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ABSTRACT: We study the global existence and asymptotic behavior in time of solutions to the
fourth order nonlinear Schroédinger type equation in one space dimension. The nonlinear interaction
is the power type interaction with degree three, and it is a summation of a gauge invariant term and
non-gauge-invariant terms. We prove the existence of modified wave operators for this equation with
small final states. Here the modification of wave operator is only derived from the gauge invariant
nonlinearity.
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1. INTRODUCTION

This paper is concerned with the global existence and asymptotic behavior of so-

lution to the fourth order nonlinear Schrodinger type equation:
i0pu — i@iu:/\/’(u,ﬂ), t,r € R, (1.1)
where the nonlinear term is a summation of the power type nonlinearities:
N (u, 1) = NolulPu + Au® + Xo|u|*T + Az,

u is a complex valued unknown function and A\g € R and A\; € C for j = 1,2,3. We
shall show the existence and uniqueness of global solutions for (1.1) which approach

a given modified free profile.
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We briefly explain on the notion of the short and long range scattering for nonlinear
equation (1.1). Let v(t,z) = W (t)é(x) be the solution to linearized equation of (1.1):

1
i0pv — iﬁiv =0, t,x €R, (1.2)

and v(0,z) = ¢(x). When the solution u to the nonlinear equation (1.1) behaves as
t — oo like the solution to the linear equation (1.2), we call the nonlinear term A is
the short range interaction, otherwise we call it the long range one. Concerning the
short and long range scattering for the (second order) nonlinear Schrédinger equation,
see e.g., Barab [1], Ginibre and Ozawa [5], Ginibre and Velo [6], Hayashi and Naumkin
[7], Hayashi et al [11], Moriyama et al [13], Ozawa [14], Shimomura [17], Shimomura
and Tonegawa [18], Shimomura and Tsutsumi [19], Strauss [20], Tsutsumi [21] and
Tsutsumi and Yajima [23]. According to the above literatures, the borderline of the
power between the short and long range scattering depends on the decay properties of
the fundamental solution. More precisely, for the n-dimensional nonlinear Schrodinger

equation

1
i0yu + §Au = pl|u|P " u, teR,zeR",

"/2 and the power of the border-

the pointwise decay of the fundamental solution is ¢~
line between short and long range scattering is p = 1 + 2/n (see e.g., Cazenave [3],
Chapter 7 and Ginibre [4])

Concerning the fourth order equation (1.1), by the method of stationary phase the

solution W ()¢ to the equation (1.2) with initial data ¢ behaves as
W06~ e enp Sitx(0*) S (1(0)
~————exp | ! ,
V3it [x(t)] 4

as t — +oo, where x(t) = |%\_§% and ¢(€) is the Fourier transform of ¢ with respect
to space variable. Therefore if ¢ satisfies |¢(€)] = o(|€]%) as [¢| — 0 with suitable
a > 0, then W (t)¢ decays like t2in L2 as the one dimensional Schrodinger equation
(see Segata [15]). Therefore the power three of the nonlinear terms in (1.1) is critical
between the short and long range scattering with mean zero final data (in general,
the order of pointwise decay for the function W (t)¢ is t=%/* (see Ben Artzi-Koch-
Saut Ben-Artzi et al [2])). In Segata [15], the first author proved the existence of
modified wave operators of (1.1) with small final states for the case where Ay # 0
and A\; = Ay = A3 = 0. (Furthermore in Segata and Shimomura [16], the authors
showed the existence of a unique solution to the equation (1.1) which approaches a
suitable modified free profile without any size restrictions on given final data, when
A € C, ImAg < 0 and Ay = A2 = A3 = 0). More precisely, it was shown in Segata
[15] that for given ¢, there exists a unique solution u € C(R, L?) to (1.1) such that
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for 3/8 < a < 1,

u(t) — V2rV (t, z) exp (—%

~

b ()] (O 10g 1) 61 (x2)

L3

as t — oo, where V (¢, x) is the fundamental solution to (1.2). From this result, the
nonlinear interaction A\g|u|?u is the long range interaction. Our interest in the present
paper is whether the other nonlinear terms in (1.1) are the long range or not.

