda_3 - \alpha)^{-1} = ||(-A - \delta)^{-1}(I - P)||$, and $\gamma = \beta(b - \alpha) < 1$, then

$$||z_1 - z_2|| \le \gamma (||v_1 - v_2|| + ||z_1 - z_2||).$$

Hence

$$||z_1 - z_2|| \le k ||v_1 - v_2||, \qquad k = \frac{\gamma}{1 - \gamma}$$

which shows that $\theta(v)$ satisfies a uniform Lipschitz condition in v with respect to the L^2 norm. Since θ is continuous on V, \tilde{F} is C^1 with respect to v and

$$D\tilde{F}(v)(r) = DF(v + \theta(v))(r)$$
 for all $r \in V.$ (3.6)

Suppose that there exists $v_0 \in V$ such that $D\tilde{F}(v_0) = 0$. From (3.3) and (3.6) it follows that $D\tilde{F}(v_0)(v) = DF(v_0 + \theta(v_0))(v) = 0$ for all $v \in V$. Since

$$\int_{\Omega} \nabla v \cdot \nabla w = 0 \quad \text{for all} \quad w \in W,$$

we have

$$DF(v + \theta(v))(w) = 0$$
 for all $w \in W$.

Since H is direct sum of V and W, it follows that $DF(v_0 + \theta(v_0)) = 0$ in H. Therefore, $u = v_0 + \theta(v_0)$ is a solution of (3.1).

Conversely our reasoning shows that if u is a solution of (3.1) and v = Pu, then $D\tilde{F}(v) = 0$ in V.

Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$ and h belongs to the cone R_1 . Then equation (3.1) has a positive solution u_p in the cone C_1 . By Theorem 3.1, u_p can be written by $u_p = v_p + \theta(v_p)$. Since $v_p \in C_1, \theta(v_p) = 0$. Therefore we have $u_p = v_p$. Similarly, if $h \in R_3$, then (3.1) has a negative solution u_n and $u_n = v_n + \theta(v_n)$, where $\theta(v_n) = 0$. **Theorem 3.2.** Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$. Then we have:

(a) Let $t = b - \lambda_1 (h = (b - \lambda_1)\phi_1)$. Then equation (3.1) has a positive solution v_p and there exists a small open neighborhood B_p of v_p in C_1 such that in B_p, v_p is a strict local point of maximum of F.

(b) $t = \lambda_1 - a(h = (\lambda_1 - a)\phi_1)$. Then equation (3.1) has a negative solution v_n and there exists a small open neighborhood B_n of v_n in C_3 such that in B_n, v_n is a saddle point of F.

Proof. (a) Let $t = b - \lambda_1 (h = (b - \lambda_1)\phi_1)$. Then equation (3.1) has a $u_p = \phi_1$ which is of the form $u_p = v_p + \theta(v_p)$ (in this case $\theta(v_p) = 0$) and $I + \theta$, where I is an identity map on V, is continuous. Since v_p is in the interior of C_1 , there exists a small open neighborhood B_p of v_p in C_1 . We note that $\theta(v) = 0$ in B_p . Therefore, if $v = v_p + v^* \in B_p$, then we have

$$\begin{split} \tilde{F}(v) &= \tilde{F}(v_p + v^*) \\ &= \int_{\Omega} \left[\frac{1}{2} (|\nabla (v_p + v^*)|^2 - b((v_p + v^*)^+)^2 - a((v_p + v^*)^-)^2) + h(v_p + v^*) \right] dx \\ &= \frac{1}{2} \int_{\Omega} (|\nabla v^*|^2 - bv^{*2}) dx + \int_{\Omega} \left[\nabla v_p \cdot \nabla v^* - bv_p v^* + hv^* \right] dx \\ &+ \int_{\Omega} \left[\frac{1}{2} (|\nabla v_p|^2 - bv_p^2) + hv_p \right] dx \\ &= \frac{1}{2} \int_{\Omega} (|\nabla v^*|^2 - bv^{*2}) dx + \int_{\Omega} \left[\nabla v_p \cdot \nabla v^* - bv_p v^* + hv^* \right] dx + C, \end{split}$$

where $C = \int_{\Omega} \left[\frac{1}{2} (|\nabla v_p|^2 - bv_p^2) + hv_p \right] dx = F(u_p) = \tilde{F}(v_p).$ If $v \in V$ and $v = c_1\phi_1 + c_2\phi_2$, then we have

$$||v||_{0}^{2} = \int_{\Omega} |\nabla v|^{2} dx = \sum_{i=1}^{2} c_{i}^{2} \lambda_{i} < \lambda_{2} \sum_{i=1}^{2} c_{i}^{2}$$
$$= \lambda_{2} \int_{\Omega} v^{2} dx = \lambda_{2} ||v||^{2}.$$
(3.7)

