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1. INTRODUCTION

This paper is concerned with the existence of fuzzy solutions for initial value

problems for first and second order ordinary differential equations with impulsive

effects. We consider the first order initial value problem (IVP for short)

(1.1) y′(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . , m,

(1.2) y(t+k ) = Ik(y(t
−
k )), k = 1, . . . , m,

(1.3) y(0) = a ∈ En,

where we let En is the set of fuzzy real numbers and f : J × En → En, Ik : En →

En, k = 1, . . . , m are given functions, t0 = 0 < t1 < . . . < tm < tm+1 = T, a ∈ En

and y(t−k ) and y(t+k ) represent the left and right limits of y(t) at t = tk, respectively.

We also study the second order IVP

(1.4) y′′(t) = f(t, y(t)), t ∈ J := [0, T ], t 6= tk, k = 1, . . . , m,

(1.5) y(t+k ) = Ik(y(t
−
k )), k = 1, . . . , m,

(1.6) y′(t+k ) = Ik(y(t
−
k )), k = 1, . . . , m,

(1.7) y(0) = a, y′(0) = b,
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where f, Ik, and a are as in the problem (1.1)–(1.3), Ik : En → En and b ∈ En.

Differential equations with impulses are a basic tool to study evolution processes

that are subjected to abrupt changes in their state. Such equations arise naturally

from a wide variety of applications, such as space-craft control, inspection processes

in operations research, drug administration, and threshold theory in biology. See the

monographs of Benchohra et al. [10], Lakshmikantham et al. [24], and Samoilenko

and Perestyuk [38].

Kandel and Byatt [17] introduced the concept of fuzzy differential equations.

Later it was applied in fuzzy processes and fuzzy dynamical systems. Until now,

there are many works on fuzzy differential equations, see for instance, the monograph

of Lakshmikantham and Mohapatra [26] and the references therein, and the papers

[1, 3, 4, 5, 6, 11, 18, 29, 33, 39]. Lakshmikantham and Tolstonogov [28] (see also [23])

showed the connection between the solutions of fuzzy differential equation and the

set differential equation that is generated from it. Park et al studied fuzzy differential

equations with nonlocal conditions [34]. Recently, Lakshmikantham and McRae [25]

have initiated the study of fuzzy impulsive differential equations, see also the paper

by Vatsala [41].

There are several approaches to defining a solution for a fuzzy differential equa-

tion: Hukuhara approach [18, 20, 29], Differential Inclusions [16, 37], Quasiflows and

Differential Equations in metric spaces [22, 27]. Other approaches can be found in

[9, 12].

There are not too many papers on impulsive fuzzy differential equations, but

some basic results on impulsive fuzzy differential equations can be found in [40, 15,

25, 30, 41].

For recent works on fuzzy differential equations, we refer, for instance, to [2, 7,

8, 13, 20, 30, 32, 35].

In this paper we study the existence of fuzzy solutions for impulsive differential

equations. Our approach relies on the absolute retract fixed point theorem [14]. Our

results complement the few existence results devoted to impulsive fuzzy differential

equations.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which

are used throughout this paper. In the following CC(Rn) denotes the set of all

nonempty compact, convex subsets of R
n. Denote by

En = {y : R
n → [0, 1] such that satisfies (i) to (iv) mentioned below},

(i) y is normal, that there exists an x0 ∈ R
n such that y(x0) = 1;
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(ii) y is fuzzy convex, that is for x, z ∈ R
n and 0 ≤ λ ≤ 1,

y(λx+ (1 − λ)z) ≥ min[y(x), y(z)];

(iii) y is upper semi-continuous;

(iv) [y]0 = {x ∈ Rn : y(x) > 0} is compact. Here A denotes the closure of the subset

A.

For 0 < α ≤ 1, we denote [y]α = {x ∈ R
n : y(x) ≥ α}. Then from (i) to (iv), it

follows that the α−level sets [y]α ∈ CC(Rn). If g : R
n ×R

n → R
n is a function, then,

according to Zadeh’s extension principle we can extend g to En × En → En by the

function defined by

g(y, y)(z) = sup
z=g(x,z̄)

min{y(x), y(z̄)}.

