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equation

D(n)
r

x(t) + f(t, x(t), x(∆(t, x(t)))) = b(t) .
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1. INTRODUCTION

Consider the n-th order differential equations

D(n)
r x(t) + f(t, x(t), x(∆(t, x(t)))) = b(t) , t ∈ J (1)

and

D(n)
r x(t) + a(t)h(x(∆(t, x(t)))) = b(t) , t ∈ J (2)

with deviating argument ∆ which depends on the independent variable t as well as

on the unknown function x.

Here n ≥ 1 is an integer, t ∈ J = [α, +∞) ⊆ [0, +∞) = R+, a, b : J → R,

f : J × R
2 → R, h : R → R,

D(0)
r x(t) = x(t) , D(i)

r x(t) = r(t)(D(i−1)
r x(t))′ , i = 1, . . . , n ,

where ri : J → (0, +∞).
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We notice that some initial oscillation and asymptotic results concerning equation

(1) are obtained in the papers of Bainov and Simeonov [1], Bainov et al [2], [3], [4]

and Markova and Simeonov [10], [11], [12].

The main results of this paper are stated in eleven theorems. In Theorems 1-7 and

Corollaries 1 and 2 sufficient conditions are found under which

lim
t→+∞

D(k)
r x(t) = 0 , k = 0, 1, . . . , n − 1 (3)

for every oscillatory solution x(t) of equation (1) having a given growth at infinity.

Theorem 8 provides sufficient conditions which garantee that every solution of

equation (1) satisfying (3) is nonoscillatory.

In Theorem 9 and Corollaries 3 and 4 the growth of the solutions of equation (2)

is estimated in the case when this equation is of retarded type (∆ ≤ t).

In Theorems 10 and 11 necessary and sufficient conditions are obtained so that all

oscillatory solutions of equation (2) satisfy (3).

The main theorems generalize and extend results of Grace and Lalli [6], Greaf et

al [7], Kusano and Onose [8], [9] and Singh [13], [14] concerning differential equations

with deviating argument ∆ which does not depend on x (∆ = g(t)).

2. PRELIMINARY REMARKS

Introduce the following conditions:

H1. f ∈ C(J × R
2, R) and there exists F ∈ C(J × R

2
+, R+) such that

|f(t, x, y)| ≤ F (t, |x|, |y|) , t ∈ J , x, y ∈ R

and

F (t, u1, v1) ≤ F (t, u2, v2) for 0 ≤ u1 ≤ u2 and 0 ≤ v1 ≤ v2 .

H2. rk ∈ C(J, (0, +∞)), k = 1, . . . , n − 1 and rn(t) ≡ 1, t ∈ J .

H3. b ∈ C(J, R).

H4. ∆ ∈ C(J × R, R).

H5. There exist σ ∈ C(J, R) and T ∈ J such that

lim
t→+∞

σ(t) = +∞ and σ(t) ≤ ∆(t, x) , t ≥ T , x ∈ R .

H6. There exist τ ∈ C(J, R) and T ∈ J such that

∆(t, x) ≤ τ(t) , t ≥ T , x ∈ R .

The domain D of D
(n)
r is defined to be the set of all functions x : [tx, +∞) → R

such that the r-derivatives D
(k)
r x(t), k = 1, . . . , n exist and are continuous on the

interval [tx, +∞) ⊆ J . By a proper solution of equation (1) is meant a function

x ∈ D which satisfies (1) for all sufficiently large t and sup{|x(t)| : t ≥ T} > 0 for

T ≥ tx. We assume that equation (1) do possess proper solurions. A proper solution
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of equation (1) is called oscillatory if it has arbitrarily large zeros; otherwise it is

called nonoscillatory.

3. MAIN RESULTS

Theorem 1. Assume that:

1. Conditions H1-H6 hold and
∫ ∞ 1

r1(s1)

∫ ∞

s1

1

r2(s2)
. . .

∫ ∞

sn−2

1

rn−1(sn−1)

∫ ∞

sn−1

|b(s)|ds . . . ds1 < +∞ . (4)

2. There exists a continuous nondecreasing function µ : J → R+ such that
∫ ∞ 1

r1(s1)

∫ ∞

s1

1

r2(s2)
. . .

∫ ∞

sn−2

1

rn−1(sn−1)

∫ ∞

sn−1

F (s, cµ(s), cµ(τ(s)))ds . . . ds1 < +∞

(5)

for all c > 0.

Then every oscillatory solution x(t) of equation (1) with x(t) = O(µ(t)) as t → +∞

satisfies (3).