To see this we note that the first term in the nonlinear terms satisfies gauge invariant
property, namely, F(e?u, eu) = F(u,a) for any # € R and the other nonlinear terms

do not satisfy this condition. We decompose the nonlinear terms due to this property:

N (u,w) = Ny (u, @) + Ny (u, ),

Ny (u, @) = No|ul?u, Nog (0, ) = M + Ao |ulT + M\37°.

As we shall see Theorem 1.1 below, N is the long range interaction and the other
nonlinear terms N, are short range interactions. Therefore the gauge invariant
property of nonlinear terms plays an important role in the asymptotic behavior of
solutions to (1.1).

To state our main theorem, we introduce several notations. We denote {W (t)}ier

the free evolution group generated by the linear oprator —id: /4:

i

Wit = o= [ i€ = [ Vit =yl

where the function V (¢, z) is the fundamental solution to linearized equation of (1.1):

1 e
V(t,x) = %/Re”g_éltgd{.

Let H*>* be the weighted Sobolev space defined by

H = {9 € 8 [[¢ll s = (1 + [2)*/2(1 = 2)/20)] 12 < oo},

s,a € R and H* be the homogeneous Sobolev space

H* = {6 € 8[|0]l 3. = (=02)0|l12 < 00}, s €R.

For 1 < p,q < oo and an interval I C R, we define

Y1, L) = {f; £l e,y = (/IHf(t)lligdt)” < oo}.

Let us define the class of final data ¢.

D = {peS8;¢ec H* and 2¥¢p € H* 2, k=0,1,2,3,4},

[ralfe>

4
6]l mos + D 12°0 ] g-se. (1.3)
k=0
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For a given final data ¢4, we introduce the following asymptotic profile
1

- e (}’tw)‘* LSt x(t))) be (1), (1.4)

t,x # 0, where QASi are the Fourier transforms of ¢4 with respect to space variable

vy (t, x)

and

SE(t, x(t) = ?%Iczgjc(x(lt))IQIX(t)I_2 loglt], — [t[=e.

The main result is as follows.

Theorem 1.1. (i) Let ¢, € D and ||¢p+||p be sufficiently small, where D is the set
defined by (1.3). Then the equation (1.1) has a unique solution u € C([0,00); L2(R))N
L% ((0,00); L*(R)) satisfying

loc

sup(t®flu(t) — v ()]lrz) < oo, (1.5)

t>e

igg{ta ([ 1utr) = ool df)é} < . (1.6)

where 3/8 < a < 1 and vy (t,x) is the modified free dynamics given by (1.4).
(ii) Let ¢ € D and ||p+||p be sufficiently small. Then the equation (1.1) has a unique
solution u € C((—o0,0]; L*(R)) N LY ((—00,0); L=(R)) satisfying

loc

sup ([t Ju(t) = v-(®)llz2) < oo,

fgg{ltla ( /_;num—v_mnigo df)%} < oo,

where 3/8 < a < 1 and v_(t, ) is the modified free dynamics given by (1.4).

Remark 1.1. The modified wave operator Q2 : ¢, — u(0) for the positive time to
the equation (1.1) is well-defined on a suitable small ball of D, where u is the solution
obtained in the first half of Theorem 1.1. Similarly, the existence of a modified wave
operator for the negative time to the equation (1.1) follows from the second half of
Theorem 1.1.

Remark 1.2. If ¢ € D, then ¢(€) is almost flat near £ = 0, more precisely, ¥(€)

behaves like €|, a > 2 near £ = 0.

Remark 1.3. The function (3it)~2|x(t)| " exp(3itx(t)*) o+ (x(t)) is the leading term
of the function W (t)¢,. Therefore roughly speaking, the first half of Theorem 1.1
says that

u(t) ~ exp (—% b ()| x(t) 108 |t|) W(t)oy,  ast— oo

From this, we see that if \y = 0, then the solutions obtained in Theorem 1.1 are

asymptotically free.



