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ABSTRACT: In this paper, we consider the equation v — div a(u, Du) = f on a bounded domain
with nonlinear boundary conditions of the form —a(u, Du) - n € B(z,u). We introduce a notion of

entropy solution for this problem and prove existence and uniqueness of this solution for general
L'-data.
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1. INTRODUCTION

Let © be a bounded domain in R¥ with Lipschitz boundary 02 and 1 < p < N.

Consider the nonlinear stationary problem

u —div a(u, Du) = f in Q,

(E)(/) { —(a(u, Du),n) € f(x,u) on 09,

where 7 is the unit outward normal vector on 99, f € L*(2), Du denotes the gradient
of u and, for a.e. x € 99, B(x,r) = 0j(x,r) is the subdifferential of a function
Jj 002 x R — [0,00] which is convex, lower semicontinuous (l.s.c. for short) in
r € R for a.e. z € 0F), measurable with respect to the (N — 1)-dimensional Hausdorff
measure on 9§ and such that j(-,0) = 0. The vector-valued function a : RxRY — R¥
is continuous satisfying the following classical Leray-Lions-type conditions:

(H,)- monotonicity in £ € RV :

(a(r,€) —a(r,n) - (§—n) =20, VreR, Vg neRY;
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(H,)- coerciveness : there exist Ao > 0, p > 1 such that
(a(r,§) —a(r,0)) - € = A&, Vr € R, V€ € RY;

(H3)- growth restriction : there exists a function A : RT™ — R such that
la(r, Ol < A(FDL+ €7, ¥reR, VEeRY;

and, moreover,

(Hy)- there exists C' : R x R — R continuous such that
ja(r,€) —a(s,€)] < Cr,s)|r —s|(L+ [€[77), Vrs €R.

A typical example of a function a satisfying these hypotheses is a(r, &) = |€|77%¢ +
F(r), where F : R — R¥ is a locally Lipschitz function. Note that the condition
—(a(u, Du),n) € [(z,u) on 0N includes in particular mixed Dirichlet-Neumann
conditions on the boundary and conditions of obstacle type. For many applications
it is necessary to study such general type of boundary conditions.

Many results are known for elliptic problems in the variational setting for Dirichlet
or Dirichlet Neumann problems (see Alt and Luckhaus [1], Bénilan and Wittbold [16],
Carrillo [20], Prignet [27], Simondon [28]). In the L'-setting, for elliptic and parabolic
equations in divergence form, in last decade the new equivalent notions of entropy and
renormalized solutions have been introduced and existence and uniqueness results for
this new type of solution have been proved under various assumptions (see Ammar
2], Andreu et al [7], Bénilan et al [13], Boccardo et al [17]). In particular, in Andreu
et al [7], a notion of entropy solution has been introduced for the nonlinear problem
(E)(f) with a being independent of u and the graph [ being independent of the space
variable. Under a regularity assumption on a and for particular graphs 3, the authors
prove existence and uniqueness of this entropy solution for arbitrary L!-data.

Moreover, note that, in Ammar [2], a new notion of entropy solution was introduced

for the problem

Cf+f=1v on 00,
v € L(09),

where C' is a capacity operator defined from W7 (092) to his dual W (09) by
(Cf,g9) = [(a(z,Du),Dv), f,g € Wﬁ’p(ﬁﬁ), where u,v € WH(99Q), vjpq = ¢ and
- div a(z, Du) = 0, ujpo = f.. This approach allowed the author in the following to
prove well-posedness of problems of type (E)(f) and even of more general form. The
disadvantage of this approach is that it is strictly restricted to the case, where the
vector field a does not depend on the function u, but only on Du, and, possibly, the

space variable.
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Therefore, in the present paper, we use and extend the methods introduced in
Andreu et al [7] to study the problem

u—div a(z,Du)=f in Q,
—a(z,Du)-n € f(u) on 09,

where f € L'(Q). We generalize their results for a divergence operator depending on
u and for 3 depending also on the space variable x.

The present paper is organized as follows. In the next section we make precise
the notations which will be used in the sequel and recall some facts on measures
and capacities. In Section 3, we study the problem (E)(f) by variational methods.
We introduce an accretive operator As related to some penalized version of problem
(E)(f) and show that R(I + aAs) D L>®(Q2) for all @ > 0. In Section 4, we introduce
the notion of entropy solution of the original problem (FE)(f) and prove that the
weak solutions of the penalized problem converge to the unique entropy solution of
(E)(f). By the way we characterize A, the limit of the operator As in L'(£2), which is
associated to the limit equation. Finally, in Section 5 we discuss possible extensions

of our results.

2. PRELIMINARIES

In this section, we introduce some notations and definitions used in this paper.
We denote | - | and do the N-dimensional Lebesgue measure in RY and the (N — 1)-
dimensional Hausdorff measure of 0f), respectively. The norm in LP(£2) is denoted
by [, 1 <p < oo W1P(Q) denotes the classical Sobolev space endowed with
the norm denoted || - ||1,. It is well-known (see Morrey [25], Necas [26]) that if
u € WP(Q), it is possible to define the trace of u on 9, where the continuous linear
trace operator T : W'P(Q) — Wﬁ*”(&Q) is surjective. In particular, as (2 is smooth,
any function v € Wﬁ’p(ﬁQ) is the trace of a function o € W (@) such that tjpq = v,
where G is an arbitrary fixed open subset of RY such that Q C G.

For k > 0, we denote by T} the truncation function at height £ > 0, defined by

T() k signg(u) if |u|l >k,
u) =
g u if  |u| <k,

where, signg(-) denotes the single-valued function defined by signg(r) = —1 if r» < 0,

signg(r) = 1 if r > 0, signg(r) = 0 if » = 0. In the sequel, C' will denote a constant

that may change from line to line. Throughout the paper, for the sake of simplicity,

for any measurable function u defined on Q2 and any K > 0, we denote by {|u| < K}

the measurable subset {z € Q;|u(z)] < K}. We will write [u = [, u(z)dz. We

denote by u the average of u, ie., u = % f x)dx. We denote by P the set of
1,

functions {S € C*(R)/ S(0) =0, 0< S < Supp(S/) is compact }.
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Let A be a multi-valued operator in L*(£2). Recall that A is said to be accretive in
LYQ) if [ju — all, < ||Ju — @+ a(v —0)]|, for any (u,v), (4,0) € A; a > 0 i.e., for any
a > 0, the resolvent of A, (I + aA)_l, is a single-valued operator and a contraction

in L'-norm. A is called T-accretive if ||(u —@)" ||, < |lu — @+ a(v —9)7|,

for any
(u,v), (u,v) € A and for any o > 0. Finally, A is called m-accretive (resp. m-T-
accretive) in L'(Q) if A is accretive (resp. T-accretive) and moreover, R(I + aA) =
LY(Q) for any o > 0 (see Barbu [9], Bénilan [10], Bénilan et al [14] for the theory of
accretive operators and nonlinear semigroups).