Proof. Let x(t) be an oscillatory solution of equation (1) with x(t) = O(µ(t)) as

t → +∞. Then there exist constants c > 0 and T ≥ α such that |x(t)| ≤ cµ(t) for

t ≥ T . Since µ(t) is nondecreasing in J it follows from conditions H5 and H6 that

|x(∆(t, x(t)))| ≤ cµ(∆(t, x(t))) ≤ cµ(τ(t)) for t ≥ T . (6)

Since x(t) is oscillatory, D
(k)
r x(t) is oscillatory for k = 1, . . . , n − 1. Let {tm}

∞
m=1 be

a sequence of consecutive zeros of D
(n−1)
r x(t) and βm ∈ (tm, tm+1) be such that

|D(n−1)
r x(βm)| = max

tm≤t≤tm+1

|D(n−1)
r x(t)| .

Integrating (1) from tm to βm we obtain

D(n−1)
r x(βm) − D(n−1)

r x(tm) = −

∫ βm

tm

f(s, x(s), x(∆(s, x(s))))ds +

∫ βm

tm

b(s)ds ,

which, together with (6) and condition H1, gives

|D(n−1)
r x(βm)| ≤

∫ βm

tm

F (s, cµ(s), cµ(τ(s)))ds +

∫ βm

tm

|b(s)|ds .

Summing on m we have
∞

∑

m=1

|D(n−1)
r x(βm)| ≤

∫ ∞

t1

F (s, µ(s), µ(τ(s)))ds +

∫ ∞

t1

|b(s)|ds < +∞ .

Consequently limm→+∞ D
(n−1)
r x(βm) = 0 which implies that limt→+∞ D

(n−1)
r x(t) = 0.

Integrating (1) from t to +∞ we obtain

D(n−1)
r x(t) =

∫ ∞

t

f(s, x(s), x(∆(s, x(s))))ds −

∫ ∞

t

b(s)ds . (7)

We shall prove that limt→+∞ D
(n−2)
r x(t) = 0.
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Let {zm}
∞
m−1 be a sequence of consecutive zeros of D

(n−2)
r x(t) and γm ∈ (zm, zm+1)

be such that

|D(n−2)
r x(γm)| = max

zm≤t≤zm+1

|D(n−2)
r x(t)| .

Integrating (7) from zm to γm we obtain

D(n−2)
r x(γm) =

∫ γm

zm

1

rn−1(sn−1)

∫ ∞

sn−1

f(s, x(s), x(∆(s, x(s))))dsdsn−1

−

∫ γm

zm

1

rn−1(sn−1)

∫ ∞

sn−1

b(s)dsdsn−1 ,

which implies

|D(n−2)
r x(γm)| ≤

∫ γm

zm

1

rn−1(sn−1)

∫ ∞

sn−1

F (s, µ(s), µ(τ(s)))dsdsn−1

+

∫ γm

zm

1

rn−1(sn−1)

∫ ∞

sn−1

|b(s)|dsdsn−1 .

Summing on m we have

∞
∑

m=1

|D(n−2)
r x(γm)| ≤

∫ ∞

z1

1

rn−1(sn−1)

∫ ∞

sn−1

F (s, µ(s), µ(τ(s)))dsdsn−1

+

∫ ∞

z1

1

rn−1(sn−1)

∫ ∞

sn−1

|b(s)|dsdsn−1 < +∞ .

Therefore limt→+∞ D
(n−2)
r x(t) = 0. Integrating (7) from t to +∞ we obtain

D(n−2)
r x(t) = −

∫ ∞

t

1

rn−1(sn−1)

∫ ∞

sn−1

f(s, x(s), x(∆(s, x(s))))dsdsn−1

+

∫ ∞

t

1

rn−1(sn−1)

∫ ∞

sn−1

b(s)dsdsn−1 .

Continuing the process we deduce that limt→+∞ D
(k)
r (t) = 0, k = 0, 1, . . . , n − 1. �

As a consequence of Theorem 1 we obtain the following two theorems.

Theorem 2. Assume that:

1. Conditions H1-H6 hold and
∫ ∞

|b(s)|ds < +∞ ,

∫ ∞ 1

ri(s)
ds < +∞ , i = 1, . . . , n − 1 . (8)

2. There exists a continuous and nondecreasing function µ : J → R+ such that
∫ ∞

F (s, cµ(s), cµ(τ(s)))ds < +∞ for all c > 0 . (9)

Then every oscillatory solution x(t) of equation (1) with x(t) = O(µ(t)) as t → +∞

satisfies (3).