Let $v^* = c_1\phi_1 + c_2\phi_2$ and let $v = v_p + v^* \in B_p$. Then

$$\int_{\Omega} \left[\nabla v_p \cdot \nabla v^* - b v_p v^* + h v^* \right] dx = 0.$$

By (3.7),

$$\tilde{F}(v) - \tilde{F}(v_p) = \frac{1}{2} \int_{\Omega} (|\nabla v^*|^2 - bv^{*2}) dx < (\lambda_2 - b) \int_{\Omega} v^2 dx.$$

Since $\lambda_2 < b$, it follows that for $t = b - \lambda_1$, v_p is a strict local point of maximum for F(v).

(b) Let $t = \lambda_1 - a(h = (\lambda_1 - a)\phi_1)$. Then equation (3.1) has a negative solution $u_n = -\phi_1$ which is of the form $u_n = v_n + \theta(v_n)$, where $\theta(v_n)$ and $-I + \theta$ is continuous

 \square

in V. Since v_n is the interior, $\operatorname{Int} C_3$, of C_3 . We note that $\theta(v) = 0$ in B_n . Therefore, if $v = v_n + v_* \in B_n$, then we have

$$\begin{split} \tilde{F}(v) &= \tilde{F}(v_n + v_*) \\ &= \int_{\Omega} \left[\frac{1}{2} (|\nabla (v_n + v_*)|^2 - a((v_n + v_*)^-)^2) + h(v_n + v_*) \right] dx \\ &= \frac{1}{2} \int_{\Omega} (|\nabla v_*|^2 - av_*^2) dx + \int_{\Omega} [\nabla v_n \cdot \nabla v_* - av_n v_* + hv_*] dx + \tilde{F}(v_n) \,. \end{split}$$

Let $v_* = c_1\phi_1 + c_2\phi_2$. Then for $v = v_n + v_*$, we have

$$\int_{\Omega} \left[\nabla v_n \cdot \nabla v_* - a v_n v_* + h v_* \right] dx = 0.$$

Therefore,

$$\tilde{F}(v) - \tilde{F}(v_n) = \frac{1}{2} \int_{\Omega} (|\nabla v_*|^2 - av_*^2) dx$$

= $\frac{1}{2} (c_1^2(\lambda_1 - a) + c_2^2(\lambda_2 - a)).$

The above equation implies that v_n is a saddle point of \tilde{F} .

Theorem 3.3. Let $h \in V$ and let $\lambda_1 < a < \lambda_2 < b < \lambda_3$. For fixed t the functional \tilde{F} , defined on V, satisfies the Palais-Smale condition: Any sequence $\{v_n\}_1^\infty \subset V$ for which $\tilde{F}(v_n)$ is bounded and $D\tilde{F}(v_n) \to 0$ possesses a convergent subsequence.

Proof. It is enought to show that if $\{v_n\}_1^\infty$ is a sequence in V such that $\{D\tilde{F}(v_n)\}_1^\infty$ is bounded, then the sequence of norms $\{||v_n||_0\}_1^\infty$ is bounded. Assuming the contrary, we may suppose that $\{D\tilde{F}(v_n)\}_1^\infty$ is bounded and $||v_n||_0 \to \infty$ as $n \to \infty$. Since all norms on the finite dimensional space V equivalent it follows that $||v_n|| \to \infty$ as $n \to \infty$, where $|| \cdot ||$ is $L^2(\Omega)$ norm. If for each $n \ge 1$ we set $z_n = \theta(v_n)$ and $u_n = v_n + \theta(v_n)$, then $||u_n|| \to \infty$ as $n \to \infty$. Therefore, since $||v_n||/||u_n||^2 \to 0$ as $n \to \infty$, $\tilde{F}(v_n)(v_n)/||v_n||^2 \to 0$ as $n \to \infty$. Since $\tilde{F}(v_n)(v) = F(u_n)(v)$ for all $v \in V$, so setting $w_n = u_n/||u_n||$. We conclude that

$$\int_{\Omega} \left[(\nabla w_n \cdot \nabla v_n - bw_n^+ v_n + aw_n^- v_n + t\phi_1(v_n/||u_n||))/||u_n|| \right] dx \to 0$$
(3.8)
as $n \to \infty$.