For a monotone graph #in R x R and A € N we denote by (3, the Yosida approx-
imation of 3, given by [\ = %(I — (I + A\B)71). The function (3 is monotone and

Lipschitz. We recall the definition of the main section 3° of 3:

inf B(r) ifr>0
Bo(r) = 0 ifr=0
sup A(r) if r <0,

with the usual convention inf ) = +o0o and sup ) = —oo.

Now, let us introduce some notations about capacities and measures used through-
out this paper (we refer the reader to Dal Maso et al [21], Dunfort and Schwartz
23]). Given E C G, C1,(F) denotes the p-capacity of £ with respect to the norm
of WHP(@) and it is defined in the following way: If O CC G is open, then

C1p(0) = inf{[lp|, ;€ WyP(G), ¢ > xo a.e. on G}.
The p-capacity of an arbitrary subset £ C (G is defined by
Ch1p(E) =inf{C},(0), O open, E C O}.

A function u defined on G is said to be cap-quasi continuous if for every ¢ > 0
there exists an open set B C G with (4 ,(B) < ¢ such that the restriction of u to
G\ B is continuous. It is well-known that every function in VVO1 P(@G) has a cap-quasi
continuous representative, i.e. a function # : G — R such that ©« = u a.e. on G
and 4 is cap-quasi-continuous. In particular, by the remarks above, any function
ve WP (9Q) has a cap-quasi-continuous representative #. Indeed, 30 € Wy (G)
such that v is quasi-continuous represent of ¥ on G and 5\‘39 = v a.e. on 0f). As
usual, a property will be said to hold cap-quasi everywhere (q.e. for short) if it holds
everywhere except on a set of zero capacity.

Let M, (052) be the space of all Radon measures on 02 with bounded total varia-
tion. For p € M, (092) denote by u™, u~ and |u| the positive part, negative part and
the total variation of the measure pu, respectively, and denote by p = p,.do + ps the
Radon-Nikodym decomposition of u relatively to the (N — 1)-dimensional Hausdorff

measure do.
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We denote by M7 (99) the set of Radon measures p which satisfy u(B) = 0 for
every Borel set B C 01 such that C,(B) = 0, i.e., the Radon measures which do
not charge sets of zero capacity.

We denote Jo(0€2) = {j/j : 02 x R — [0,00], j(-,7) o-measurable Vr € R, j(z,-)
convex, Ls.c. satisfying j(z,0) = 0 for a.e. x € 90Q}. For a.e. z, we define G(x,r) =
dj(z,7m) V5 € Jo. Given j € Jp(Q2), we define

T WP P@0Q) N L20Q) — [0,00]

u j(-,u)do.
o9

Note that J naturally extends to a functional J on Wy*(G) N L*®(G) as follows:
J(u) = Jo0 (-, 7(u))do for any u € Wy P(G). We recall that the closure of D(J) in
W,y (G) is a convex bilateral set, so according to Attouch and Picard [8], there exist
unique (in the sense q.e.) functions 7,,~_ which are cap-quasi-l.s.c. and cap-quasi-

u.s.c. respectively, such that

DIT) #" = {ue WH(00); 1-() < ila) <. (x) qe. on 90}

Moreover, v_(z) = infa,(x) = lim1 <”;3£ tg(z) q.e. x € 0f). Analogous property

holds for ;. For any || - |1  -dense sequence (uy), in D(J). Recall that the sub-
differential operator 07 C (Wﬁ’p(ﬁQ) N L>®(09)) x (W_ﬁ’p,(ﬁQ) + (L*>(0R2))") is

monotone and is given by

M € 0J(u) <=
we WP (0Q) N Le00); M e W7 (9Q) + (L=(d0))*
and J(w) > J(u) + (M, w — u) Yw € W#P(9Q) N L®(Q),

where, here and in the sequel, if not explicitly stated otherwise, (-,-) denotes the
duality between W»*(9) N L>(9N) and its dual.

3. VARIATIONAL APPROACH

Let © be a bounded domain in RY with Lipschitz boundary, 1 < p < N, a a
mapping 2 x RY — R satisfying the assumptions (H;) — (H,) and § is such that
B(zx,-) = dj(x,-) a.e. on I, where j € Jp(99).

To apply the classical variational approach, we need an L*-estimate on u, which
is not evident to obtain directly in our problem. The obstacle which we encounter is
that we can not get rid of the term with a(u,0). To overcome this difficulty, we first

redefine and extend the function A, which appears in assumption (Hj3), on an odd
a(k,0)
A(k)
setting A(r) := sup {A(|z|),|z||a(z,0)|} for r > 0. Secondly, we add a penalization

—r<z<

monotone function on R such that | | — 0 as k — oo. This will be possible by
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term dA(u) on the boundary for a fixed . This allows us to compensate the term

a(k,0)
NG | < 6.

In the next section, we tend ¢ to zero and the penalization term disappears. Con-

with a(u,0) by choosing k sufficient large such that |

sequently we obtain the entropy solution of our initial problem (E)(f).

Now, we define the operator A; as follows: (u, f) € As if and only if u € WP(Q)N
L>=(Q); f € L'(Q) and there exists a measure u € MY (9Q) with p,.(z) € 9j(x, u(z))+
Oy (1), () (u(z)) ace. z € O such that for all ¢ € WHP(Q) N L>(Q)

[ atwpu)-Du=0)+5 [ Awu=0)< [ fu=0)= [ (@=n

U=y, pul—ae on 0N, w=~_ pu, —ae on O, (3.1)

where for given interval [a,b] C R, I}, denotes the convex ls.c. functional on R

defined by 0 on [a, b], +00 otherwise.

Remark 3.1. We will prove (see equation (3.14) below), that the measure p €
Mb(aQ)ﬂ(W_i’pl(aQ)jL(Loo(OQ))*) and also |u| does not charge sets of zero capacity.
From |ps| < |ul, it follows that |us| does not charge sets of 0-capacity. Consequently,
the condition (3.1) is meaningful.

We can now state the first main result.