Global Existence and Asymptotic Behavior 173

Here we briefly outline the proof of Theorem 1.1. We consider the case of the
positive time. For the negative time, we can treat analogously. Let £ = 10, — i@;‘.
If we assume that the solution to (1.1) satisfies u(t) ~ v, (t) as t — oo, then (1.1) is

equivalent to the integral equation of Yang-Ferdman type:
u(t) —o4(t) = z/ W(t — 7){N(u,u)(r) — Lo (7)} dr, (1.7)
t

where 04 (t,z) = Y(t)ve(t,x) and p € C*(]0,00)) with ¥(t) = 1 if t > 2e and
P(t) =01if 0 <t < e (in order to avoid a singularity of the function v, we multiply
vy by a cut-off function (t)). To show the existence of a solution for (1.1) which
satisfies (1.5) and (1.6) in Theorem 1.1, we apply the Banach Fixed Point Theorem

to this integral equation (1.7). More precisely, we mainly show that the map

t +i/too W(t — 7){N(u,u)(r) — Loy (7)}dT (1.8)

is a contraction on the complete metric space

Du(t)

Il
N
+

o {u € C((0,00), I2(R));

0o 1/8
Stgg(tﬂ)“{HU(t)—Mt)HLng(/t fulr) = b (7)1 ) }Sp}

with the metric

|ur — ual|x

0o 1/8
= sup(t+1)°‘{|lul(t)—U2(t)||Lz+ (/t lur (1) — 2 (7) |72 dT) }

>0

if ||¢+|lp and p are sufficiently small. To guarantee that ® is a contraction on X”, we
split the right hand side of (1.8) into three parts:

But) — 7. (1 / W(t - 7) N (u,)(r) — N (55, 5,)(r)} dr
—i [ W= L)~ Ny B () e

+Z/ W (t — 7)Nog (04,04 )(7) dr. (1.9)

The estimate for the first term in the right hand side of (1.9) easily follows from
the Strichartz estimates for the free evolution group {W(t)}icr (see Lemma 2.1 and
Proposition 2.1 below). The estimate for the second term is essentially obtained by
Segata [15], Proposition 2.2. We note that the modification of the free dynamics
comes from the estimate for the second term. The main task in this paper is the
estimation on X? for the third term. Roughly speaking, the non-gauge-invariant
terms have the oscillation factors which induce the additional time decay thanks to

the integration by parts. By making use of those properties we are able to estimate
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the third term without the modification of the free dynamics. This is carried out in
Lemmas 3.1, 3.2 and 3.3 (see Section 3 below).

As we mentioned above, hereafter we only consider the case t > 0, because the case
t < 0 is treated analogously.

The outline of this paper is as follows. In Section 2, we solve the Cauchy problem
at infinite initial time for the equation (1.7). We give the estimate for the third term
in the right hand side of (1.9) in Subsection 3.1. In Subsection 3.2, we guarantee
Theorem 1.1.

2. THE CAUCHY PROBLEM AT INFINITE INITIAL TIME

In this section, we solve the Cauchy problem at infinite initial time for (1.7) (see
Proposition 2.1 below). To prove Proposition 2.1 we use the following Strichartz
estimates on the free evolution group {W (t)}icr.

Lemma 2.1. (see Kenig et al [12]) Let I be an interval of R (bounded or not) and
to € I. If (qi,7;) satisfy 8 < q; < 00, 2 < r; < 00 and % + Ti = %, (1=1,2). Then

/ t Wt —¢)f(t)dt

where p’ is the Hélder conjugate exponent of p and C' depends on q and not on I.

(2.1)

< C
oy < Mz,

Let
R(u,u) = Lu — N (u,u), (2.2)

where £ = i9; — 10% and N(u,0) = Xo|u*u + \u® + Ao|ul?T + AT, R(u, 1) is a
difference between the left hand side and right hand side in (1.1).

