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1. INTRODUCTION

In this paper we first discuss the existence of solutions to the nonlocal Cauchy

problem:

{

u′(t) + A(t)u(t) 3 f(t, u(t)), t ∈ [0, T ],

u(0) = g(u),
(1.1)

in a real Banach space X. Here, {A(t) : t ∈ [0, T ]} are m−accretive operators in X, g :

C([0, T ];X) → X, and f : [0, T ]×X → X. Subsequently, we study a nonautonomous

evolution equation with a multivalued perturbation and a nonlocal initial condition,

of the form:

{

u′(t) + A(t)u(t) 3 F (t, u(t)), t ∈ [0, T ],

u(0) = g(u),
(1.2)
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where {A(t) : t ∈ [0, T ]} and g are as in (1.1), while F : [0, T ] × X → 2X \ {φ} is

lower semicontinuous in its second argument.

The study of abstract nonlocal Cauchy problems was initiated by Byszewski [11],

and has been developed by various authors, see, e.g.,Aizicovici and Gao [1], Aizicovici

and Staicu [4], Benchohra et al [6], Benchohra et al [9], Xiao and Liang [22], and Xue

[23]. In particular, existence results for nonlocal initial value problems associated with

time-dependent fully nonlinear operators appear in Aizicovici and Gao [1], Aizicovici

and McKibben [3], and Aizicovici and Staicu [4]. The present work may be viewed

as an attempt to obtain nonautonomous versions of Theorem 3.1 of Aizicovici and

Lee [2] and Theorem 3.8 in Aizicovici and McKibben [3] for equations (1.1) and

(1.2), respectively, as well as to prove a counterpart of Theorem 8 in Aizicovici and

Staicu [4] for equation (1.2), in the case when the multifunction F is nonconvex

valued and lower semicontinuous in its second variable, as opposed to convex valued

and upper semicontinuous. Our approach relies on the theory of evolution equations

governed by time-dependent m−accretive operators, compactness methods and fixed

point techniques. The plan of the paper is as follows. In Section 2 we review some

background material on nonautonomous evolution equations and multifunctions. The

main results are stated in Section 3, and the corresponding proofs are carried out in

Section 4. Finally, Section 5 contains two examples to which our abstract theory

applies.

2. PRELIMINARIES

For further background and details pertaining to this section, we refer the reader

to Barbu [5], Deimling [12], Hu and Papageorgiou [13], Hu and Papageorgiou [14],

Pavel [17], Vrabie [21], and Zeidler [24]. Throughout this paper, X denotes a real

Banach space of norm ‖ · ‖ and dual (X∗, ‖ · ‖∗). The duality mapping J : X → X∗

is given by

J(x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2 = ‖x∗‖2
∗}, ∀x ∈ X,

while the so-called upper semi-inner product on X is defined by

< y, x >+= sup{x∗(y) : x∗ ∈ J(x)}.

Let A be a multivalued operator in X. The domain D(A) and range R(A) of A

are defined by D(A) = {x ∈ A : Ax 6= φ} and R(A) = ∪x∈D(A)Ax, respectively. The

operator A is called accretive if < y′ − y, x′ − x >+≥ 0, for all x, x′ ∈ D(A), and all

y ∈ Ax, y′ ∈ Ax. If also, R(I + λA) = X, for all λ > 0, where I is the identity on

X, then A is said to be m−accretive.

Let {A(t) : t ∈ [0, T ]} be a family of (possibly multivalued) operators on X, of

domainsD(A(t)), withD(A(t)) = D (independent of t), which satisfy the assumption:

(HA(t)) (i) R(I + λA(t)) = X, for all λ > 0 and t ∈ [0, T ],
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(ii) there exist two continuous functions m1 : [0, T ] → X and m2 : R
+ →

R
+ (R+ := [0,∞)) such that

< y1 − y2, x1 − x2 >+≥ −‖m1(t) −m1(s)‖‖x1 − x2‖ ·m2(max{‖x1‖, ‖x2‖}),

for all x1 ∈ D(A(t)), y1 ∈ A(t)x1, x2 ∈ D(A(s)), y2 ∈ A(s)x2, and all 0 ≤ s ≤ t ≤ T.