Theorem 3.1. The operator As satisfies the following properties:
i) As is T-accretive in L1(Q),
i) L>*(Q) C R(I + aAs) for any a > 0,
iii) D(A;) is dense in L'(Q).
Proof. i) Let u,v such that

feu+ Asu, gev+ Asv. (3.2)

Jw-or< [ (3.3)

Taking ¢1 = u — T4 (u — v)" and ¢y = v + 2T (u — v)" as test functions in (3.2)
respectively, we get after adding inequalities

1
— a(u, Du) — a(v, Dv)) - D(u —v)*
£, (00 D) —av. D) D)

We must show that

+ %5 /m(A(u) AT —v)*
< [(-w-t-one-0 - ([ B@-oa G

oN
—/ Ti( — 9) "dps).
o0
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Denote by I respectively I the first, respectively the second integral in the left hand
side of (3.4). Using assumptions (H;) and (H,), we have
1

L o> —/ (a(u, Dv) — a(v, Dv)) - D(u — v)*
k {(u—v)*t <k}

> _TCk (14 |Dv]" Du—v)" —0 as k—0.
{(u—v) "<k}

Note that the properties of the measures p; and ps guarantee to us that the second
term in the brackets in the right hand side of (3.4) is nonnegative. Indeed, these
integrals can be written as [, Ti(u—v)(ftr1 — tir2) + [50 Th (V4 —0)dpig + [0 —Ti (i —
Vo) dpto+ [oq —Te(v=— 0)dpg 1+ [o0 Te(i—~-)dp,,, which are, clearly, nonnegative
by properties of i1, p1o and vy ,_.

Since Iy > 0 (thanks to the monotonicity of A), we get after passing to the limit in
(3.4) with £ — 0

tim ;[ =) —) <l [ (7= o)t < [ (7-0)"

Consequently (3.3) holds.

ii) It will be no restriction to assume that o = 1. In order to prove that L>°(Q) C

R(I + As), we approximate the problem
u —div a(u, Du) = f, in Q,

—a(u, Du) -n € B(zx,u) + 0A(u) on 09,
by problems of the form

Ti(uy) — div a(T;(uy), Duy) = f in  Q,

—a(Ti(uy), Duy) - n = Ba(w,uy) + 611(A(uy)) on 08,

where [ > max{k,A(k)}, k > | f|l + 1 and k satisfies |“XEI’€(§)| < 6. Here for every

A € N, Bi(x,-) is the Yosida approximation of 3(z,-), i.e. Bx(z,:) = 1/ANI — (I +
AB(z,-)) 7).
Consider the operator Az : WP(Q) — (WHP(Q))" defined by
(Asau, ¢)

= /QTl(u)¢+a(7}(u),Du)-D¢+ aﬂﬁx(w“)¢+5Tz(A(U))¢

for all ¢ € WP(Q). Here, (-,-) denotes the duality between W?(Q) and (W?(Q))".

Lemma 3.1. The operator As is bounded, coercive and verifies the (M )-property.
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The proof of this lemma is straightforward (see Lions [24]).
By Lemma 3.1 and the result of Browder (see Lions [24]), for all f € (WP(Q))"
there exists uy € WP(Q) such that for all ¢ € Wr(Q)

(Asaux — fuy — @) <0. (3.5)

In order to pass to the limit as A0 in inequality (3.5) we need a uniform L*°—estimates
and the strong convergence of the solution uy. To this end, take ¢ = uy —p.(uy—k) as

a test function in (3.5), where p.() is an approximation of sign™(-) defined as follow

1 if r>e¢
pe(r) =4 ir if 0<r<e
0 if r<o,

using assumption (Hs), we have

1
/pg(u,\ — k)T (uy) + - / a(Ty(uy),0) - Duy
Q € Jk<ur<k+e}

" /a pe(ux — k)T (A(uy))

< / Fpe(us — k) — /a RXCE N (3.6)

Note that, since [ > k

1
‘—/ G(E(UA),O)DUA‘
€ J{k<ur<k+e}
(OO
< ‘/div(/ a(ﬂ(er—l—k),O)dr)‘
Q 0
a4y
= ‘ / a(T)(er + k),0)dr.n da}
82 Jo
— | [ signd (ur — k)a(k,0) do| ase—0. (3.7)
o9
Thus, we deduce that
1
lim inf —/ a(Ty(uy),0) - Duy
=0 € Jlk<uy<kte)
|a(k, 0)] /
> - Ti(A(ua))
Ti(A(K)) Jaongur>k)
=5 [ ma)) (35)
80N {uy >k}

Passing to the limit in inequality (3.6) with ¢ — 0, we get
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Thus, since k > || f|| . +1, we have

/ (Ti(uy) — k)™ <0 VI >k
{u>\>k‘}

Then
Ti(uy) <k ae. in {uy > k}.

We conclude that

uy <k ae. in .

Similarly, we prove that —k < uy a.e. in €, then
[usllo < C, (3.9)

where C'is a constant depending on || f]|, and 6.
Taking ¢ = 0 as a test function in (3.5), we get after using assumption (H,),

estimate (3.9) and Gauss-Green formula

o / |Duy | < / fun + C. (3.10)
Q Q

From (3.9) and (3.10), it follows that (u,), is bounded in W'P(Q). Hence there
exists a subsequence, still denoted uy, such that uy — u weakly in W1P(Q) as A — 0.
By Rellich-Kondrachov Theorem, uy — w in LP(§2) and 7(uy) — 7(u) in LP(09) as
A — 0. Then T)(A(uy)) — A(u) on 0f2. We may also assume that u), — wu a.e. in €.
Therefore, by (3.9), ||u]l. < C(||fll.,9)-

Taking ¢ = uy — %Tk(ux) as a test function in inequality (3.5), passing to the limit
with £ — 0, we get

m\ﬂx(ww)\ +5/69\T1(A(UA))I < /Q\fl <C (3.11)

Thus, passing to a subsequence if necessary, we have
Ba(syuy) — pin My(9Q) as A — 0.

Note that for all v > A > 0, we have |Bx(z,r)| > |G,(z,r)|] Vr € R. Thus from
(3.11), [0 18,(-;un)] < C, passing to the limit with X — 0, we get [, [6,(-,u)| < C.
As v — 0, we obtain [, |3°(-,u)| < C.

Next, we need to pass to the limit in the nonlinearity a(uy, Duy). Thanks to (3.9),
(3.10) and assumption (Hj), we have (a(uy, Duy)), is bounded in (Lp’(Q))N. After

passing to a suitable subsequence, we can assume that a(uy, Duy) — x weakly in

, N
(Lp (Q)) as A — 0. The aim is to show, via the pseudo-monotonicity argument,
that div a(u, Du) = div x. To this end, we must show that

lim sup/ a(uy, Duy) - D(uy —u) = 0. (3.12)
A—0 Q
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+

Taking ¢ = uy — (uy —u)™* as a test function in (3.5), we get

/Q a(us, Duy) - Dy — u)*

< / (f = w)(ux —u)* — / (BTH(A(ur)) + (- 1)) (un — w)*

0N

< /Q(f —up)(ur —u)" - / (OTi(A(ur)) + Bals —uy ) (un —u)™,

o0

where we have used the fact that 8y(-, u})(uy —u)™ > 0. Having in mind that (uy)y is
uniformly bounded in L>®(9Q), we have ||(uy —u)"|| < C and (uy —u)" — 0 ae.,
as A — 0. Next, observe that Gy(-, —uy) > Ba(-, —u~) > (°(-,—u~) on {uy > u}.
As 3°(-, —u™) € L*(09), it follows that [y, Bx(-, —uy)(ux — u)* — 0. Consequently,

limsup/ a(uy, Duy)-D(uy—u)t <0, and limsup/ a(uy, Duy)- D(—(uyx—u)") < 0
A—0 Q A—0 Q

follows similarly. Hence limsup [ a(uy, Duy)-D(uy— u) < 0 and (3.12) follows from
A—0 Q
the monotonicity of a.