We see that

$$\int_{\Omega} (\nabla u_n \cdot \nabla z_n - bu_n^+ z_n + au_n^- z_n + t\phi_1 z_n) dx = 0 \quad \text{for all} \quad n.$$
(3.9)

Dividing the left-hand side (3.9) by $||u_n||^2$, adding to the left-hand side of (3.8) and using $w_n = v_n/||u_n|| + z_n/||u_n||$, we see that (3.8) can be rewritten in the form

$$\int_{\Omega} \left[|\nabla w_n|^2 - b(w_n^+)^2 - a(w_n^-)^2 + t\phi_1 w_n / ||u_n|| \right] dx \to 0 \text{ as } n \to \infty.$$

Since $||w_n|| = 1$ for all this implies that

$$||w_n||_0^2 = \int_{\Omega} |\nabla w_n|^2 dx$$

is bounded independently of n. Therefore, we may assume, without loss of generality, that $\{w_n\}_1^\infty$ converges weakly to $w \in W$. Since the injection from H into $L^2(\Omega)$ is compact, it follows that $\{w_n\}_1^\infty$ converges strongly in $L^2(\Omega)$ and ||w|| = 1. If $z \in W$, then, by the proof of Theorem 3.1,

$$\int_{\Omega} (\nabla u_n \cdot \nabla z - bu_n^+ z + au_n^- z + t\phi_1 z) dx = 0$$

Dividing by $||u_n||$ we have

$$\int_{\Omega} (\nabla w_n \cdot \nabla z - bw_n^+ z + aw_n^- z + t\phi_1 z / ||u_n||) dx = 0$$
(3.10)

for all n. Letting $n \to \infty$ in the last equation, we conclude that

$$\int_{\Omega} (\nabla w \cdot \nabla z - bw^+ z + aw^- z) dx = 0.$$
(3.11)

Let $v \in V$. We see that

$$D\tilde{F}(v_n)(v) = \int_{\Omega} (\nabla u_n \cdot \nabla v - bu_n^+ v + au_n^- v + t\phi_1 v) dx.$$

Dividing by $||u_n||$, using the fact $\{D\tilde{I}(v_n)\}_1^\infty$ is bounded, and letting $n \to \infty$, we can obtain

$$\int_{\Omega} (\nabla w \cdot \nabla v - bw^+ v + aw^- v) dx = 0.$$
(3.12)

Since (3.11) holds for arbitrary $z \in W$ and (3.12) holds for arbitrary $v \in V$ and H is direct sum of V and W, we conclude that

$$\int_{\Omega} (\nabla w \cdot \nabla y - bw^{+}y + aw^{-}y)dx = 0 \quad \text{for all} \quad y \in H$$

By (3.3), w is a solution of

$$Aw + bw^{+} - aw^{-} = 0, \quad w|_{\partial\Omega} = 0.$$
 (3.13)

Since ||w|| = 1, this contradicts the assumption that (3.13) has only the trivial solution (cf. [9]). Hence the sequence $\{V_n\}_1^\infty$ is bounded and the lemma is proved. \Box

Let \hat{V} be the vector space spanned by an eigenfunction ϕ_2 . Let \hat{W} denote the orthogonal complement of \hat{V} and let $\hat{P} : H \to \hat{V}$ denote the orthogonal projection of H onto \hat{V} . By the use of (3.1), (3.2) and Theorem 3.1, we have the following statements.