In particular, for each t ∈ [0, T ], the operator A(t) is m−accretive. If (HA(t)) holds,

then (see Pavel [17]), the family {A(t) : t ∈ [0, T ]} generates a so-called evolution

operator U on D via the formula

U(t, s)x = lim
n→∞

n
∏

i=1

(I +
t− s

n
A(s+ i

t− s

n
))−1x, (2.1)

for all x ∈ D and all 0 ≤ s ≤ t ≤ T. Recall that U(t, t) = I and ‖U(t, s)x−U(t, s)y‖ ≤

‖x − y‖, for all 0 ≤ s ≤ t ≤ T and x, y ∈ D. The evolution operator U is said to be

compact if U(t, s) maps bounded subsets of D into relatively compact subsets of D

for all 0 ≤ s < t ≤ T.

Consider the nonautonomous Cauchy problem:

{

u′(t) + A(t)u(t) 3 f(t), t ∈ [0, T ],

u(0) = u0,
(2.2)

where {A(t)}t∈[0,T ] satisfy (HA(t)), f ∈ L1(0, T ;X) and u0 ∈ D.

Definition 2.1. An integral solution of (2.2) is a function u ∈ C([0, T ];D) satisfying

u(0) = u0 and the inequality

‖u(t)−x‖2−‖u(s)−x‖2 ≤ 2

∫ t

s

[< f(τ)−y, u(τ)−x >+ +C‖u(τ)−x‖‖m1(τ)−m1(θ)‖]dτ,

for all 0 ≤ s ≤ t ≤ T, θ ∈ [0, T ], x ∈ D(A(θ)), y ∈ A(θ)x, and

C = m2(max{‖x‖, ‖u‖C([0,T ];X)}), with m1, m2 as in (HA(t)) (ii).

It is well-known that problem (2.2) has a unique integral solution for each u0 ∈ D

and f ∈ L1(0, T ;X), provided that (HA(t)) is satisfied. In particular, if f ≡ 0, then

U(t, 0)u0 is the corresponding integral solution of (2.2). Moreover, the following result

holds.

Proposition 2.2. Let (HA(t)) be satisfied, and let u and v be integral solutions of

(2.2) corresponding to (u0, f) and (u0, g), respectively (with u0, v0 ∈ D and f, g ∈

L1(0, T ;X)). Then

‖u(t) − v(t)‖ ≤ ‖u(s) − v(s)‖ +

∫ t

s

‖f(τ) − g(τ)‖dτ, (2.3)

for all 0 ≤ s ≤ t ≤ T.
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The remainder of this section is devoted to a brief review of multifunctions. In

what follows, the Banach space X will be assumed separable.

Let Pcl(X) denote the collection of all nonempty closed subsets of X. We also

denote by B(X) the Borel σ−algebra on X, and by L the σ−algebra of Lebesgue

measurable subsets on an interval [0, T ]. Let (Ω,Σ) be a measurable space (we will

particularly be interested in the case when (Ω,Σ) = ([0, T ] × X,L ⊗ B(X)), where

L ⊗ B(X) is the σ−algebra on [0, T ] ×X generated by sets of the form A× B, with

A ∈ L and B ∈ B(X)). Let Φ : Ω → Pcl(X). We say that Φ is measurable, if for all

x ∈ X, the function

ω → d(x,Φ(ω)) = inf{‖x− z‖ : z ∈ Φ(ω)}

is measurable.

By S
p
Φ (1 ≤ p < ∞), we denote the set of all measurable selections of Φ that

belong to Lp(Ω;X), that is, Sp
Φ = {ϕ ∈ Lp(Ω;X) : ϕ(ω) ∈ Φ(ω), a.e. on Ω}. By

the Kuratowski-Ryll Nardzewski Theorem (see, e.g., Hu and Papageorgiou [13], p.

175), it follows that for a measurable multifunction Φ : Ω → Pcl(X), the set Sp
Φ is

nonempty, iff inf{‖x‖ : x ∈ Φ(ω)} ≤ h(ω), a.e., for some h ∈ Lp(Ω; R+).

A set K ⊂ Lp(0, T ;X)(1 ≤ p < ∞) is said to be decomposable, if for all u, v ∈ K

and all A ∈ L, we have uXA + vX[0,T ]\A ∈ K, where XA denotes the characteristic

function of A. It is obvious that Sp
Φ has decomposable values.