Up to now, we have shown that for all ¢ € C°(RY)

/Qa(u,Du)-D(u—¢)+5/ A(u)(u — @)

o0

< [(t-ww-0- [ @ (3.13)

o0
which, by density, remains true for all ¢ € WH?(Q) N L>®(£2). Then, we conclude that

/Qa(u, Du)~Dq§+5/aQ A(u)qbz/ﬂ(f—u)gzﬁ— ” ddy, (3.14)

for all p € WHP(Q) N L>(Q).

Finally, we must characterize the obtained measure p. First, according to equation
(3.14), u € My(092) N (W_i’p,(ﬁQ) + (L>(092))") and |u| does not charge sets of
zero capacity. Let us show now that u € 07 (u). For this, we proceed as in Bou-
chitté [18], Bouchitté [19]. Note that 8\ = 0j\, where jy € Jo(99), jr(x,r) =
irelﬂfg{l/(Q)\)]r—gﬂ2 + j(x,s)}. Recall that, for a.e. x € 02 and for all r € R,
Jalx,r) T j(z,r) as A | 0. Thus, by definition of the subdifferential, for all v > A > 0
and a.e. x € 010,

j($,7“) > j)\(ZIJ,T)
> a(@, un(w)) + Oga (@, ux(z)) (1 — ur())
> gu(xyun(x)) + Oga(x, upn(x))(r — ur(z)); Vr € R.

Therefore, for all £ € Wi’p(ﬁQ) N L>(00Q)

/ T / G+ [ Oia () (€ — ).
o0 o0 o0
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Having in mind that uy, — u a.e. on Q as A — 0 then, according to Fatou’s Lemma
and Monotone Convergence Theorem, passing first to the limit with A\ — 0 then with
v — 0, we get for all £ € C'(092) (the set of continuous functions on 0f2)

A—0

/ T / Jeow) Hlimint [ () (€ — )
o0 o0 o0
> éﬂj(-,U)Hignjglf [ o)

+liminf [ Ba(-, ur)(u — uy). (3.15)
=0 Joa

Now using (3.12), the monotonicity of A, the uniform L*>-estimate on u, and the a.e.

convergence of u, to u, we get from (3.5)

lim [ Ba(, un)(u —uy)
A—=0 50

> lim [ (f —uy)(u—uy) + lim sup/ a(uy, Duy) - D(uy — u)
A=0 /o r—0 Jo

+0 }\li% m(A(uA) — A(w))(uy —u) + 5}\% ., Au)(uy — u)

> 0.

Consequently, we conclude from (3.15) that
T = T () + (& —u) VEe C(09).

Since 1 € M7P(052), one can see that the last inequality holds for ¢ € W (092) N
L*>(09), and thus we deduce that p € 97 (u).

To conclude the proof of ii), we prove, using the same technics as Wittbold [29],
Lemma 3.7 and Bouchitté [18], Proposition 20, that the elements in this subdifferential

can be characterized as follows:

p € 0T (u)
<~

() € Oj (2, u(x)) + Ol () s 2y (u(x))  ae. x € 0N
u="v- p; — ae ond, u=-~y,y pr—ae ond.

iii) We show that D(A;s) is dense in L'(€2). To this end, it suffices to prove that
L>(Q) C D(A(;)anl. Let a > 0. Given f € L®(Q), if we set u, := (I + aA)"" f, then

(Ua, =(f — ua)) € As. So, taking ¢ = 0 as a test function in the definition of the
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operator As, we get

1
/Qa(ua,Dua) -Du, < E/Q(f — Ug ) Ug — /82A(ua)ua — /asgladua
1
S E/Q(f_ua)ua
1
< ~ef1,.9),

where we have used the monotonicity of A, properties of y and the L*°-estimate on
Uo. Now, using Hypotheses (Hs) and (Hj), it is easy to see that a [, |a(ua, Dug)| — 0
as & — 0. On the other hand, if ¢ € D(2), taking u, + ¢ and u, — ¢ as test functions
in the definition of the operator As we get

i 0® = .
tim [ 0 /chb

Since [[ually < [If];, we have u, — f in L'(2). As a consequence f € D(A;) " and
the proof is complete. =

4. ENTROPY SOLUTIONS

Before introducing the notion of entropy solutions for the problem (FE)(f), we define
the following spaces similar to that introduced in Andreu et al, Bénilan [7, 11]. We

note
T7(Q) = {u : Q — R measurable; Tj(u) € WP(Q) for all k> 0}.

In Bénilan [11], the authors prove that for u € 71?7(Q), there exists a unique mea-
surable function w : @ — R such that DT} (u) = wx{ju<k} Yk > 0. This function w
will be denoted by Du.

Denote by T;*(2) the subset of 717(Q) consisting of the functions that can be
approximated by functions of W1P(2) in the following sense: a function u € 77(Q)
belongs to T,-7(Q) if there exists a sequence us € W(Q) such that: - us — u a.e.
in Q,

- DTy (us) — DTy (u) weakly in L'(Q2) for any k > 0,

- there exists a measurable function v : 92 — R such that (7(us)), converges a.e.
in 02 to v. The function v is called the trace of u, and denoted by 7(u).

We use notations u, 7(u) for the trace of u € 7,-7(Q) on 9.

The concept of entropy solution for a problem with boundary conditions was in-

troduced in Andreu et al [7] for the problem
—div a(z,Du)=f in

—a(z,Du) -n € f(u) on ON.
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Applying the same idea, we define an entropy solution for our problem (E)(f).

Definition 1. A function u € 7,-*(Q) is an entropy solution for problem (E)(f)
if there exists a measure u € M%(99Q) with

pr(x) € 0j (2, u(x)) + 0y (2) 4, (2)) (u(2)) ae. z € 00 (4.1)
and
=7, pf—ae ondQ, uU=v_ pu, —ae. ond, (4.2)

such that for all ¢ € WP(Q) N L>=(Q)

/Q a(u, Du) - DTy(u — ) < /

Q

(f = u)Tk(u— 6) — / To(ii — $)d.

o0

Remark 4.1. Note that each integral in the preceding definition is well defined.
Indeed, the first term can be understood as [, a(T;(u), DTy(u)) - DT;(u — ¢) where
1> k+ ||¢]... Since ¢ € WEP(Q)NL® (), we have u—¢ € T,-7(R2) (see Andreu et al
7], Theorem 3.1). Hence Ty (u— ¢) € WHP(Q)NL>*(Q2) and admits a trace which has
a quasi-continuous representative, according to the remarks made in Preliminaries.
Thus the last integral in the above definition is well defined. Note also that condition

(4.2) is meaningful.