Proposition 2.1. Assume that there exists § > 0 such that F(t,x) satisfies

1

[E ()|l < 6(t+1)7>, (2.3)

and

/ Wt — 7 \R(F,F)(T")dr

t>0

sup(t + 1) {

L

+ /OO W (r — 7 YR(F, F)(7')dr’

<5 (24)
L (t00.L5)

where 3/8 < a < 1 and that ¢ is sufficiently small. Then (1.1) has a unique solution
u € C([0,00), L2(R)) such that

sup(t + 1)*([[u(t) = F(®)llzz + l[u(r) = F(7)50.00.L3)) < 00-
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Proof of Proposition 2.1. By (1.1), u satisfies

u—F = i/too W(t — 7){N(u,u)(r) — LF(T)}dr
_ /t T Wt — DN (@) (7) — N(F.F) () dr

—1 /OO W(t — 7)R(F, F)(7)dr. (2.5)

For T' > 0, we define the follo;ving complete metric space:

Xr = {ue ([T, 00), L;(R));

sup(t + 1)*(l[u(t) = F(®)llzz + [[u(r) = F(T)50.00.L3)) < 00}
with the metric
[y — us x,
= sup{(t 4 D% (lur (8) = wa(®)ll2z + llua(7) = ua(7) g r00.259))

and for p > 0 and T" > 0, we define the following closed subset of X7:

Xp = {ueC([T,00), LI(R));

sup(t + 1)°(fu(®) = P02 + () = (0l 130010) < o).

We show the existence of a unique solution to the equation (1.1) in X,. We define

the map

du(t) = F(t) +i/too Wt — )N (u,0)(1) — N(F, F)(7)}dr

—1 /too W(t —7)R(F,F)(t)dr.

We prove the existence of solution u to (1.1) by showing that ® is a contraction map
on X? if § and p are sufficiently small. Firstly, we prove that v € X/ then ®(u) € X£.
Let u € X£. Since

WV (w, 1) = N(F, F)| < C(Ju = FI* + |Fl|lu = FI* + |F|*|u — F).

Combining this inequality and the Strichartz estimate (Lemma 2.1) we have

[(@u)(t) = F@)] 2 + (/too [(Pu)(7) = F(T)Iligodf)

00 s % 00
< ([ = FPolfar) o [T NPl PR
t t

+C/IMFﬂu—mvm@w

t

i

/too W(t —7)R(F, F)()dr

L;
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i

/OO W(r — 7 YR(F, F)(7')dr’

L3 (t,00,L5°)

= L(t) + L(t) + L(t) + Lu(t) + I (1) (2.6)

By Holder’s inequality, we have

ne < o[ = POl - FEOIr)
< c (/:O lu(r) - F(T)||%god7)é (/too lju— Flz(r)llidT) '
< Clfu— F, (t+ 175 =0

Similarly, by Hélder’s inequality and the assumption (2.3), we obtain

L(t) < C/too I[EV e = FI(T)| 2 llu(r) = F(7)| g dr

< c </t°° M F\(T)Hi%df); </too lu(r) F(r)\ligodT) 8

< ([ 1rENidun - o)
SYNICE F(T)Higodf)%
< Olu— F|%, (t+ 1)720+s. (2.8)

and
L) < € [ NFPE i lutr) - F)llzdr
= ¢ [T 1Pz lutr) = F(r)
< CO|lu— Fx,(t+1)"> (2.9)
By the assumption (2.4), we have
Iy(t) + I;(t) < o(t+ 1)~ (2.10)
Collecting (2.6)—(2.10), we obtain

[Pu(t) — F(t)[ 12 + [ Pu(r) = F(T) || L (t,00,50)
< O+ (lu = Fl%,(1+ )72 4+ 8%|lu — Fllx, +9)
C(1+1)"%(p3(1 + )72 1 52p 1 §) (2.11)

N
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for t > 0, and hence
sup(t + 1) (|| u(t) = F(#)llz + [[®u(r) = F(T)lzs oo 50))
< C(p° +8°p+9).