Finally, let Y and Z be Hausdorff topological spaces, and let Ψ : Y → 2Z. We say

that Ψ is lower semicontinuous (l.s.c., for short), if the set {y ∈ Y : Ψ(y) ⊂ A} is

closed in Y for each closed subset A of Z.

3. MAIN RESULTS

For fixed positive constants r, T, we set Br := {x ∈ X : ‖x‖ ≤ r} and Kr := {φ ∈

C([0, T ];X) : φ(t) ∈ Br, ∀t ∈ [0, T ]}.

We first consider problem (1.1) under the following conditions:

(H1) {A(t)}t∈[0,T ] satisfy (HA(t)), and the corresponding evolution operator U (given

by (2.1) with D = D(A(t)), independent of t) is compact;

(H2) f : [0, T ] × Br → X is continuous in t ∈ [0, T ], and there exists a constant

L(r) > 0 such that ‖f(t, u)−f(t, v)‖ ≤ L(r)‖u−v‖, for all t ∈ [0, T ] and all u, v ∈ Br;

(H3) g : C([0, T ];X) → D is a continuous mapping which maps Kr into a bounded

set, and there is a δ = δ(r) ∈ (0, T ) such that g(φ) = g(ψ) for any φ, ψ ∈ Kr with

φ(s) = ψ(s), s ∈ [δ, T ];

(H4) T sup
t∈[0,T ], x∈Br

‖f(t, x)‖ + sup
t∈[0,T ],φ∈Kr

‖U(t, 0)g(φ)‖ ≤ r.
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Definition 3.1. A function u ∈ C([0, T ];D) is called an integral solution of problem

(1.1), if u is an integral solution, in the sense of Definition 2.1, of (2.2) with f(t, u(t))

in place of f(t) and g(u) in place of u0.

Our basic existence result is the following.

Theorem 3.2. Let assumptions (H1)− (H4) be satisfied. Then problem (1.1) has at

least one integral solution.

Remark 3.3.

(i) If 0 ∈ D(A(t)), and A(t)0 3 0, ∀t ∈ [0, T ], then U(t, 0)0 = 0, ∀t ∈ [0, T ] and

‖U(t, 0)g(φ)‖ ≤ ‖g(φ)‖, ∀φ ∈ Kr, t ∈ [0, T ]. In this case, (H4) holds if

T sup
t∈[0,T ], x∈Br

‖f(t, x)‖ + sup
φ∈Kr

‖g(φ)‖ ≤ r. (3.1)

(ii) Assume that D = X, 0 ∈ D(A(t)) and A(t)0 3 0, ∀t ∈ [0, T ].

Let g : C([0, T ];X) → X be given by

g(u) = u0 +

p
∑

i=1

ciu(ti) (3.2)

where u0 ∈ X, p is a positive integer, ci(i = 1, . . . , p) are given constants with
p

∑

i=1

|ci| < 1, and 0 < t1 < t2 < . . . < tp ≤ T. Then (H3) (with δ = t1) and (3.1)

are satisfied, provided that

‖u0‖ + T sup
t∈[0,T ], x∈Br

‖f(t, x)‖ ≤ r(1 −

p
∑

i=1

|ci|).

We next study problem (1.2) in a real separable Banach space X, where {A(t)}t∈[0,T ]

satisfy (H1), while g and F are subject to the following conditions:

(H5) g : C([0, T ];D) → D is such that

‖g(u) − g(v)‖ ≤ m‖u− v‖C([0,T ];X)

for all u, v ∈ C([0, T ];D) and some 0 < m < 1.

(H6) F : [0, T ] ×X → Pcl(X) satisfies

(i) F is measurable,

(ii) x→ F (t, x) is l.s.c. for a.a. t ∈ (0, T ),

(iii) there exists a function γ : (0, T ) × R
+ → R

+ such that γ(·, r) ∈ L1(0, T )

for every r ∈ R
+, γ(t, ·) is continuous and nondecreasing for a.a. t ∈

(0, T ), with

lim sup
r→∞

1

r

∫ T

0

γ(t, r)dt < 1 −m (3.3)
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where m is the same as in (H5), and

|F (t, x)| := sup{‖w‖ : w ∈ F (t, x)} ≤ γ(t, ‖x‖), (3.4)

for a.a. t ∈ (0, T ) and all x ∈ D.