We define an operator A by the rule: (u, f —u) € A if and only if u, f € LY(Q)
and u is an entropy solution of Problem (E)(f).

In the following, we use the notation A,,,, (resp. A,,,) instead of As (resp. JA)
where A, (1) = ZA(ut) — LA(u™). This is done to be able to use the monotonicity
of A.

Theorem 4.1. The operator A is m-accretive with dense domain in L'(Q) and A =
liminf A, ,, where liminf A,,,, is the operator defined by (z,y) € iminf A,, ,, if for

allm > 0,n > 0, there are (Tympn, Ymn) € Amn, such that (x,y) = Hm (T, Ymn)
m X x X. ’

Proof. We divide the proof into six steps.

Step 1: A priori estimates.

Let f € L'(Q). We approximate f by fn., = (f Am)V (—n) which is in L>(Q),
non decreasing in m, non increasing in n and || fr, »||; < [|f|l;- Then, by Theorem 3.1,
fmn € R(I+ A,,,) and there exist u,,,, € L=(Q) N WP(Q) and a measure fi,,, €
M3 (09) satistying (fimn), (%) € 01(2, Umn () + Opy_ (2)7s (2)] (Umn () a6, z € O,
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such that for all ¢ € WP(Q) N L>(Q)

/ a(um,nv Dum,n) ‘ D(um,n - (b)
[9]
1 1
T N TC T g / A0 = )

m Joo n

S /(fm,n - um,n)(um,n - ¢) - / (am,n - gb)d,um,n (43)
Q BY)
In the following, let £ > 0 be fixed. Using wy,,, — Tk(tm.,) as a test function in
inequality (4.3) and applying assumption (Hs) we obtain
)\0/ |DTk(um7n)|p
Q

1 1
[ DAt — L / T (tmn) A(1,)
o0

m Joq ’ n

S /Tk(um,n)(fmm - um,n) _/ Tk(am,n)dﬂmm
Q 0N

—/a(umm,O) - DTy (U )-
Q

(4.4)
By Gauss-Green formula and assumption (H3), we have
Tk(“m,n)
‘/a(umm,O)-DTk(um,n)‘ < ‘/ / a(r,O)dr'nda‘
0 02 Jo
Tk(um,n)
< / / A(|r|)drdo
09 Jo
< C, (4.5)

where C' is a constant independent of m,n. Then from inequality (4.4), using the

monotonicity of A, we conclude
X / |\ DT4(tm)|” < Const(k, £, A(K)). (4.6)
Q

Thus (Tk(wm,n)),,, 18 a bounded subset of WP(Q). Hence, after passing to a suit-
able subsequence if necessary, we have (Tj,(tum,n)),, , is weakly convergent in wWir(Q).
Then, Ty (tm,n) — vg in LP(Q2) as m,n — co. We may also suppose DTy (wm ) — Gk
weakly in LP(Q) as m,n — o0.

Now, we must prove the convergence almost everywhere of u,,,. We recall that
|tmnll, < |IfIl;- As Apn is a T-accretive operator, using the monotonicity of fp,
and A, ,, we have for all m > m' > 0 and for any n > 0, w,,, > Uy, a.e. on Q and,

for any n > n' > 0, for all m > 0, up,n, < Uy, s, a.e. on 2. As a consequence, we have

U T mtoo® b oot Umindn jootm T mieott 1N LY(Q). (4.7)
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Here, and in the sequel, we use the notation T, respectively |,,, to denote convergence
of sequence which is monotone increasing, respectively decreasing in n.

Therefore from (4.7) we get the convergence in L'(2) and also the convergence
almost everywhere on ).

Obviously, we can conclude that vy, = Ti(u) and g = DT}, (u). Therefore, Ti(u) €
W1P(Q) for every k > 0. Consequently, u € 71P(£2).
Moreover, one can show exactly as in Andreu et al [7], that (7(um,n)),,,, converges.
Therefore, we have u € 7,-7(Q).

Step 2: Existence of the measure.
It remains to show the existence of a measure p € M¥P(09Q) such that pi,, — u
strongly in M, (99).

Let u;\nn be a solution of the following equation

1 1
/ a(ud, D) Do+~ [ Adtyp - - / A
Q m Joq ’ n Joq ’

= /(fm,n - ui\n,n)gp - ﬁ)\('7 Ui\nm)@, (48)
Q o0

for all ¢ € WP(Q) N L>(Q).
We know from Theorem 3.1 (Part ii) that ||3x(-, up, ,)|l, is uniformly bounded by a
constant C' independent of X, thus Bx(-, uy, ,,) = fm,n in My(92) as X — 0. Therefore

<C

||Mm,n||Mb(aQ) S hr)\n_}glf ||ﬁ)\(a

) om
and we deduce, after extracting a subsequence if necessary, that p,, , — p weakly in
M, (092) as m,n — oo.

In order to prove the strong convergence of fi,, ,, we use the following comparison

result:

Lemma 4.1. Let fp, ., fan € L2(Q) and umn, u, . be the weak solutions which verify
(4.8). Assume that fzn > foun >0 a.e. on Q form >m > 0,n> 0. Then

w <t a.e. on

and
ﬁA(',Ufn,n) SﬁA(-,u;\hm) a.e. on ON.

The proof of the comparison result is standard (see Ammar [2], Ammar and Wit-
tbold [4]). Indeed, taking ¢ = Tk(up,, —up, )" as a test function in equation
(4.8) and ¢ = + T3, (up), ,, — uﬁm)Jr in the equatlon corresponding to the solution w3, ,,
passing to the limit in the sum of both equations with £ — 0, we get the result.

Note that the result of Lemma 4.1 remains true for the positive and negative parts,
ie. A(nudh) < Ba(huph) and Ba(uds) < Ba(up,). Thus, by the previous
results of convergence, we have P < ,uﬁw and p,, , < iz ,, which is equivalent to

say that the regular and the singular parts verify this comparison result. From this,
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we deduce that ., T pt in My(0€) as m — oo. Indeed, let .} : B(9Q) — [0, oq]
defined by g} (A) = lim py (A) < co. Here B(0R) denotes the set of Borel sets of
09Q. Note that u is a Radon measure. We have

n

[ITamyrag| = sup (t = 1) (E)
| o = [; | ]

n

= Z [M:ﬁn(Ez) - /”L;Li_(EZ)}

1=1

= i (09) — 11, (09)
— 0 as m — o0,
where (E;); denotes finite partition of 9€2. We applied the same methods to show that

wh | ut as n — oo. Note that we get the same results for the negative parts, and

this concludes the proof of Step 2.