If g is continuous, then it is well known that

[g(y, y)]α = g([y]α, [y]α) for all y, y ∈ En, and 0 ≤ α ≤ 1.

Especially for addition and scalar multiplication, we have

[y + y]α = [y]α + [y]α, [ky]α = k[y]α,

where y, y ∈ En, k ∈ R, 0 ≤ α ≤ 1.

Let A and B be two nonempty bounded subsets of R
n. The distance between A

and B is defined by the Hausdorff metric

Hd(A,B) = max

{
sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖

}

where ‖ . ‖ denotes the usual Euclidean norm in R
n. Then (CC(Rn), Hd) is a complete

and separable metric space [36]. We define the supremum metric d∞ on En by

d∞(u, u) = sup
0<α≤1

Hd([u]
α, [u]α)

for all u, u ∈ En. (En, d∞) is a complete metric space. Also for all u, v, w ∈ En and

λ ∈ R we have

d∞(u+ w, v + w) = d∞(u, v)

and

d∞(λu, λv) = |λ|d∞(u, v).

We define 0̂ ∈ En as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0. It is well known that

(En, d∞) can be embedded isometrically as a cone in a Banach space X, i.e. there

exists an embedding j : En → X (see also [19]) defined by

j(u) = 〈u, 0̂〉 where u ∈ En;

here 〈., 〉 is defined in [36]. Notice also that

‖〈u, v〉‖X = d∞(u, v) for u, v ∈ En,
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so in particular

‖ju‖X = d∞(u, 0̂) for u ∈ En.

The supremum metric H1 on the space of continuous fuzzy valued functions from J

into En denoted by C(J, En) is defined by

H1(w,w) = sup
t∈J

d∞(w(t), w(t)).

(C(J, En), H1) is a complete metric space. It is well known that C(J, En) is a complete

metric space. Now since j : En → C ⊂ X we can define a map J̄ : C(J, En) →

C(J,X) by

[J̄x](t) = j(x(t)) = jx(t) for t ∈ J ;

here x ∈ C(J, En) (note if x ∈ C(J, En) and t0, t ∈ J, then by definition of j we have

‖[J̄x](t) − [J̄x](t0)‖C(J,X) = sup
t∈J

‖jx(t) − jx(t0)‖ = d∞(x(t), x(t0)).

Also, it is easy to check that

J̄ : C(J, En) → J̄(C(J, En)),

is a homeomorphism. To see that J̄ is continuous let xn, n ∈ N, x ∈ C(J, En) with

H1(xn, x) = sup
t∈J

d∞(xn(t), x(t)) for n large.

Then

‖J̄xn − J̄x‖C(J,X) = sup
t∈J

‖jxn(t) − jx(t)‖ = sup
t∈J

d∞(xn(t), x(t)) → 0 for n large,

so J̄ is continuous. To see that J̄−1 is continuous let yn ∈ J̄(C(J, En)) with ‖yn −

y‖C(J,X) → 0 as n → ∞. Then there exists xn, x ∈ C(J, En) with J̄xn = yn and

y = J̄x. Thus,

H1(J̄
−1yn, J̄

−1y) = sup
t∈J

d∞(J̄−1yn(t), J̄
−1y(t))

= sup
t∈[0,T ]

d∞(yn(t), y(t))

= sup
t∈[0,T ]

‖jyn(t) − jy(t))‖X

= sup
t∈[0,T ]

‖yn(t) − y(t)‖X

→ 0 as n→ ∞,

since yn(t) = jxn(t) and y(t) = jx(t). Thus J̄−1 is continuous.

Definition 2.1. A map f : J → En is strongly measurable if, for all α ∈ [0, 1], the

multi-valued map fα : J → CC(Rn) defined by

fα(t) = [f(t)]α
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is Lebesgue measurable, when CC(Rn) is endowed with the topology generated by

the Hausdorff metric d.

Definition 2.2. A map f : J → En is called levelwise continuous at t0 ∈ J if the

multi-valued map fα(t) = [f(t)]α is continuous at t = t0 with respect to the Hausdorff

metric d for all α ∈ [0, 1].