Definition 3.4. A function u ∈ C([0, T ];D) is said to be an integral solution of

problem (1.2) if there exists f ∈ L1(0, T ;X) with f(t) ∈ F (t, u(t)), a.e. on (0, T ),

such that u is an integral solution, in the sense of Definition 2.1, of (2.2) where u0 is

replaced by g(u).

The existence of integral solutions to problem (1.2) is established by the following

result.

Theorem 3.5. If X is separable and assumptions (H1), (H5), and (H6) are satisfied,

then problem (1.2) has at least one integral solution.

4. PROOFS

Proof of Theorem 3.2. Let Kr(δ) = {φ ∈ C([δ, T ];X) : φ(t) ∈ Br, ∀t ∈ [δ, T ]},

where δ is as in (H3). Clearly, Kr(δ) is a nonempty, closed, convex, bounded subset

of C([0, T ];X). For a fixed v ∈ Kr(δ), we define the mapping Fv : Kr → C([0, T ];X)

by Fvφ = uφ, where uφ is the integral solution of

{

u′φ(t) + A(t)uφ(t) 3 f(t, φ(t)), t ∈ [0, T ],

uφ(0) = g(ṽ),
(4.1)

with ṽ ∈ Kr given by

ṽ(t) =

{

v(δ) if t ∈ [0, δ],

v(t) if t ∈ (δ, T ].

We first remark that Fv maps Kr into itself. Indeed, from the definition of Fv(cf.

(4.1)) and (2.3), we obtain

‖(Fvφ)(t) − U(t, 0)g(ṽ)(t)‖ ≤
∫ t

0
‖f(s, φ(s))‖ds

≤ T sup
t∈[0,T ], φ∈Kr

‖f(t, φ(t))‖, ∀t ∈ [0, T ], φ ∈ Kr.

This and (H4) lead to

‖(Fvφ)(t)‖ ≤ T sup
t∈[0,T ], x∈Br

‖f(t, x)‖ + sup
t∈[0,T ],φ∈Kr

‖U(t, 0)g(φ)‖

≤ r,

for all t ∈ [0, T ] and φ ∈ Kr. Hence FvKr ⊂ Kr, as claimed.

Next, on account of (2.3) and (H2), we deduce that for a positive integer n,

‖(Fn
v φ)(t) − (Fn

v ψ)(t)‖ ≤
(tL(r))n

n!
‖φ− ψ‖C([0,T ];X), ∀t ∈ [0, T ], φ, ψ ∈ Kr.
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Consequently, for n large enough, the mapping Fn
v is a strict contraction on Kr. Thus,

by the Contraction Mapping Principle, Fv has a unique fixed point φv ∈ Kr, which

is the integral solution of
{

φ′
v(t) + A(t)φv(t) 3 f(t, φv(t)), t ∈ [0, T ],

φv(0) = g(ṽ).
(4.2)

We now define a map G : Kr(δ) → Kr(δ) by (Gv)(t) = φv(t), t ∈ [δ, T ], where φv

satisfies (4.2). From the definition of G, (2.3) and (H2), it follows that

‖(Gv1)(t) − (Gv2)(t)‖ = ‖φv1
(t) − φv2

(t)‖

≤ ‖φv1
(0) − φv2

(0)‖ +
∫ t

0
‖f(s, φv1

(s)) − f(s, φv2
(s))‖ds

≤ ‖g(ṽ1) − g(ṽ2)‖ + L(r)
∫ t

0
‖φv1

(s) − φv2
(s)‖ds, ∀t ∈ [0, T ].

Using Gronwall’s inequality, we conclude that

‖Gv1 − Gv2‖C([0,T ];X) ≤ eTL(r)‖g(ṽ1) − g(ṽ2)‖.

This, in conjunction with (H3), implies the continuity of G on Kr(δ). We next adapt

some of the arguments in Kartsatos and Shin [16] and Pavel [18].