Step 3: The pseudo-monotonicity argument.
Recall that u,,, satisfies, for all ¢ € WP(Q) N L>=(),

1 1
/ a(ttmm Dumn) - Do+~ [ Aut, o — - / A o
Q m Jaq ’ n Joq ’
- / (Fann — thmn) o — / i (4.9)
Q o0

Since T () is bounded in WP(Q2), then thanks to the growth assumption (Hj),
there exists a vector fields x; € (Lp'(Q))N such that a(Tk(umn), DTk(tmn)) — Xk
weakly in (Lp’(Q))N as m,n — oo, for all k € N*. The aim is to prove, via the
pseudo-monotonicity argument, that div x; = div a(Ty(u), DT;(u)) in D'(2). To this
end, we define for [ < k, the following integral

I = /Q [a(Tk(umm% DTk(umv")) o a(Tk(uml’"/)’ DTk(uml’n/))}

D,—rl (Tk (um,n) - Tk (um’,n’))a

which, defining the sets A; ;, = {|umn| <k, |Up | < k}, Ao = {Jtmn| <K, [t | >
k}, Ask = {|umn| > k|t | < k} and Ay = {Jtmn| > &, |t | > k}, can be

written as

/ [a(um,nu Dum,n) - a(um’,n’a Dum’,n’)} D,—rl (um,n - um’,n’)
Atk

+/ [a(um,nu Dum,n) - (Z(Tk (um’,n’)u O>:| Dﬂ (um,n - Tk (um’,n’))
A

2,k

"‘/ [a(um’,n’a Dum’,n’) - a(Tk(um,n)7 0)] 'D,—rl(um’,n’ - Tk(um,n)>
A

3,k

= Il +IQ—|—[3.
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We want to pass to the limit in 7, in the following order, with m’,n’ — oo, m,n — o

and then | — 0. Note that the term I; can be written as

/ [a(um,n, Dt 1) — @y Dum/,n/)} - DT (U — Ut )
Q
— / [a(tmny Dtims) — a(Ums s Dty )]+ DT3 (U — Ut )
Aok
— / [a(um,n, Dt 1) — a(Upy Dum/,nf)} - DT} (i — Uy )
As g
— / [a(um,n, Dt 1) — a(Upy Dum/,nf)} - DT} (i — Uy )
Ay
L op_p_p_p
Choosing Tj(tUm,n — Um/ ) as a test function in (4.9) and Tj(upy v — Um,) in the
equation corresponding to the solution u,, ,/, adding both equalities, using the fact

that U, Uy — w ae. i Q) frn, forw — f 0 LNQ), flnn, s s — o strongly
in My (9Q) and [, |=A(u}, ) — 2A(u;,,)| is bounded uniformly on m, n, we get

lim lim lim I} =0.

1—0 m,n—o0 m/,n'—o0

By assumptions (H;) and (H,), Holder’s inequality and (4.6)

Il2 2 / [a(um,n> Dum’,n’) - a(um’,n’a Dum’,n’)] 'Dﬂ(um,n - um’,n’)
A

2.k

Z - }a(um,rn Dum’,n’) - a(um’,n’a Dum’,n’) } ‘D(um,n - um’,n’)
F1
! / / l/pl
> = [ 27 Clltmal, [ttt = e P (14 Dt )]
T
1/p
X |: |D(um,n - um’,n’)‘p:|
F1
> (i,
where Fi = {|umn| < k|| < 2k, |Upmpn — Uy | < 1} and C is a constant

depending on f,p and k. Clearly %im lim lim I? > 0. By the same methods,

—0 m,n—o0 m’,n’—oo

lim lim  lim I} > 0. Now, let us show that lim lim  lim [} = 0.

1—0 m,n—oo m/,n'—o0 1—0 m,n—oom/ ,n’'—oo

Define the function A, by

i (r) 0 if |r| <k
T =
‘ r— ksign(r) if |r| > k.
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Then I} is equal to

/ [a(um,nu Dum,n) - a(um’,n’a Dum’,n’)] Dﬂ(hk(um,n) - hk (um’,n’))
Q
- / [a(um,nv Dum,n) - a(um’,n’v Dum’,n’)} : Dﬂ(_hk (um’,n’)>
Az i

- / [a(um,nv Dum,n) - a(um’,n’v Dum’,n’)} : Dﬂ(hk(um,n>>
A3k

= Kl —Kg—Kg.

(4.10)

Asin I}, we prove that lim lim  lim Kj = 0 by using T} (hx(wmn) — bkt ) as

[—0 m,n—oo m/ ,n'—oo

a test function in the equations corresponding to the solutions w,, , and . Note

that, by using 7;(hx(tm,n)) as a test function in (4.9) and a similar technics as in the

proof of (4.5), it follows
[ DT < i,
Q

where C' is a constant depending only on f and k.

Now, by Holder’s inequality

pel
< [ ol D) = s Dt ) [ DTt )
{|u77la"‘<k7‘um/,n/|2k7|hk(um/,n/)‘<l}
vl
S [/ |a(um,n7 Dum,n) — a(um’,n’v Dum’,n’) |p
{|um,n|<k7|um/’n/|<2k‘}
1/p
<[ [ 10Tk )]
Q
Thus, clearly assumption (H3), (4.6) and (4.11) yield
}ing lim llim Ky =0.
Similarly, %irré lim  lim K3=0.
Consequently, combinihg all limits in (4.10), we get
}ing lim  lim I} =0
and therefore
%in& lim /lim I, <0.
Now, consider the term I;. We remark that
[2 == / [a(um,nu Dum,n) - a(um,nv 0)] : Dﬂ (um,n - Tk(um’,n’))
Az i

—i—/A [a(um,n, 0) — a(Ty(wms ), 0)] - DT (o — T (U 7))

= L+

(4.11)
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Assumption (H,), Holder’s inequality and (4.6) yield

3] < FC(\um,n\a\um',n'\)\Tk(um,n)—Tk(um',n')HDTk(um,n)\
2
1/p’

/

= C[/ ‘Tk(um,n) - Tk(um/,n/)|p ,
{|Tk(um,n)—Tk(u ’ ,)|<l}

m’,n

where Fy := {|umn| <k, |Uprn| < 2k, |Ti(mn) — Tk(Un n)| < 1}. Hence, obviously
lim lim lim I =0.