Given $\hat{v} \in \hat{V}$ and $t \in \mathbf{R}$, there exists a unique solution $\hat{z} = \hat{\theta}(\hat{v})$ of

$$A\hat{z} + (I - \hat{P})g(\hat{v} + \hat{z}) = t\phi_1, \hat{z}|_{\partial\Omega} = 0,$$

where $\hat{z} \in \hat{W}$.

If $\hat{z} = \hat{\theta}(\hat{v})$, then $\hat{\theta}$ is continuous on \hat{V} . Let $\hat{F}_0(\hat{v})$ denote the functional defined by $\hat{F}_0(\hat{v}) = F(\hat{v} + \hat{\theta}(\hat{v}))$. Then \hat{F}_0 has a continuous Frechét derivative $D\hat{F}_0$ with respect to \hat{v} and u is a solution of equation (3.1) if and only if $u = \hat{v} + \hat{\theta}(\hat{v})$ and $D\hat{F}_0(\hat{v}) = 0$, where $\hat{v} = \hat{P}u$. By Theorem 3.3, for each fixed t the functional \hat{F}_0 satisfies the Palais-Smale condition.

By Theorem 3.1, the functional $\hat{F}_0(\hat{v})$ satisfy the following lemma.

Lemma 3.4. If t > 0 there exists $\alpha = \alpha(t) > 0$ such that if $\hat{v} \in \hat{V}$ and $\|\hat{v}\|_0 < \alpha(t)$, then $\hat{\theta}(\hat{v}) = t\phi_1/(b - \lambda_1)$ for t > 0 and the point $\hat{v} = 0$ is a stric local point of maximum for \hat{F}_0 .

Lemma 3.5. For k > 0 and t = 0, $\hat{F}_0(k\hat{v}) = k^2 \hat{F}_0(\hat{v})$.

Proof. Since g is positively homogeneous of degree one, it follows that if $\hat{v} \in \hat{V}, \hat{z} \in \hat{W}$ and $A\hat{z} + (I - \hat{P})g(\hat{v} + \hat{z}) = 0, \hat{z}|_{\partial\Omega} = 0$, then $A(k\hat{z}) + (I - \hat{P})g(k\hat{v} + k\hat{z}) = 0$. Therefore, $\hat{\theta}(k\hat{v}) = k\hat{\theta}(\hat{v})$. We see that $F_0(ku) = k^2F(u)$ for $u \in H$ and k > 0. Hence, $\hat{F}_0(k\hat{v}) = F(k\hat{v} + \hat{\theta}(k\hat{v})) = k^2F(\hat{v} + \hat{\theta}(\hat{v})) = k^2\hat{F}_0(\hat{v})$.

Lemma 3.6. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$. Then we have:

- (a) For t = 0, $\hat{F}_0(\hat{v}) > 0$ for all $\hat{v} \in \hat{V}$ with $\hat{v} \neq 0$.
- (b) For t > 0, $\hat{F}_0(\hat{v}) \to \infty$ as $\|\hat{v}\|_0 \to \infty$.
- (c) For fixed t > 0, $\tilde{F}(v) \to \infty$ along a ϕ_2 -axis.

Proof. With Lemma 3.5 and [7], we have (a) and (b).

(c) For fixed t we see that $F(\hat{v} + \hat{\theta}(\hat{v})) = F(v + \theta(v))$. Let $\tilde{F}|_{\hat{V}}$ be the restriction of \tilde{F} to the \hat{V} . Then $\tilde{F}|_{\hat{V}} = \hat{F}_0$. By (b), if t > 0, then $\tilde{F}(v) \to \infty$ as along a ϕ_2 -axis. **Lemma 3.7.** Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$ and $t = b - \lambda_1$ and $q^2 \mid \lambda_2 - a \mid > \mid \lambda_1 - a \mid$. Then we have $\tilde{F}(v) \to +\infty$ as $||v||_0 \to \infty$ along a boundary ray of C_3 .