Let t ∈ [δ, T ] be fixed, and 0 < ε < t. Define the function vε : [t− ε, t] → X by

vε(s) = U(s, t− ε)φv(t− ε), ∀s ∈ [t− ε, T ] (4.3)

and note (cf., e.g., Pavel [18] and Pavel [19]) that vε is the integral solution of

u′(s) + A(s)u(s) 3 0, t− ε ≤ s ≤ T ; u(t− ε) = φv(t− ε). (4.4)

Then, by (2.3), (4.3) and (4.4), we derive

‖Gv(t) − vε(t)‖ ≤

∫ t

t−ε

‖f(τ, φv(τ))‖dτ ≤Mε, ∀s ∈ [δ, T ], (4.5)

where M = sup
t∈[0,T ], φ∈Kr

‖f(t, φ(t))‖. Since U(t, t − ε) is compact (cf. (H1)), it follows

that the set {vε(t) : v ∈ Kr(δ)} is relatively compact in X. Then (4.5) implies that

the set {Gv(t) : v ∈ Kr(δ)} is relatively compact in X, as well.

Next, let us examine the equicontinuity of {Gv(t) : v ∈ Kr(δ)} at t ∈ [δ, T ]. On

account of (H1), we can invoke Theorem 1.1 in Pavel [19] to conclude that {vε(t) :

v ∈ Kr(δ)} is equicontinuous at t, where vε is given by (4.3) for a fixed t ∈ [δ, T ] and

ε ∈ (0, T ). Therefore there exists γ(t, ε) > 0 such that

‖vε(s) − vε(t)‖ ≤Mε, ∀v ∈ Kr(δ) (4.6)

for any s ∈ [δ, T ] with |s− t| ≤ γ(t, ε). Note that

‖Gv(s) − Gv(t)‖ ≤ ‖Gv(s) − vε(s)‖ + ‖vε(s) − vε(t)‖

+‖vε(t) − Gv(t)‖.
(4.7)

Combining (4.5), (4.6) and (4.7), we obtain ‖Gv(s) − Gv(t)‖ ≤ 3Mε, ∀v ∈ Kr(δ),

provided that s ∈ [δ, T ], |s − t| ≤ γ(t, ε). This proves the equicontinuity of {Gv(t) :



292 Aizicovici and Lee

v ∈ Kr(δ)} at each t ∈ [δ, T ]. So, by Ascoli’s Theorem, we infer that G(Kr(δ)) is

relatively compact in C([δ, T ];X).

We can now apply Schauder’s Fixed Point Theorem to conclude that G has at least

one fixed point v∗ ∈ Kr(δ). Let u = φv∗ and remark that u is an integral solution, in

the sense of Definition 3.1, of
{

u′(t) + A(t)u(t) 3 f(t, u(t)), t ∈ [0, T ],

u(0) = g(ṽ∗).
(4.8)

Inasmuch as v∗(t) = (Gv∗)(t) = φv∗(t) = u(t), for all t ∈ [δ, T ], it follows by (H3) that

g(ṽ∗) = g(u). Hence (4.8) reduces to (1.1), so that u is an integral solution of problem

(1.1), and the proof is complete. �

Proof of Theorem 3.5. Let N : C([0, T ];X) → 2L1(0,T ;X) be defined by

N(u) = S1
F (·,u(·)), ∀u ∈ C([0, T ];X). (4.9)

From (H6) (i), (iii), it follows that N has nonempty, closed and decomposable values;

cf. also Section 2. In addition, arguing as in Hu and Papageorgiou [13] p. 238, we see

that (H6) implies that N is l.s.c., as well. By the Bressan-Colombo Selection Theorem

Bressan and Colombo [10], there exists a continuous function f : C([0, T ];X) →

L1(0, T ;X) such that

f(u) ∈ N(u), ∀u ∈ C([0, T ];X). (4.10)

In other words (cf. (4.9), (4.10))

f(u)(t) ∈ F (t, u(t)), a.e. on (0, T ), (4.11)

for all u ∈ C([0, T ];X). In view of (4.11) and Definition 3.4, it is sufficient to prove

the existence of an integral solution to the problem
{

u′(t) + A(t)u(t) 3 f(u)(t), t ∈ [0, T ],

u(0) = g(u).
(4.12)

To accomplish this, we seek a fixed point of the map F : X → X , X = C([0, T ];X),

defined by Fv = uv, ∀v ∈ X , where uv is the unique integral solution of
{

u′(t) + A(t)u(t) 3 f(v)(t), t ∈ [0, T ],

u(0) = g(u).
(4.13)