A map f : J → En is called integrably bounded if there exists an integrable

function h such that ‖y‖ ≤ h(t) for all y ∈ f0(t).

Definition 2.3. Let f : J → En. The integral of f over J , denoted
∫ T

0
f(t)dt is

defined by the equation
(∫ T

0
f(t)dt

)α

=
∫ T

0
fα(t)dt

=
{∫ T

0
v(t)dt | v : J → Rn is a measurable selection for fα

}

for all α ∈ (0, 1].

A strongly measurable and integrably bounded map f : J → En is said to be

integrable over J, if
∫ T

0
f(t)dt ∈ En.

If f : J → En is measurable and integrably bounded, then f is integrable.

Definition 2.4. A map f : J → En is called differentiable at t0 ∈ J if there exists a

f ′(t0) ∈ En such that the limits

lim
h→0+

f(t0 + h) − f(t0)

h
and lim

h→0+

f(t0) − f(t0 − h)

h

exist and are equal to f ′(t0). Here the limit is taken in the metric space (En, Hd). At

the end points of J, we consider only the one-side derivatives.

If f : J → En is differentiable at t0 ∈ J , then we say that f ′(t0) is the fuzzy

derivative of f(t) at the point t0. For the concepts of fuzzy measurability and fuzzy

continuity we refer to [21].

Definition 2.5. A map f : J × En → En is called levelwise continuous at point

(t0, x0) ∈ J ×En provided, for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists a

δ(ε, α) > 0 such that

Hd ([f(t, x)]α, [f(t, x0)]
α) < ε

whenever |t− t0| < δ(ε, α) and Hd ([x]α, [x0]
α) < δ(ε, α) for all t ∈ J, x ∈ En.

We restate the fixed point result needed in Sections 3 and 4. Its proof can be

found in [14].

Theorem 2.6. . Let X ∈ AR and F : X → X a continuous and completely contin-

uous map. Then F has a fixed point.
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Remark 2.7. A space Z is called an absolute retract (written Z ∈ AR) if Z is

metrizable and for any metrizable space W and any embedding h : Z → W the set

h(Z) is a retract of W.

3. FIRST ORDER FUZZY IMPULSIVE DIFFERENTIAL EQUATIONS

In this section we are concerned with the existence of fuzzy solutions for problem

(1.1)–(1.3). In order to define the solution of (1.1)–(1.3) the following space will be

used:

PC = {y : [0, T ] → En : y ∈ C(Jk, E
n), limt→tk− y(t) = y(tk),

and limt→tk+ y(t) exists, k = 1, . . . , m}.

Here Jk = (tk, tk+1], k = 0, . . . , m with t0 = 0 and tm+1 = T .

Definition 3.1. A function y ∈ C1(J\{tk}, E
n) ∩ PC is said to be a solution of

(1.1)–(1.3) if y satisfies the equation y′(t) = f(t, y(t)) on J, t 6= tk, k = 1, . . . , m and

the conditions y(t+k ) = Ik(y(t
−
k )), k = 1, . . . , m and y(0) = a.

Theorem 3.2. Assume that

(H1) There exists a continuous nondecreasing function ψ : [0,∞) −→ (0,∞) and a

continuous function p : J → R+ such that

d∞(f(t, y), 0̂) ≤ p(t)ψ(d∞(y, 0̂)) for t ∈ J and each y ∈ En

with
∫ tk+1

tk

p(s)ds <

∫ T

d∞(Ik(y(tk)),b0)

du

ψ(u)
, k = 0, . . . , m and I0 = a;

(H2) For each t ∈ Jk, k = 0, . . . , m the set

{
Ik(y(tk)) +

∫ t

tk

f(s, y(s))ds : y ∈ Ak

}
,

is a totally bounded subset of En, where

Ak = {y ∈ C(Jk, E
n) : d∞(y(t), 0̂) ≤ ak(t), t ∈ Jk},

ak(t) = M−1
k

(∫ t

tk

p(s)ds

)

and

Mk(z) =

∫ z

d∞(Ik(y(tk)),b0)

du

ψ(u)
.

Then the IVP (1.1)-(1.3) has at least one fuzzy solution on [0, T ].