Theorem 3. Assume that:
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1. Conditions H1-H6 hold and
∫ ∞

sn−1|b(s)|ds < +∞ , ri(t) ≥ r0 > 0 , i = 1, . . . , n − 1 , t ∈ J . (10)

2. There exists a continuous and nondecreasing function µ : J → R+ such that
∫ ∞

sn−1F (s, µ(s), µ(τ(s)))ds < +∞ for all c > 0 . (11)

Then for every oscillatory solution x(t) of equation (1) with x(t) = O(µ(t)) as

t → +∞ satisfies (3).

Proceeding as in the proof of Theorem 1 one can prove the following theorem.

Theorem 4. Assume that:

1. Conditions H1-H5 and (4) hold.

2. There exists a continuous and nonincreasing function λ : J → R+ such that

∫ ∞ 1

r1(s1)

∫ ∞

s1

1

r2(s2)
. . .

∫ ∞

sn−1

1

rn−1(sn−1)

∫ ∞

sn−1

F (s, cλ(s), cλ(σ(s)))ds . . . ds1

< +∞ (12)

for all c > 0.

Then every oscillatory solution x(t) of equation (1) with x(t) = O(λ(t)) as t → +∞

satisfies (3).

Proof. Let x(t) be an oscillatory solution of equation (1) with x(t) = O(λ(t)) as

t → +∞. Then there exist constants c > 0 and T ≥ α such that

|x(t)| ≤ cλ(t) , t ≥ T . (13)

Since λ(t) is nonincreasing in J it follows from (13) and condition H5 that

|x(∆(t, x(t)))| ≤ cλ(∆(t, x(t))) ≤ cλ(σ(t)) , t ≥ T .

Further the proof is the same as the proof of Theorem 1. �

As a consequence of Theorem 4 we obtain the following two theorems.

Theorem 5. Assume that:

1. Conditions H1-H5 and (8) hold.

2. There exists a continuous and nonincreasing function λ : J → R+ such that
∫ ∞

F (s, cλ(s), cλ(σ(s)))ds < +∞ for all c > 0 . (14)

Then every oscillatory solution x(t) of equation (1) with x(t) = O(λ(t)) as t → +∞

satisfies (3).

Theorem 6. Assume that:
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1. Conditions H1-H5 and (10) hold.

2. There exists a continuous and nonincreasing function λ : J → R+ such that
∫ ∞

sn−1F (s, cλ(s), cλ(σ(s)))ds < +∞ for all c > 0 . (15)

Then every oscillatory solution x(t) of equation (1) with x(t) = O(λ(t)) as t → +∞

satisfies (3).

From Theorem 4 with λ(t) ≡ 1 it follows the next theorem.

Theorem 7. Assume that conditions H1-H5 and (4) hold and
∫ ∞ 1

r1(s1)

∫ ∞

s1

1

r2(s2)
. . .

∫ ∞

sn−1

F (s, c, c)ds . . . ds1 < +∞ for all c > 0 . (16)

Then every bounded oscillatory solution of equation (1) satisfies (3).

Corollary 1. Assume that conditions H1-H5 and (8) hold and
∫ ∞

F (s, c, c)ds < +∞ for all c > 0 . (17)

Then every bounded oscillatory solution of equation (1) satisfies (3).

Corollary 2. Assume that conditions H1-H5 and (10) hold and
∫ ∞

sn−1F (s, c, c)ds < +∞ for all c > 0 . (18)

Then every bounded oscillatory solution of equation (1) satisfies (3).

Theorem 8. Assume that:

1. Conditions H1-H5 hold.

2. There exists a c0 > 0 such that either

lim
t→+∞

inf

∫ t

T

[b(s) − F (s, c0, c0)]ds > 0 , (19)

or

lim
t→+∞

sup

∫ t

T

[b(s) + F (s, c0, c0)]ds < 0 (20)

for all large T .

Then every solution x(t) of equation (1) satisfying (3) is nonoscillatory.

Proof. Assume the opposite, that there exists an oscillatory solution x(t) of equation

(1) such that limt→+∞ D
(k)
r x(t) = 0, k = 0, 1, . . . , n − 1. Then there exists a T ≥ α

such that

D(n−1)
r x(T ) = 0 , |x(t)| ≤ c0 and |x(∆(t, x(t)))| ≤ c0 , t ≥ T .
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From condition H1 it follows the estimate

|f(t, x(t), x(∆(t, x(t))))| ≤ F (t, c0, c0) , t ≥ T

which implies that

b(t) − F (t, c0, c0) ≤ b(t) − f(t, x(t), x(∆(t, x(t)))) ≤ b(t) + F (t, c0, c0)

and

b(t) − F (t, c0, c0) ≤ D(n)
r x(t) ≤ b(t) + F (t, c0, c0) (21)

for t ≥ T .