Assumption (Hs) ensures us that I; > 0. On the other hand
121 S / [a(um,n> Dum,n) - a(um,na O):| : Dum,n~
{k=I<|um,n|<k}

Now taking Tj(wmn) — Th—i(tmn) as a test function in (4.9), using the mono-
tonicity of A, assumption (Hs) and the a.e. convergence u,,, — u as m,n — oo,
imply that the limit of the right hand side of the last inequality is non positive, thus
[ i T2 = O

An analogous decomposition and estimates can be applied to I3. Thus combining

all limits yields
lim lim lim 7 <0. (4.12)

[—0 m,n—oo m/ n'—oo

Now, thanks to this limit we are going to prove that div a(Tyu, DTju)
= div x; in D'(2). Let p € W'P(Q), using the limit (4.12), we have

2/xk-D<p
Q

lim lim lim

[—0 m,n—o00 m/,n’—oo

[ ). DTy 00,0) - DT )~ Tat) 49

Tk (um,n) =Tk (w0 )| <U}

A%

+ /{a(Tk(umvn),DTk(Um,n)) Dy

‘Tk(u”’b’n)_Tk (um’,n’)|>l}

n / (Tt )s DTt ))- DTty ar) — Ti(ttmn) + )
{

| Tk (um,n ) =Tk (w0 )| <U}

+ /{Q(Tk(um’,n’)v DTk(um/7"l)) ' DSO]

‘Tk(u”’b’n)_Tk (um’,n’)|>l}

= J1+J2+J3—|—J4. (413)

We start with Jo. As a(T(tmn), DT%(Um,n)) is bounded in (LP’(Q))N, Holder’s
inequality applied to J, implies

il <cf [ D
UTk (um,n) =Tk (W )| >1}

1/p
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Using Dominated Convergence Theorem and the fact that T} (wy ) — Tk (u) a.e. in

Q, we get lim lim  lim Jy, = 0. Analogously, we have also

[—0 m,n—o0 m/,n'—oo

lim lim lim Jy=0.

l—0 m,n—oom/ ,n'—oo

Now, we treat the term J; by using hypotheses (H;) and (Hj), the fact that
DTy (tmn) = DTy(u) weakly in LP(2) and Ty (tmn) — Ti(u) a.e. in ©Q as m,n — oo.
Indeed

lim lim lim J;

1—0 m,n—oo m/,n’—oo

> lim lim [ a(Tk(tumn), D(Ti(w) — @) D(Tk(tmn) — Te(u) + ¢)

I=0mn=00 J 1, (uy )T (u)| <1}
> / a(Ti(u), D(Ty(u) - ¢)) - De.
Q

Now, we remark that the term J3 can be written as

/{ (Tt ), DTt ) - DTt ) — Tiltt) + 0)

Tk (wm,n) =Tk (U )<L}
+/ a(Ty (s )y DT (s ) - D(Th(w) — Th (i)
{ITk (um,n) =Tk (s ) I<U}
=: Jé + Jg.

By means of assumption (H;) and Dominated Convergence Theorem we have

lim lim  lim J;

l—0 m,n—o0 m/,n'—o0

v

lim lim lim

[—0 m,n—ocom/ ,n'—oo

/{ 0T ), DO ) DThlt) i) )

(wim,n) =Tk (U )I<U}
> [ afiw. DT ) - Dy
On the other hand, since
(Tt ), DTt ) = X
weakly in (Lf”,(Q))N and DTy () — DTy (u) weakly in
LP(©2) as m,n — oo,

lim lim lim J; =0.

[—0 m,n—o0 m/,n'—oo

Combining together all limits in (4.13), we obtain

2 / Yi Dy > 2 / a(Ty(w), D(Ti(w) - ¢)) - Dy, (4.14)
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Taking ¢ = t¢ where ( € D(QQ) and t € R, dividing this inequality by ¢t > 0,
resp., t < 0, passing to the limit with ¢ | 0, resp., ¢ T 0, yields fQ Xt - D¢ =
Jo a(Ti(u), DTy (u)) - D¢ for all ¢ € D(Q2) and the result follows.

Step 4: Passage to the limit in Equation (4.9).

Taking ¢ = S(ty,, — @) as a test function in (4.9), where S € P and ¢ € WP(Q)N
L>(Q2), and define [ := ||¢|| , + max{|z|, z € Supp(S’)}.

Let us pass to the limit with m,n in each term. Consider the first integral, using

the monotonicity assumption on a we get
[t Dlt)) - DSt = )
Q
~ [ i), DTi(0) - DSt = )
Q

= [ (0l 0). DTi10)) = aTi). DTi(w))
D(Ti(ttmn) — T(4))S (tm — 0)
+ [ o). DTi(1)) - DTS (= )
+ [ Tiuma). DTw) - DT tn) = Tow)S i — )
~ [ alTiCu). DTiC0)) - DS (= )

/Q a(Ty (), DTyt n)) - DTy () (1t — )

n / a(Ti(ttmn). Do) - D(Ti(ttsn) — Ti(w))S (tn — 0)

v

~ [ (i) DTt - DOS (= 0, (4.15)

As S (umn — @) — S'(u— ¢) ae. in Q, DTi(up,) — DTi(u) weakly in WP(Q),
Ti(umyn) — Ti(uw) ae. in Q and a(T}(wmy), D1 (tUmy,)) — xi as m,n — 00, we get
after passing to the limit in (4.15) with m,n — oo

lim [ a(Ti(umn), DTi(tUmn)) - DS(tmn = ¢)

m,n—0o0 [

/Q vt DTi(w)S'(u — 6) — /Q xi - DS (u— ¢)

= /erDS(u—cb).

v

Consequently, we have

lim a(um,n, Dum,n) . DS(um,n - ¢)

m,n—0o0 [

> /Qa(u, Du) - DS(u — ¢). (4.16)
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By Dominated Convergence Theorem, we get

im [ (fon — ) St n — ) = /Q (F — u)S(u— 0). (4.17)

m,n—o0 [

Now note that

% At )5 (U = 9) = % /8 A() (07,0 0)
o (M)~ A@)S (- 0)
o [ Al = A8, - 0
* % mA(@f’)S(UI@,n —¢) — % /EjQA(cb)S(UL,n — ). (4.18)

The two first integrals of (4.18) are nonnegative while the two last converge to zero

as m,n — oo.

To complete the proof, it remains to show that p verifies (4.1), (4.2) and

lim S(Umpn — O)dpimn = S(u— ¢)du. (4.19)
mn—o0 Ja 20

We know from the proof of Theorem 3.1 (part i) that iy, € 0F (Um.,), thus
(,um,n)r € 0j(-, Umn) + 8[{777«”}(1/””,”).

AS Uy — wae. on Q and ||(fmn), — Mr||L1(aQ) < |lptmon _“”Mb(am — 0 as
m,n — oo, then

pr € 07(-,u) + 8[[%7W](u).
On the other hand, we have

/a (f}/-‘r - am,n)d(um,n): =0 and / (7— - ﬁ'mv")d(’umm)s_ - 0’
9]

o0
which is equivalent to say that

U = Vo /— (,um,n):/_ — a.e. on 0f).