Proof. Let $v = v_p + v_* \in C_3$ and $v_* = c_1\phi_1 + c_2\phi_2$. Then we have

$$\tilde{F}(v) = \int_{\Omega} \left[\frac{1}{2} (|\nabla(v_p + v_*)|^2 - a((v_p + v^*)^-)^2) + (b - \lambda_1)\phi_1(v_p + v_*) \right] dx.$$

We note that $v_p + v_* \in \partial C_3$ if and only if $c_2 = q(c_1 + 1), c_1 \leq -1$. It can be shown easily the following holds

$$\tilde{F}(v) = \frac{1}{2}((\lambda_1 - a)c_1^2 + q^2(\lambda_2 - a)c_1^2) + (q^2(\lambda_2 - a) + (b - a))c_1 + \frac{1}{2}((\lambda_2 - a)q^2 + (b - a)) + C,$$

where $C = \int_{\Omega} \left[\frac{1}{2} (|\nabla v_p|^2 - bv_p^2) + (b - \lambda_1)\phi_1 v_p \right] dx$. Hence if $v \in \partial C_3$, then we have $\tilde{F}(v) \to +\infty$ as $c_1 \to -\infty$.

Theorem 3.8. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$ and $t = b - \lambda_1$. Then $\tilde{F}(v)$ has a critical point in $IntC_1$, and at least one critical point in $IntC_2$, and at least one critical point in $IntC_4$.

Proof. We denote that $-\tilde{F}(v) = \tilde{F}_*(v)$. By Theorem 3.2 (a), if $t = b - \lambda_1$, then there exists a small open neighborhood B_p of v_p in C_1 such that in $B_p, v_p = \phi_1$ is a strict local point of maximum for $\tilde{F}(v)$. Hence v_p is a stric local point of minimum for $\tilde{F}_*(v)$ in C_1 . By Lemma 3.6 (c), $\tilde{F}_*(v) \to -\infty$ as $||v||_0 \to \infty$ along a ϕ_2 -axis. and $\tilde{F}_* \in C^1(V, \mathbf{R})$ satisfies the Palais-Smale condition.

Since $\tilde{F}_*(v) \to -\infty$ as $||v||_0 \to \infty$ along a ϕ_2 -axis, we can choose v_0 on ϕ_2 -axis such that $\tilde{F}_*(v_0) < \tilde{F}_*(v_p)$. Let Γ be the set of all paths in V joining v_p and v_0 . We write

$$c = \inf_{\gamma \in \Gamma} \sup_{\gamma} \tilde{F}_*(v).$$

The fact that in B_p, v_p is a strict local point of minimum of \tilde{F}_* , the fact that $\tilde{F}_*(v) \rightarrow -\infty$ as $||v||_0 \rightarrow \infty$ along a ϕ_2 -axis, the fact \tilde{F}_* satisfies the Palais-Smale condition, and the Mountain Pass Theorem imply that

$$c = \inf_{\gamma \in \Gamma} \sup_{\gamma} \tilde{F}_*(v)$$

is a critical value of \tilde{F}_* (see Mountain Pass Theorem and [3, 9]). When $\lambda_1 < a < \lambda_2 < b < \lambda_3$ and $t = b - \lambda_1$, equation (3.1) has a unique positive solution v_p and no negsative solution. Hence there exists a criticl point v_3 , in $Int(C_2 \cup C_4)$, of \tilde{F}_* such that

$$\tilde{F}_*(v_3) = c$$

We prove that if $v_3 \in \text{Int}C_4$ such that $\tilde{F}_*(v_3) = c$, then there exists another critical point $v \in \text{Int}C_2$ of \tilde{F}_* . Suppose $v_3 \in \text{Int}C_4$. Since $\tilde{F}_*(v) \to -\infty$ as $||v||_0 \to \infty$ along a ϕ_2 -axis, we can choose v_1 on this ϕ_2 -axis such that $\tilde{F}_*(v_1) < \tilde{F}_*(v_p)$. Let Γ_1 be the set of all paths in $C_1 \cup C_2 \cup C_3$ joining v_p and v_1 . We write

$$c' = \inf_{\gamma \in \Gamma_1} \sup_{\gamma} \tilde{F}_*(v)$$

We note that $\tilde{F}_*(v) \to \infty$ as $||v||_0 \to \infty$ along a negative ϕ_1 -axis or along a boundary ray, $c_2 = q(c_1 + 1)(c_1 \ge -1)$, of C_1 , where $v = v_p + c_1\phi_1 + c_2\phi_2 \in \partial C_1$.