The existence and uniqueness of uv follows as in the proof of Theorem 8 in Aizicovici

and Staicu [4], on account of (H1) and (H5). We show that F is continuous and

compact. Indeed, by (2.3) and (4.13), we have

‖Fv1−Fv2‖X = ‖uv1
−uv2

‖X ≤ ‖g(uv1
)−g(uv2

)‖+

∫ T

0

‖f(v1)(t)−f(v2)(t)‖dt, (4.14)
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for all v1, v2 ∈ X . Employing (H5) in (4.14) yields

‖Fv1 − Fv2‖X ≤
1

1 −m
‖f(v1) − f(v2)‖L1(0,T ;X),

which, by the continuity of f , implies that F is continuous on X .

Next, let K be a bounded subset of X . In view of (3.4) and (4.11), it follows that

{f(v) : v ∈ K} is a uniformly integrable subset of L1(0, T ;X). In addition, by using

this, (2.3), (4.13) and (H5), it is easily seen that {g(uv) : v ∈ K} is bounded in X .

Consequently, invoking (H1) and adapting the reasoning in the proof of Theorem 3

of Kartsatos and Shin [16], we conclude that {uv : v ∈ K} is relatively compact in

C([ε, T ];X), for any 0 < ε < T. It actually follows that {uv : v ∈ K} is relatively

compact in X . This can be proved with the help of the operator L : C([0, T ];D) → X0,

given by

(Lw)(t) = w(t) − U(t, 0)g(w), ∀t ∈ [0, T ], w ∈ C([0, T ];D),

where X0 = {u ∈ X : u(t) = w(t) − U(t, 0)g(w), ∀t ∈ [0, T ], for some w ∈ X}. Note

(cf. Xue [23], Lemma 2.5) that L is one-to-one and onto, and L−1 is continuous

on X0. Let wv(t) = uv(t) − U(t, 0)g(uv), for all t ∈ [0, T ] and v ∈ K, so that

uv(t) = L−1(wv)(t), t ∈ [0, T ]. In view of (H1)(see, Pavel [19], Theorem 1.1), the

set {U(t, 0)g(uv) : v ∈ K} is relatively compact in C([ε, T ];X), ∀0 < ε < T. Hence,

{wv : v ∈ K} has the same property. Since wv(0) = 0, ∀v ∈ K, the set {wv(0) : v ∈ K}

is trivially compact in X. In addition, by (2.3), we have ‖wv(t) − wv(0)‖ = ‖uv(t) −

U(t, 0)g(uv)‖ ≤
∫ t

0
‖f(v)(s)‖ds, ∀t ∈ [0, T ]. Recalling the uniform integrability of

{f(v) : f ∈ K}, we conclude that {wv(·) : v ∈ K} is equicontinuous at t = 0.

So, finally, by Ascoli’s Theorem, it follows that {wv : v ∈ K}, and consequently

{uv : v ∈ K} are relatively compact in X . Therefore F is compact, as a map of X to

X , as claimed.

We can now apply the Leray-Schauder alternative (see Schaefer [20]) to establish

that F has a fixed point in X . To this end, we consider the set S := {v ∈ X : Fv =

λv, for some λ ≥ 1} and show that it is bounded. If v ∈ S, then by the definition of

F , λv is an integral solution of
{

(λv)′(t) + A(t)(λv(t)) 3 f(v)(t), t ∈ [0, T ],

(λv)(0) = g(λv),
(4.15)

for some λ ≥ 1. Let z(t) = U(t, 0)g(x̄), for a fixed constant function x̄ : [0, T ] →

D, x̄(t) = x (x ∈ D). On account of (2.3) and (4.15), we obtain

‖λv(t) − z(t)‖ ≤ ‖g(λv) − g(x̄)‖ +

∫ T

0

‖f(v)(t)‖dt, t ∈ [0, T ]. (4.16)

Employing (H5) in (4.16) yields

λ‖v(t)‖ ≤ ‖z(t)‖ + λm‖v‖X +m‖x‖ +

∫ T

0

‖f(v)(t)‖dt, t ∈ [0, T ]. (4.17)
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Since m ∈ (0, 1) and λ ≥ 1, (4.17) implies

(1 −m)‖v‖X ≤ C +

∫ T

0

‖f(v)(t)‖dt, (4.18)

for some constant C > 0. Using (4.11) and (3.4) in (4.18), we arrive at

(1 −m)‖v‖X ≤ C +

∫ T

0

γ(t, ‖v‖X )dt.