Integrating (21) from T to t we obtain

∫ t

T

[b(s) − F (s, c0, c0)]ds ≤ D(n−1)
r (t) ≤

∫ t

T

[b(s) + F (s, c0, c0)]ds , t ≥ T .

Hence if either (19) or (20) holds, x(t) cannot have arbitrarily large zeros, which is a

contradiction. �

Now applying some of the above results to equation (2) we obtain necessary and

sufficient conditions so that all oscillatory solutions of equation (2) satisfy (3).

Introduce the functions Rk(t, T ), k = 0, . . . , n − 1 in the interval [T, +∞) ⊆ J as

follows:

Rk(t, T ) =











1 , if k = 0 ,
∫ t

T

1

r1(s1)

∫ s1

T

1

r2(s2)
. . .

∫ sk−1

T

1

rk(sk)
dsk . . . ds1 , if k > 0 .

Set Rk(t) = Rk(t, α), k = 0, . . . , n − 1 and R(t) = Rn−1(t).

Introduce the following conditions:

H7. a ∈ C(J, R).

H8. h ∈ C(R, R) and there exists a function H ∈ C(R+, R+) which is nondecreas-

ing in R+ and such that

|h(x)| ≤ H(x) , H(xy) ≤ H(x)H(y) for x > 0 , y > 0 , H(0) = 0

and
∫ x

x0

du

H(u)
→ +∞ as x → +∞ , x ≥ x0 > 0 .

H9. There exist τ ∈ C(J, R) and T ∈ J such that

∆(t, x) ≤ τ(t) < t , t ≥ T , x ∈ R .

H10. lim
t→+∞

sup
Rk(t)

R(t)
< +∞, k = 0, 1, . . . , n − 2.
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Theorem 9. Assume that conditions H2-H5 and H7-H10 hold and
∫ ∞

|b(s)|ds < +∞ ,

∫ ∞

|a(s)|H(R(τ(s)))ds < +∞ .

(22)

Then every proper solution x(t) of equation (2) is such that

x(t) = O(R(t)) as t → +∞.

Proof. Let x(t), t ≥ T0 ≥ α be a proper solution of equation (2). From condition H5

it follows that there exists a T ≥ T0 such that ∆(t, x(t)) ≥ σ(t) ≥ T0, t ≥ T . From

(2) we obtain that

x(t) =
n−1
∑

k=0

D(k)
r x(T )Rk(t, T )

+

∫ t

T

1

r1(s1)

∫ s1

T

1

r2(s2)
. . .

∫ sn−2

T

1

rn−1(sn−1)

∫ sn−1

T

D(n)
r x(s)dsdsn−1 . . . ds1

for t ≥ T , which implies

|x(t)| ≤
n−1
∑

k=0

|D(k)
r x(T )|Rk(t) + R(t)

∫ t

T

|D(n)
r x(s)|ds , t ≥ T .

From condition H10 it follows that there exists a c > 0 such that
n−1
∑

k=0

|D(k)
r x(T )|

Rk(t)

R(t)
≤ c , t ≥ T .

Then
|x(t)|

R(t)
≤ c +

∫ t

T

|D(n)
r x(s)|ds , t ≥ T . (23)

Choose β ≥ T such that ∆(t, x(t)) ≥ σ(t) ≥ T for t ≥ β. Then from (24) we get

|x(∆(t, x(t)))|

R(∆(t, x(t)))
≤ c +

∫ β

T

|D(n)
r x(s)|ds +

∫ ∆(t,x(t))

β

|D(n)
r x(s)|ds , t ≥ β . (24)

Set

u(t) =
|x(∆(t, x(t)))|

R(∆(t, x(t)))
, c0 = c +

∫ β

T

|D(n)
r x(s)|ds +

∫ ∞

β

|b(s)|ds .