Thus, again as u is finite in the sense q.e. on 0 and, moreover, (fmn), — Hs in

M,(09) as m,n — oo, we get

| = =0, [ (o= a)du; =0
o0 o0

which is equivalent to

AS Uy, — wace. on Q and fiy, , — p strongly in M, (052), it is easy to see that (4.19)
holds.
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Finally, collecting together all the limits (4.16)-(4.19), we conclude that

/Q au, Du) - DS(u— )+ [ S(i— d)du < / (f —w)S(u - &)

o0

Taking S as an approximation of T}, we get the desired entropy inequality . Therefore,
we have shown that, for all f € L™(Q), (I + Apn) ' f converges in L'(Q) to an
entropy solution of the problem (E)(f), hence liminf A4,,,, C A. For the inverse

inclusion, we refer to the step below.

Step 5: The accretivity of A.

To prove the accretivity of A, we must show that

[ o=z [17-4 (4.20)

where f € w+ Aw, g € v + Av.

Observe that w = lm wy,, and v = lm wv,, in L'(Q), where w,,, =

(I+Am7n)_1f and vy, = (I+Am7n)_1g. Indeed, taking ¢ = wp,, and ¢y =

2T (Wi — Ti(w)), where | > |[wmnll, + h+ 1, as test functions in the inequali-

ties corresponding to the solutions w and w,, , respectively, adding both inequalities,
passing to the limit first with A~ — 0 and | — oo, then with m,n — oo, we get the
result.

We have shown in Theorem 3.1 that the operator A,, , is accretive, i.e. fQ [ W= Umn| <

Jo If —gl. Since [, |w —v| < [, |w = Wnnl + [o [ Wnn — Vmnl + o |Vnmn — v], (4.20)
follows.

Step 6: D(A) is dense in L'(Q).
For this, we show that L>(Q) C D(A)”'HI. Let u € L>*(€). Consider uj, ,, and
Uy, @ > 0 such that

Upy,p + CAm Uy, DU, Ug + AUy D U, (4.21)

We know from Theorem 3.1 that D(A,,,) is dense in L'(2), then for all m > 0

and n > 0 we have v, , — u in L'(Q) as a — 0. We show now that u, ,, — uq in

«
m,n?

L'(€) as m,n — oo. To this end, taking $7;(ug, ,, — uq), respectively ug, ., as a test

function in the entropy formulation of the problems defined in (4.21), adding both
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inequalities, we get for all [ > 0

1
7/( (U s Dy, ) — (e, Dug)) - DTi(ugy, , — ta)
Q
+ Ay )T (s, ) 1/ Aug: ) T (ugy )
u,’ U —Uy) — — U, (% — Uq
lm 00 m,n l m,n ln 00 m,mn l m,m

= [T e (4.22)

Using assumptions (H;) and (H,) we have

1 «
j/9< a(u, ., DuS,.) = altia, Dug)) - DT (S, — ug)

1
> 7 [ (@5 D) ol D ) DT, )
Q

1 o a -1 «
> = [ CUNM Dl = 00l D505 = )

— 0 asl —0,

where F' := {|u,| < ||u + 1} N {[us, ,, — ua| < I}. Noticing that the two last
integrals in the right hand s1de of inequality (4.22) are nonnegative. Indeed these
integrals can be written as [, Ty (a%, , —a) (1% )r — (Ha)r) F Lo Ti(V—Ta) (1% )+

faQ _le(f}/—_ ﬂa)(:u%n s _'_faﬂ ﬂ mn 7+>(/~La _'_faQT} mn_7—>(ﬂa>S_7 which
are, clearly, nonnegative by properties of the measures and 7, ,_. Thus, after passing

to the limit in (4.22) with [ — 0, we get

/|umn ua|<—/ A+ /|A

—Uall, — 0 as myn — oo. Since [lug —ull, < |lua—up,,ll,
FaYariLh ||1

O

monll oo

«

Therefore, ||us,

[ug,n — ull, = 0 as a— 0 and m,n — oo we deduce that u € D(A)

Corollary 4.1. Under the assumptions of Theorem 4.1, we have existence and unique-

ness of entropy solution for the problem (E)(f).

Remark 4.2. By the Nonlinear Semigroup Theory, it is possible to solve in the mild

sense the evolution problem

d
d—?+Au—f u(0) = ug

for all ug € LY(Q), f € L*(0,T; L*(Q)), which transcribes the following problem
—div a(u, Du) = f in Qx(0,7)
—<CL(U, Du)>n> S 6(.’17,1&) on 0§ x (OaT)
u(0) = ug in Q.
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In a forthcoming paper, the existence and uniqueness of entropy solutions of the above

problem will be considered.

Remark 4.3. It is an open problem how to prove directly a comparison principle

for entropy solutions without using the approximation method.

5. CONCLUSION

Note that assumption (H,) is used to prove uniqueness of entropy solutions. The
condition is not optimal. In fact, it is sufficient to assume that a satisfies some
Holder type continuity and a certain growth restriction in r instead (see Andreianov
and Bouhssis [5]). However, it is not the purpose of this paper to present the weakness
assumptions possible on a. In this paper we focus on the boundary condition. Our
ailm was to show which solution concept is suited for a nonlinear elliptic problem with
general nonlinear boundary conditions in (E)(f).

An interesting problem is to study the same problem with u replaced by ~(u)
and with the same nonlinear boundary conditions. The case where v is continuous
non-decreasing corresponds to the stationary problem associated with the elliptic-
parabolic evolution problem arising as a model of fluid flow through porous media.
In this type of problems, from the view point of applications, it is essential to study
general nonlinear boundary conditions. The more general case where v is a multi-
valued monotone graph corresponds to a Stefan problem arising in applications in
presence of phase transitions. The linear case with a(u, Du) = Du and the boundary
condition u, + B(u) 3 0 on 0L2, § a maximal monotone graph, has already been stud-
ied in Bénilan et al [15]. In this case, some extra compatibility conditions on /3 and ~y
are necessary in order to get existence of a solution. In the linear case considered in
Bénilan et al [15] these compatibility conditions include in particular the assumptions
D(x) N D(B) # B and D(v) N 57(0) # 0.

Recently, Andreu et al [6], have studied the problem

y(u) —div a(z,Du) 3¢ in €,
—a(z,Du) -n+ F(u) 3¢ on 09,

where 7, 3 are maximal monotone graphs in R? such that 0 € v(0) and 0 € 3(0), and
¢ e LY ),y € LY(0N).

They prove existence and uniqueness of weak and entropy solutions for this prob-
lem. As in Bénilan et al [15], a range condition relating the average of ¢ and ¢ to
the range of 3 and ~ are necessary for existence of weak and entropy solutions.

In a forthcoming paper, we will generalize their works to the case where the operator

a depends on u and the graphs 3 and + depend on the space variable x.
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