Proof. We shall proceed on each subinterval [tk, tk+1], k = 0, . . . , m. The proof

will be given in several steps.
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Step 1: Consider the following problem

(3.1) y′(t)) = f(t, y(t)), t ∈ [0, t1],

(3.2) y(0) = a ∈ En.

Transform the problem (3.1)–(3.2) into a fixed point problem. Consider the operator

N : C([0, t1], E
n) → C([0, t1], E

n) defined by:

N(y)(t) = a+

∫ t

0

f(s, y(s))ds.

Let

A0
∼= B0 ≡ {J̄y ∈ C(J0, E

n) : y ∈ C(J0, E
n) and d∞(y(t), 0̂) ≤ a0(t), t ∈ J0}.

Clearly, B0 is a convex subset of the Banach space C(J0, X), so in particular B0 is

an absolute retract. As a result A0 is an absolute retract. We shall show that the

operator N maps A0 into A0 and is continuous and completely continuous.

Claim 1: N : A0 → A0

Let y ∈ A0 and t ∈ [0, t1]. From (H2) we have

d∞(Ny(t), 0̂) ≤ d∞(Ny(t), Ny(0)) + d∞(a, 0̂)

= d∞

(∫ t

0

f(s, y(s))ds, 0̂

)
+ d∞(a, 0̂)

≤

∫ t

0

d∞(f(s, y(s)), 0̂)ds+ d∞(a, 0̂)

≤

∫ t

0

p(s)ψ(d∞(y(s), 0̂))ds+ d∞(a, 0̂)

≤

∫ t

0

p(s)ψ(a0(s))ds+ d∞(a, 0̂)

=

∫ t

0

a′0(s)ds+ d∞(a, 0̂) = a0(t),

since ∫ a0(t)

d∞(a,b0)

du

ψ(u)
=

∫ t

0

p(s)ds.

Claim 2: N is continuous.

Let {yn} ∈ A0 be a sequence such that yn → y ∈ A0 in C([0, t1], E
n).

H1(Nyn(t), Ny(t)) = H1

(
a+

∫ t

0

f(s, yn(s))ds, a+

∫ t

0

f(s, y(s))ds

)

≤

∫ t

0

H1(f(s, yn(s)), f(s, y(s)))ds.
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Hence

H1(Nyn, Ny) ≤

∫ t1

0

H1(f(s, yn(s)), f(s, y(s)))ds.

Let

ρn(s) = d∞(f(s, yn(s)), f(s, y(s))).

Since f is continuous then

ρn(t) → 0 as n→ ∞ for t ∈ [0, t1].

From (H2) we have that

ρn(t) ≤ d∞(f(t, yn(t), 0̂) + d∞(0̂, f(t, y(t))

≤ p(t)[ψ(d∞(yn(t), 0̂)) + ψ(d∞(y(t), 0̂))]

≤ 2p(t)ψ(a0(t)).

As a result

lim
n→∞

∫ t1

0

ρn(s)ds =

∫ t1

0

lim
n→∞

ρn(s)ds = 0.

Then

H1(Nyn, Ny) → 0 as n→ ∞.

Thus N : A0 → A0 is continuous.

Claim 3: N(A0) is an equicontinuous set of C([0, t1], E
n) .

Let l1, l2 ∈ [0, t1], l1 < l2, and let y ∈ A0. Then

d∞(Ny(l2), Ny(l1)) = d∞

(
a+

∫ l2

0

f(s, y(s))ds, a+

∫ l1

0

f(s, y(s))ds

)

= d∞

(∫ l2

0

f(s, y(s))ds,

∫ l1

0

f(s, y(s))ds

)

= d∞

(∫ l2

l1

f(s, y(s))ds, 0̂

)

≤

∫ l2

l1

d∞(f(s, y(s), 0̂)ds

≤

∫ l2

l1

p(s)ψ(d∞(y(s), 0̂))ds

≤

∫ l2

l1

p(s)ψ(a0(s))ds

=

∫ l2

l1

a′0(s)ds = a0(l2) − a0(l1).