Then keeping in mind (25) and the inequalities

∆(t, x(t)) ≤ t , R(∆(s, x(s))) ≤ R(τ(s)) ,

|D(n)
r x(s)| ≤ |b(s)| + |a(s)|H(R(τ(s)))H(u(s)) ,

we obtain the Bihari-type inequality

u(t) ≤ c0 +

∫ t

β

|a(s)|H(R(τ(s)))H(u(s))ds , t ≥ β . (25)
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Applying to (26) the Bihari’s Lemma [5] we conclude that

u(t) ≤ G−1

[

G(c0) +

∫ t

β

|a(s)|H(R(τ(s)))ds

]

, t ≥ β , (26)

where G(u) =
∫ u

u0

ds
H(s)

, u ≥ u0 > 0.

From (27) and condition (23) it follows that

|x(∆(t, x(t)))|

R(∆(t, x(t)))
≤ M for t ≥ β and some M > 0 .

This means that x(t) = O(R(t)) as t → +∞ since ∆(t, x(t)) → +∞ as t → +∞. �

Corollary 3. Assume that conditions H2-H5, H7-H10 and (22) hold, and

ri(t) ≥ r0 > 0 , i = 1, . . . , n − 1 , t ∈ J ,
∫ ∞

|a(s)|H(τn−1(s))ds < +∞ .
(27)

Then every proper solution x(t) of equation (2) is such that

x(t) = O(tn−1) as t → +∞.

Proof. From (28) we obtain that R(t) = O(tn−1) as t → +∞ and now Corollary 3

follows from Theorem 9. �

Corollary 4. Assume that conditions H2-H5, H7-H10, (22) and (28) hold, and
∫ ∞

|a(s)|ds < +∞ , (28)

lim
t→+∞

R(t) < +∞ . (29)

Then every proper solution of equation (2) is bounded.

Proof. Let x(t) be a proper solution of equation (2). It follows from (31) that

R(t) = O(M) as t → +∞ for some M > 0. Then by Theorem 9 x(t) = O(M) as

t → +∞, which means that x(t) is bounded. �

Consider the differential equation

D(n)
r x(t) + a(t)h(x(τ(t))) = b(t) , t ∈ J , (30)

which is a paricular case of equation (2) with ∆ = τ(t).

Remark 1. The assertation of Theorem 9 from Grace and Lalli [6] is that all oscilla-

tory solutions of equation (32) are bounded, if conditions H3, H7, H8, (22), (28) and

(30) hold,

τ ∈ C(J, R) , lim
t→+∞

τ(t) = +∞ , 0 < τ(t) ≤ t , t ∈ J (31)

and
1

r1(t)
= O

(

1

tn−γ

)

as t → +∞ for some γ ∈ [0, 1) . (32)
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Obviously, our Corollary 4 (with ∆ = τ(t)) includes Theorem 9 from Grace and Lalli

[6]. Moreover, Corollary 4 is applicable in cases, when the same Theorem 9 does not

work.

Example 1. Consider the equation

(t
2

3 (t
5

3 x′(t))′)′ + a(t)x(τ(t)) = b(t) , t ≥ 1 , (33)

where a, b, τ ∈ C(J, R) satisfy conditions (30), (22) and (33, respectively.

Here n = 3, r1(t) = t
5

3 , r2(t) = t
2

3 and γ = 3− 5
3

= 4
3

> 1, that is, condition (34) is

violated and Theorem 9 from Grace and Lalli [6] is not applicable to equation (35).

On the other hand, the conditions H2-H5, H7-H9, (22), (28) and (30) of Corollary

4 hold. Moreover,

R1(t) =

∫ t

1

1

r1(s)
ds =

∫ ∞

1

1

s
5

3

ds < +∞

and

R(t) = R2(t) =

∫ t

1

1

s
5

3

∫ s

1

1

u
2

3

duds ≤

∫ t

1

1

s
5

3

3s
1

3 ds < +∞ .

Hence the rest conditions H10 and (31) hold and therefore by Corollary 4 every proper

solution of equation (35) is bounded.

Theorem 10. Assume that conditions H2-H5, H7-H10, (22) and (23) hold, a(t) 6= 0

for t ∈ J , and
∫ ∞

R(s)H(R(τ(s)))|a(s)|ds < +∞ . (34)

Furthermore, suppose that b(t)/H(R(τ(t)))a(t) approaches a finite limit as t → +∞.

Then every oscillatory solution x(t) of equation (2) satisfies (3) if and only if

lim
t→+∞

b(t)

H(R(τ(t)))a(t)
= 0 . (35)

Proof. 1. Let (37) hold. Then R(t)|b(t)| ≤ R(t)H(R(τ(t)))|a(t)| for all sufficiently

large t. This together with (36) implies
∫ ∞

R(t)|b(t)| < +∞

and the conclusion follows from Theorem 9 and Theorem 1 (with F (t, u, v) = a(t)H(v)

and µ(t) = R(t)).