Therefore by choosing p and ¢ sufficiently small, we have du € )?g . By similar way;,

we have

1
1Pur = Puzlxy < 5 flur — uallx

for uy,uy € )?g with sufficiently small numbers p and . Hence Banach’s Fixed Point
Theorem yields that (1.1) has a unique solution u € )?{]’ for sufficiently small p and
0. It remains to prove the uniqueness in Xy. Let 7' > 0 and u; € Xy and u; € Xg be
solutions to the equation (1.1) (then uy,us € Xp for any 7' > 0). As in the derivation
of the first inequality of (2.11), we have

[y — us x,
< O((lur = Fll%, + lluz = Fl3,) (1 + )72 4 6%)lug — | x,-
Since 3/8 < o < 1, we see that if § > 0 is sufficiently small and 7' > 0 is sufficiently
large, then
Jur — us|x, < 0.
Therefore for sufficiently small 6 > 0 and sufficiently large 7' > 0, u;(t) = us(t) when
t > T. The local well-posedness in L? of the equation (1.1) implies uy(t) = us(t)

when 0 < ¢t < T, where T is determined above. These facts yield the uniqueness in

Xo, if 0 > 0 is sufficiently small. Therefore this proposition is proved. O

3. REMAINDER ESTIMATES AND PROOF OF THEOREM 1.1

In this section, we give the estimate for the third term in the right hand side of

(1.9), and we prove Theorem 1.1.

3.1. ESTIMATES FOR ASYMPTOTICS AND REMAINDER TERMS.
To prove Theorem 1.1, it suffices to show that 0, (¢, 2) = (t)vy (¢, x) defined by (1.4)
satisfies two inequalities (2.3) and (2.4). To see this, we give several propositions and

lemmas. Concerning the term:

i / TV )Ly () — Ny (50, T ) ()}

we have the following estimate.
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Proposition 3.1. If . € D, then

15+ ()| < C(t+1)72 | 6|, (3.1)
L5 (1) — Ny (04, 5) (1)]| 2
< O(t+1)"2(og(t + 1) osllo( + [64]5),  (32)

for any t > 0.

This proposition is obtained by same argument as Proposition 2.2 in Segata [15].
Therefore we omit the proof.

Next we estimate the following term:

w(t, x) —z/ W (t — 7)Npy (04, 04 ) (7)dT.
Since

Nng(ﬁ-i-a E)(t $)

)\1 3._
= vl

s 3ty 31 ex —§i 1) exp (—iST
i) e (<50 ) exp (35" (11(0)

N

m exp (gitx(t)‘l) exp (3iST (¢, x(1))) o, (x(1))?

~

R0 D)
i>\3

3(; _%Lex _gz' 1) exp (—3iST
00— e (i) exp (<338 (1. 1(0)

X

3

Xy (x(1))

we estimate w(t, x) by considering the general form of above three terms:

bt exp (Siwtn (1) exp iF () log g (x(0),

Lemma 3.1. Let w # 1, f,g € L*(R) N L*R), and let h € C'([0,00)) satisfy
supp h C [e,00) and |h(it)| + t|h'(it)] < C(1 +t)=3/% for t > 0. Then we have for
t>0,

[ . W (t — 7)h(iT) exp (Ziwx(f)“) exp (if (x(7))log7) g (x(7))dr

= [ hinew Gimxw) exp (if (x(r) log 7) g (x (7)) dr

T
1—-ws J,

— —iw3 /too Wit — ’7‘){ /TOO h(it") <zw Or — —64) exp Gin'X(T'))

s« exp (if (x()) log ™) g (x(+) dv’} ir

+3 Zj’; /too W (t — T){ /TOO W (ir') exp GWT/X(T/>4)
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exp if (7)) o) g () '}
(3.3)
Proof of Lemma 3.1. Let t > 0. Firstly, we note the following equality:
W(=1)F(7)
T ; T
= -0, {W(—T)/ F(r) dT/} - ZW(—T)/ OLF (7)) d7’, (3.4)

where t < 7 < T'. Integrating the equality (3.4) with respect to 7 over the interval
(¢,T), applying W(t) to the resulting equality and letting 7' — oo, we have

/t S Wit — ) F(rdr

_ /t TR dr + i /t T Wit ( / e de) dr. (3.5)

By substituting
. 3. 4 .
F(7) = h(iT) exp (Zzwx(f) ) exp (if (x(7))logT) g (x(7)),

into (3.5) and integration by parts, we have

/t - W (t — 7)h(iT) exp (%iwfx(f)“) exp (if (x(7))log7) g (x(7)) dr

4

+£ /:o W(t—7) UTOO h(z’r’)&‘i{exp Gim’x(f’)“)