This, in conjunction with (3.3), implies the existence of a positive constant M (inde-

pendent of v ∈ S) such that ‖v‖X ≤M, as desired. Consequently, by Schaefer’s Fixed

Point Theorem, Schaefer [20], we conclude that F has a fixed point u ∈ X , which is

an integral solution to (4.12), hence of problem (1.2). The proof is complete. �

5. APPLICATIONS

Throughout this section, Ω denotes a bounded domain in R
n(n ≥ 1) with smooth

boundary ∂Ω.

Example 5.1. Let ρ : R → R and α : [0, T ] × Ω × R → R satisfy the following

conditions:

(Hρ) ρ ∈ C(R) ∩ C1(R \ {0}) is nondecreasing, with ρ(0) = 0, and such that

ρ′(r) ≥ K|r|p0−1, ∀r ∈ R \ {0}, for some constants K > 0, p0 ≥ 1;

(Hα) (i) α : [0, T ] × Ω × R → R is continuous, m−accretive with respect to its

third variable, with α(t, x, 0) = 0, ∀(t, x) ∈ [0, T ] × Ω, and such that

|α(t, x, u)| ≤ q1(t, x) + q2(t)|u|, ∀(t, x, u) ∈ [0, T ] × Ω × R,

where q1 : [0, T ]×Ω → R
+ is in L1(Ω) for each t ∈ [0, T ] and q2 : [0, T ] →

R
+,

(ii) there exists a function h : [0, T ] → R, continuous and of bounded vari-

ation, and a function q3 ∈ L1(Ω) such that for any t, s ∈ [0, T ] and any

u ∈ R one has

|α(t, x, u) − α(s, x, u)| ≤ |h(t) − h(s)|(1 + |q3(x)| + |u|),

for a.a. x ∈ Ω,

(iii) there exists a constant C > 0 such that

|α(t, x, u) − α(t, x, v)| ≤ C|u− v|,

for all (t, x, u, v) ∈ [0, T ] × Ω × R
2.

Let X = L1(Ω) and define the operators A(t) in L1(Ω), for t ∈ [0, T ] by
{

A(t)u(x) = −∆ρ(u(x)) + α(t, x, u(x)), a.e. on Ω,

D(A(t)) = {u ∈ L1(Ω); ρ(u) ∈ W
1,1
0 (Ω),∆ρ(u) ∈ L1(Ω)}.

(5.1)
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Clearly, D(A(t)) is independent of t, with D(A(t)) = X. According to the theory

developed in Kartsatos [15] (see also Pavel [17]), under assumptions (Hρ) and (Hα),

the operators A(t) satisfy (H1) with D = X. Next, let f : [0, T ] ×X → X be given

by

f(t, u)(x) = sin(u(x)), ∀u ∈ X, a.e. on Ω. (5.2)

It is obvious that f satisfies (H2) for any r > 0, with L(r) = 1. Finally, let g :

C([0, T ];X) → X be as in (3.2), so that (H3) also holds.

We consider the nonlocal initial boundary value problem:



















ut(t, x) − ∆ρ(u(t, x)) + α(t, x, u(t, x)) = sin(u(t, x)), a.e. on (0, T ) × Ω,

ρ(u(t, x)) = 0, a.e. on (0, T ) × ∂Ω,

u(0, x) = u0(x) +
p

∑

i=1

ciu(ti, x), a.e. on Ω,

(5.3)

where 0 < t1 < t2 < · · · < tp ≤ T and ci(i = 1, 2, . . . , p) are given constants, with
p

∑

i=1

|ci| < 1, and u0 ∈ L1(Ω). In view of the above discussion, it follows that (5.3) can

be rewritten in the abstract form (1.1) in the space X = L1(Ω), with A(t), f and g

given by (5.1), (5.2) and (3.2), respectively. By Remark 3.3 (ii), it is easily seen that

(H4) is satisfied if r is chosen large enough, so that

‖u0‖L1(Ω) + T meas (Ω) ≤ r(1 −

p
∑

i=1

|ci|),

where meas(Ω) denotes the Lebesgue measure of Ω.