2. Let x(t) be an oscillatory solution of equation (2) satisfying (3). Assume that

(37) is not true, that is,
|b(t)|

H(R(τ(t)))|a(t)|
≥ γ > 0

for all sufficiently large t. Dividing (2) by a(t) and taking the limit as t → +∞ we

conclude that D
(n)
r x(t) has one sign for sufficiently large t. Hence x(t) has a constant

sign eventually, which is a contradiction. �
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Theorem 11. Assume that conditions H2-H5, H7-H10, (28) and (31) hold, a(t) 6= 0

for t ∈ J , and
∫ ∞

sn−1|a(s)|ds < +∞ . (36)

Furthermore, suppose that b(t)/a(t) approaches a finite limit as t → +∞.

Then every oscillatory solution x(t) of equation (2) satisfies (3) if and only if

lim
t→+∞

b(t)

a(t)
= 0 . (37)

Proof. Theorem 11 can be proved proceeding as in the proof of Theorem 10 and by

using Corollary 4 and Corollary 2 (with F (t, u, v) = a(t)H(v)). We omit the details.

�

References

[1] D.D. Bainov and P.S. Simeonov, Positive solutions of a superlinear first-order differential equa-
tions with delay depending on the unknown function, Jour. of Comp. and Appl. Mathematics,
88 (1998), 95-101.

[2] D.D. Bainov, N.T. Markova, and P.S. Simeonov, Asymptotic behaviour of the nonoscillatory
solutions of differential equations of second order with delay depending on the unknown func-
tion, Jour. of Comp. and Appl. Math., 91 (1998), 87-96.

[3] D.D. Bainov, N.T. Markova, and P.S. Simeonov, Asymptotic and oscillatory behaviour of n-th
order differential equations with deviating arguments, depending on the unknown function,
Jour. Comm. Appl. Anal., 7 (2003), no. 4, 455-471.

[4] D.D. Bainov, N.T. Markova, and P.S. Simeonov, Oscillation of second order differential equa-
tions with retarded argument depending on the unknown function, Jour. Comm. Appl. Anal.,
7 (2003), 593-604.

[5] E.F. Beckenbach and R. Bellman, Inequalities, Springer Verlag, Berlin, 1961.

[6] S.R. Grace and B.S. Lalli, On oscillation and nonoscillation of general functional differential
equations, J. Math. Anal. Appl., 109, (1985), no. 2, 522-533.

[7] J.R. Graef, Y. Kitamura, T. Kusano, H. Onose, and P.W. Spikes, On the nonoscillation of
perturbed functional differential equations, Pacific J. Math., 83 (1979), 365-373.

[8] T. Kusano and H. Onose, A nonoscilation theorem for a second order sublinear retarded dif-
ferential equation, Bull. Austral. Math. Soc., 15 (1976), 401-406.

[9] T. Kusano and H. Onose, Asymptotic decay of oscillatory solutions of second order differential
equations with forcing term, Proc. Amer. Math. Soc., 66 (1977), 251-257.

[10] N.T. Markova and P.S. Simeonov, Asymptotic and oscillatory properties of the solutions of
differential equations with delay depending on the unknown function, Invited lectures delivered
at the VII-th Int. Colloquium on Differential Equations, August 18-23, 1996, Plovdiv, Bulgaria,
vol. II (1996), 71-78.

[11] N.T. Markova and P.S. Simeonov, On the asymptotic behaviour of the solutions of a class of
differential equations with delay depending on the unknown function, Invited lectures delivered
at the VII-th Int. Colloquium on Differential Equations, August 18-23, 1996, Plovdiv, Bulgaria,
vol. I (1996), 89-100.

[12] N.T. Markova and P.S. Simeonov, Oscillatory and asymptotic behaviour of the solutions of first
order differential equations with delays depending on the unknown function, Invited lectures
delivered at the VII-th Int. Colloquium on Differential Equations, August 18-23, 1996, Plovdiv,
Bulgaria, vol. II (1996), 79-92.



246 Markova and Simeonov

[13] B. Singh, A correction to “Forced oscillations in general ordinary differential equations with
deviating arguments”, Hiroshima Math. J., 9 (1979), 297-302.

[14] B. Singh, Necessary and sufficient condition for eventual decay of oscillations in general func-
tional equations with delays, Hiroshima Math. J., 10 (1980), 1-9.