Let us fix ε, η as in Deformation Lemma with $E = V, F = \tilde{F}_*, c = c', K_{c'} = \phi$ and taking $\varepsilon < \frac{1}{2}(c' - \tilde{F}_*(v_p))$. Taking $\gamma \in \Gamma_1$ such that $\sup_{\gamma} \tilde{F}_* \leq c'$. From Deformation Lemma (see [3]), $\eta(1, \cdot) \circ \gamma \in \Gamma_1$ and

$$\sup \tilde{F}_*(\eta(1, \cdot) \circ \gamma) \le c' - \varepsilon < c',$$

which is a contradiction. Therefore there exists a critical point v_4 of \tilde{F}_* at leval c'such that $v_4 \in C_1 \cup C_2 \cup C_3$ and $\tilde{F}_*(v_4) = c'$. Since equation (3.1) has a unique positive solution v_p and no negative solution when $\lambda_1 < a < \lambda_2 < b < \lambda_3$ and $t = b - \lambda_1 (> 0)$, the critical point v_4 belongs to $\text{Int}C_2$.

Similarly, we have that if $v_3 \in \text{Int}C_2$ with $\tilde{F}_*(v_3) = c$, then $\tilde{F}_*(v)$ has another critical point in $\text{Int}C_4$. The crical point of \tilde{F}_* if and only if the critical point of \tilde{F} . Hence this completes the theorem.

Theorem 3.9. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$. For $1 \le i \le 4$, let $\Pi(C_i) = R_i$. Then $R_2 = R_1 \cup R_4^*$ and $R_4 = R_1 \cup R_2^*$.

Proof. Let $h \in V$. We note that v is a solution of the equation

$$\Pi(v) = Av + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}) = h \text{ in } V$$

if and only if v is a critical point of \tilde{F} . Hence it follows from Theorem 3.8 that $R_2 \cap R_1 \neq \emptyset$. Since R_2 is one of sets $R_1 \cup R_4^*$ or $R_3 \cup R_2^*$, R_2 must be $R_1 \cup R_4^*$.

On the other hand, it follows from Theorem 3.8 that $R_4 \cap R_1 \neq \emptyset$. Since R_4 is one of sets $R_1 \cup R_2^*$ or $R_3 \cup R_4^*$, R_4 must be $R_1 \cup R_2^*$.

By Theorem 2.2, Theorem 2.3, Theorem 2.4 and Theorem 3.9, we obtain the main theorem of the equation (1.2).

Theorem 3.9. Let $\lambda_1 < a < \lambda_2 < b < \lambda_3$. Then we have the following:

(a) If $h \in IntR_1$, then equation (1.2) has a positive solution and at least two change sign solutions.

(b) If $h \in \partial R_1$, then equation (1.2) has a positive solution and at least one change sign solution.

- (c) If $h \in IntR_i^*$ (i = 2, 4), then equation (1.2) has at least one change sign solution.
- (d) If $h \in IntR_3^*$, then equation (1.2) has only the negative solution.
- (e) If $h \in \partial R_3$, then equation (1.2) has a negative solution.

References

- H. Amann and P. Hess, A Multiplicity result for a class of elliptic boundary value problems, *Proc. Roy. Soc. Edin.*, 84 (1979), 145-151.
- [2] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge, University Press, Cambridge Studies in Advanced Math., No. 34, 1993.
- [3] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Analysis, 14 (1973), 349-381.
- [4] A. Castro and A.C. Lazer, Applications of a max-min principle, *Rev. Colombian Mat.*, 10 (1979), 141-149.
- [5] Q.H. Choi and K.P. Choi, The exitence of solutions of an Ambrosetti-Prodi type nonlinear elliptic equation, Far East J. Dynamical Systems, 4 (2002), no. 1, 39-50.
- [6] Q.H. Choi, T.Jung, and P.J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, *Applicable Analysis*, 50 (1993), 71-90.
- [7] E.N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures et Appl., 57 (1978), 351-366.
- [8] A.C. Lazer and P.J. McKenna, Critical points theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. in P.D.E., 11 (1986), 1653-1676.
- [9] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, In: Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, A.M.S., No. 65 (1988).
- [10] S. Solimini, Multiplicity results for a nonlinear Dirichlet problem, Proc. Royal Soc. Edinburgh, 96A (1984).