< exp (if (x(')) log ™) g (\(+)) }d} dr

= [T (i) ) e () ow ) 9 () a

= /t N h(i'") exp Gz’m’x(r’)) exp (if (x(7'))log 7') g (x(7')) d7’

_Z-/too Wt — 1) {/TOO h(it") (iw?’@Tr — iaﬁi) {eXp (ZWT'X(T'))

< exp (if (x(7)) log ) g (x()) } df'] ir

W /too Wi(t—r) [/TOO h(z'T’)(?T/{eXp GWT'X(T')A‘)

s« exp (if (x(')) log ™) g (x(+)) }d] ir

B /t " h(ir) exp GWT'X(T'>4> exp (if (x(7'))log 7) g (x(7')) d7’

_Z-/too Wt — 1) [/TOO h(it") (iw38Tr — 28;*) {eXp GWT/X(T')4>
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< exp (if (x(')) log ™) g (\(+)) } df/} r

o / Wt r)h(ir) exp Gz’wwf) exp (if (x(r)log7) g (x(r)) dr

Fiw?® /t T — T){ / (i) exp Gm’x(Tf)4)
x exp (if (x()) log ) g (x(7)) df'} i (36)

Since the third term in the most right hand side of (3.6) is equal to w? times the most
left hand side of (3.6) and w # 1, we have this lemma. O

Concerning the second term in the right hand side of (3.3), we note that the leading
term of the function

(w0~ 108 exp (aarx(") o i (1(0) Yow ) 9 x(0)
7 (1000 = ) s a0 esp (Jiwn(0*) exp (i (1(0) g ).
More precisely, by setting
R,(t, )

= (10— 0t ) exp (Jiwtn(®") exp (67 () o) (x(0)

rtt (£ ) = 5 ) o o) exp (Giwtn 1) exp 6F (o) o)
(3.7)

and

M(f,g)

4
= D> Mal™ ol + Y > a0 £y s

=2 0<r<j j=2 0<q+r<j
970

4
+> > eI 102 far gl

Jj=3 0<p+q+r<j
P,g7#0

4
+> Y TRk £ R f O g 12
7=3 0<k+p+q+r<j
k,p,q#0

+21 7 (@) gl 22,

<
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we have the following lemma.
Lemma 3.2. Let R,(t,z) be defined by (3.7). Fort > 0, we have
3
IRy (®)llzz < (¢ +1)72(log(t + 1))*M(f, 9), (3.9)

where M(f,g) is given by (3.8).

Remark 3.1. If f(z) = 2|2 dy ()| and g(z) = 2|36 ()%, 2] 3|6 ()2 ¢4 () or
2| 3¢, (x) , then by Holder’s inequality and Sobolev’s embedding

M(f.9) < Clloxlp(1 + llo-+1Ip)-

Proof of Lemma 3.2. By the Leibniz rule, we have
(00— 702 exp (awrx()*) exo (i (x(0) bow) g x(0)
= { (w0 - 301 o (Siorro)®) oo 67 (o 000 3 (000

= X e (Jienn(n)) o2 exn if (10 loet) 2 (x(0)

m+4n=1

pist 30 ofesp (Jinn(o)!) o exp i () Togt) g (1)

x 07" exp (1f (x(t))log?) 079 (x(¢)) -

(3.10)
Simple calculation yields
: 1 3.
<zw38t — 18;1) exp <Zzwtx(t)4)
1
= {§iw3t_1 — %wzt_zx(t)_4 — %iwt_sx(t)_8} exp (me(t)‘*) :
(3.11)

and

02 exp (%iwtx(t)‘l)

— {—iw?’x(t)?’ — Wt () = gm—2x(t)—5} exp Giwtx(t)‘*) :
(3.12)
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By substituting the equalities (3.11) and (3.12) into the first and second term into
the right hand side of (3.10), we obtain

(w0~ 101 ) e (Siwin(0)* ) exp aF () 10800 (000

= =t (£ 00) = 5 ) g e exp Gitn(0)) exp if () 081)