An application of Theorem 3.2 yields:

Corollary 5.1. Assume (Hρ) and (Hα). If also
p

∑

i=1

|ci| < 1, then problem (5.3) has

at least one integral solution u ∈ C([0, T ];L1(Ω)).

Example 5.2. Again, let X = L1(Ω) and A(t) be given by (5.1), where ρ and

α satisfy (Hρ) and (Hα), respectively. Let β : [0, T ] × Ω × R
l → R(l ≥ 1) and

V : Ω × R → Pk(R
l) (where Pk(R

l) denotes the collection of all nonempty compact

subsets of R
l) satisfy respectively:

(Hβ) (i) (t, x) → β(t, x, z) is measurable for each z ∈ R
l,

(ii) z → β(t, x, z) is continuous for a.a. (t, x) ∈ [0, T ] × Ω,

(iii) |β(t, x, z)| ≤ a1(t, x) + a2(t)‖z‖Rl , a.e. on [0, T ] × Ω, ∀z ∈ R
l, with

a1 ∈ L1((0, T ) × Ω; R+), a2 ∈ L1(0, T ; R+);

(HV ) (i) (x, r) → V (x, r) is measurable,

(ii) r → V (x, r) is l.s.c. for a.a. x ∈ Ω,
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(iii) |V (x, r)| := sup{‖w‖Rl : w ∈ V (x, r)} ≤ b1(x)+b2|r|, a.e. on Ω, ∀r ∈ R,

with b1 ∈ L1(Ω; R+), b2 ≥ 0.

Define the multifunction F : [0, T ] × L1(Ω) → 2L1(Ω) by

F (t, u) = {β(t, ·, v(·)) : v(x) ∈ V (x, u(x)), a.e. on Ω, v ∈ L1(Ω; Rl)}. (5.4)

Adapting the arguments given in Hu and Papageorgiou [14], p.186, we conclude that

F is closed-valued and satisfies (H6)(i), (ii). Also, by (Hβ)(iii), (HV )(iii) and (5.4),

it follows that (3.4) holds with

γ(t, r) = ‖a1(t, ·)‖L1(Ω) + a2(t)‖b1‖L1(Ω) + a2(t)b2r. (5.5)

Next, let g : C([0, T ];X) → X be given by

g(u)(x) =

∫ T

0

G(s, u(s, x))ds, ∀u ∈ C([0, T ];X), a.e. on Ω, (5.6)

where G : [0, T ] × R → R satisfies:

(HG) (i) G(·, r) is measurable for each r ∈ R and G(·, 0) ∈ L1(Ω),

(ii) G(t, ·) is continuous for a.a. t ∈ [0, T ],

(iii) there exists k ∈ L1(0, T ; R+), with ‖k‖L1 < 1, such that

|G(t, r) −G(t, r̄)| ≤ k(t)|r − r̄|,

for all r, r̄ ∈ R, and a.a. t ∈ [0, T ].

Then it is easily verified that g, as given by (5.6), is well-defined and satisfies (H5),

with m = ‖k‖L1(0,T ). Finally, in view of (5.5), it follows that (3.3) holds provided

that

b2‖a2‖L1(0,T ) + ‖k‖L1(0,T ) < 1. (5.7)

We now consider the problem:











ut(t, x) − ∆ρ(u(t, x)) + α(t, x, u(t, x)) ∈ β(t, x, V (x, u(t, x))), a.e. on (0, T ) × Ω,

ρ(u(t, x)) = 0, a.e. on (0, T ) × ∂Ω,

u(0, x) =
∫ T

0
G(s, u(s, x))ds, a.e. on Ω,

(5.8)

and remark that it can be reduced to the abstract form (1.2) in X = L1(Ω), with

A(t), F and g given by (5.1), (5.4) and (5.6), respectively.

Applying Theorem 3.5, we obtain:

Corollary 5.2. Assume (Hρ), (Hα), (Hβ), (HV ) and (HG). If also (5.7) holds, then

problem (5.8) has at least one integral solution u ∈ C([0, T ];L1(Ω)).
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