R, (t, ), (3.13)
and

Ry(t, x)

= —wzt‘z{—%x(t)‘g’@g (x(t)) — %10g tx()70f (x(t)) g (x(t))
+x() g (x(1)) }eXp Giwtx(t)“) exp (if (x(t))logt)
—iwt? { —%x(t)”ag (x(t)) — 237@ logtx (t)~"0f (x(t)) g (x(t))
+—x(t) g (x(¥)) }eXp Giwtx(t)“) exp (if (x(t))logt)

1 A, (3
R Tt O %P <ZMW) )

x 9" exp (if (x(t))logt) 97 g (x(1)) - (3.14)
By taking the L? norm of (3.14) and changing the variables we have (3.9). O

To estimate the right hand side of (3.3), we prepare the following lemma.

Lemma 3.3. We assume that B € C'(]|0,00)) satisfies supp B(it) C [e,00) and
|B(it)| + [t]|B'(it)| < C(t +1)"™"2, where m is a positive integer. Then for t > 0,

we have

[ Btiresn (Jiera()!) exp (67 () log ) A (7)) e

< C(t+ 1) log(t + 1)(|ll=[°Allzz + [l - Al 2
Hll= 720 fAllzz + [l Al z2), (3.15)

L3

and

[ Btiresn (Jiera()!) exp (67 () log ) A (7)) e

Lge
< C(t+ 1) 2 log(t + 1)(|||2] Al e + || 2] 20, Al 1o
2|0 f Al + |2 fAll ). (3.16)
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Proof of Lemma 3.3. By the identity

3. 1) 1 3. 4
exp (4zw7‘x(7) ) =1 iWTX(T)LLaT {7‘ exp (4zw7‘x(7) )} ,

and the integration by parts, we have

[ Btiryesp (Giora()!) exp if (1) log ) A () dr

— [ e e BT exp 6f (x(7) o) A (x(7)
: TiwTX(7)

X O {7‘ exp (22@7‘){(7‘)4) } dr
t

— B (Fan ) e 7 ((0) ) A ((0)

- [0 Bl e i () o) A ) |

1-— iiwrx(r‘l)
XT exp (2@’@07’){(7’)4) dr.

t

— Bt e (o)) ex 6 () oz A1 (0)

R et (szxw) exp (if (x(r)) log 7)

1-— iiwrx(r)‘l

i , 7x(7)4 o
9 { T3 P T A ) = i Bm) A (x(7)

+%B (im) log TX(T)0f (x (7)) A (x(7)) — iB(7) f (x(7)) A (x(7))

+%B(i7)x(7)814 (x(7)) }dT. (3.17)

By taking the L? norm for both hand sides of (3.17) with respect to x variable, we

have

[ Btiryesp (i) ) exp i () owr) A () dr
< Cl+1) 2 @ AO)]

+0 [T togr (Il A o),y
04 () 2 + )08 () A ()

I 7 ) A ) ) (5.18)

L3
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Here we have used the following inequality
‘ 1

— 1| < Gt
1 — Liwtx(t)*

By changing the variables in the right hand side of (3.18), we obtain (3.15). Similarly,
by taking the L> norm for both hand sides of (3.17) with respect to x variable, we
have the inequality (3.16). O

3.2. PROOF OF THEOREM 1.1.

Proof of Theorem 1.1. We prove Theorem 1.1 for the positive time. For the nega-
tive time, we can treat analogously. We assume that ¢, € D and ||¢, || p is sufficiently
small. Let vy be the function defined by (1.4). Due to Proposition 2.1, it is sufficient
to show that 0 (t, ) = x(t)vy (¢, z) satisfies (2.3) and (2.4) with small constant 6 > 0,
where x € C*([0,00)) with x(t) =1if t > 2e and x(t) =0if 0 <t <e. By (3.1) in
Proposition 3.1, v, satisfies (2.3) with § = C||¢+||p. To check the estimate (2.4), we
split the function R(vy,v4) (see (2.2)) into two parts:

R(v4,04) = {Lvy — Ny(v4,04) } — Nog (04, 74). (3.19)
Hereafter we choose

(. f(2), 9(x), h(it)
= (8, =idole| 194 ()2, o] 0 (@), 0 (1) (it)F)

( 0101216 (@ >|2,|x|-3|a8+<a:>|2a%+<x>,w<t>3<z‘t>-z)

(SIS

or (—3,Mo|x|-2|¢3+<z>|2,|x|-3a%+<a:>3,¢<t> (it) ) (3.20)

The estimate for the first term in the right hand side of (3.19) is obtained by (3.2) in
Proposition 3.1. In the rest of this section, we give the estimate for the second term
of (3.19).

By Lemma 3.1, we have

/t ) W (t — 7)h(iT) exp Giwx(f)4) exp (if (x(7))log7) g (x(7))dT

= ! /OO h(iT) exp <§iw7'x(7')4) exp (if (x(7))log7) g (x(7))dr

. .o\ —1 § / AV}
1—w3/ W(t 7'/ h(it")T exp<4zwrx(r)

cexp if (x(r) o) (£ (1(07) = 5 ) 0 (o)
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L

woxp (Jiur'x(r)1) 0 (1 (1(0") log ) g (1 (5") '

/mWKﬁwﬁ[mhmﬂRﬂﬁfom

1—wd
= Ji(t,z) + Jo(t, x) + J5(t, ) + Ju(t,x). (3.21)

By Lemma 3.3 with (A(z), B(it)) = (g(x), x(t)*(it)"2) (hence m = 1), we have

[/ ()22 + 1 T1(T) |23 (t00.25)
< C(t+ 1) og(t + 1)(lll=gllzz + Il *Ougll 22
Hll2l70: fgllzz + 12l fallez + 2]~ gll e
Hllz[70gllee + a0 fglle + 21 follz).  (3.22)

By the Strichartz estimate (Lemma 2.1) and (3.15) in Lemma 3.3 with (A(x), B(it)) =
((f(z) = $)g(x), h(it)t™1) or (g(x), h'(it)) (hence m = 2), we obtain
;(Hjj(t)HLg 15 zsemonzey) < C / N / C iy exp GWXW)
wesp if (x(r) o) (£ (607) = 5 ) 0 (e
+c/

xexp (if (x(1'))log7") g (x(7')) dr’

3

3
h' (i7") exp (Zin/X(T/)4)

dr

LE

< O(t+1)""log(t+1)

x> (M2 Glluz + lll2]?0:Gl e
G(@)=(f~%)g

or g

Hll2[20:fGllzz + lllxl £ Gllzz)- (3.23)

Finally, by the Strichartz estimate (Lemma 2.1) and Lemma 3.2, we have
I
/ / ()| Rg(7")|| 2dr"dr

< O(t+1)"Ylog(t + 1))* M(f, g). (3.24)

[e.9]

(it R, (T)dr'||  dr

2

VAN

VAN
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By collecting (3.21)—(3.24), we obtain

/t T Wt — Ph(in) exp Gmx(f)4)

xexp (if (x(7))log7) g (x(7))dr

LE

-

/T T W(r = 7)h(ir) exp Gm’x(w)ﬁt)

!/

xexp (if (x(7')log ") g (x(7")) dr

L8 (t,00,L5°)
< C(t+1)""(log(t + 1))4{Il\x|_4glng° + ] 2029l o

2l Follis + 2= Fol e
£ (Gl + el 20,6
G(x):(f—%)g
or g
el 20,7 Gz + 2| Gl 2) + MU, g>},
(3.25)

for t > 0, where M(f,g) is defined by (3.8). When f and g are as in (3.20), by the
Holder inequality and the Sobolev embedding, the most right hand side of (3.25) is
bunded by P(||¢+|lp), where P(x) is a polynomial in x. By substituting (3.20) into

(3.25) and summing up the results we have

/too W(t — 7)Npg (04, 01)(T)dT

L3

+ ‘ / W(T = 7" )Nog (04,04 ) (7")d7’
T L3 (t,00,L5°)
< Ct™(logt)'P(l|¢llp)- (3.26)
By (3.2) in Proposition 3.1 and (3.26), v, satisfy (2.4). Hence we obtain the desired
result. O
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