As a consequence of Claims 1 to 3 and (H2) together with the Arzela-Ascoli theorem

we can conclude that N : A0 → A0 is continuous and completely continuous and by

Theorem 2.6 N has a fixed point y1 which is solution of the problem (3.1)–(3.2).
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Step 2: Consider now the following problem

(3.3) y′(t) = f(t, y(t)), t ∈ [t1, t2],

(3.4) y(t+1 ) = I1(y1(t1)).

Consider the operator N1 : C([t1, t2], E
n) → C([t1, t2], E

n) defined by:

N1(y)(t) = I1(y1(t1)) +

∫ t

t1

f(s, y(s))ds.

Set

A1
∼= B1 ≡ {J̄y ∈ C(J1, E

n) : y ∈ C(J1, E
n) and d∞(y(t), 0̂) ≤ a1(t), t ∈ J1}.

Clearly, B1 is a convex subset of the Banach space C(J1, X), so in particular B1

is an absolute retract. As a result A1 is an absolute retract. Now we prove that

N1(A1) ⊂ A1. Let y ∈ A1, then

N1y(t) = I1(y1(t1)) +

∫ t

t1

f(s, y(s))ds for t ∈ J1.

From (H2) we have

d∞(N1y(t), 0̂) ≤ d∞

(
N1y(t), Ny(t1)) + d∞(I1(y1(t1)), 0̂

)

= d∞

(∫ t

t1

f(s, y(s))ds, 0̂

)
+ d∞(I1(y(t1)), 0̂)

≤

∫ t

t1

d∞(f(s, y(s)), 0̂)ds+ d∞(I1(y1(t1)), 0̂)

≤

∫ t

t1

p(s)ψ(d∞(y(s), 0̂))ds+ d∞(I1(y1(t1)), 0̂)

≤

∫ t

t1

p(s)ψ(a1(s))ds+ d∞(I1(y1(t1)), 0̂)

=

∫ t

t1

a′1(s)ds+ d∞(I1(y1(t1)), 0̂),

=

∫ t

t1

a′1(s)ds+ a1(y1(t1)) = a1(t),

since ∫ a1(t)

d∞(I1(y1(t1)),b0)

du

ψ(u)
=

∫ t

t1

p(s)ds.

As in Step 1 we can show that N1 is continuous and completely continuous and by

Theorem 2.6 we deduce that N1 has a fixed point y2 which is a solution to problem

(3.3)–(3.4).
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Step 3: We continue this process and take into account that ym := y
∣∣∣
[tm,T ]

is a

solution to the problem

(3.5) y′(t) = f(t, y(t)), t ∈ (tm, T ),

(3.6) y(t+m) = Im(ym−1(t
−
m)).

The solution y of the problem (1.1)-(1.3) is then defined by

y(t) =





y1(t), if t ∈ [0, t1],

y2(t), if t ∈ (t1, t2],

...

ym(t), if t ∈ (tm, T ].

4. SECOND ORDER FUZZY IMPULSIVE DIFFERENTIAL

EQUATIONS

In this section we give an existence result for the IVP (1.4)–(1.7).

Definition 4.1. A function y ∈ C2(J\{tk}, E
n) ∩ PC is said to be a solution of

(1.4)–(1.7) if y satisfies the equation y′′(t) = f(t, y(t)) on J, t 6= tk, k = 1, . . . , m

and the conditions y(t+k ) = Ik(y(t
−
k )), y′(t+k ) = Ik(y(t

−
k )), t = tk, k = 1, . . . , m and

y(0) = a, y′(0) = b.

Theorem 4.2. Assume that the conditions

(A1) There exists a continuous non-decreasing function ψ : [0,∞) −→ (0,∞) and a

continuous function p : J → R+ such that

d∞(f(t, y), 0̂) ≤ p(t)ψ(d∞(y, 0̂)) for a.e. t ∈ J and each y ∈ En

and Mk > 0, k = 0, . . . , m (I0 = a, Ī0 = b) with

Mk

d∞(Ik(y(tk)) + (tk+1 − tk)Īk(y(tk)), 0̂) + ψ(Mk)
∫ tk+1

tk
(tk+1 − s)p(s)ds

≥ 1,

(A2) For each t ∈ Jk, k = 0, . . . , m, the set

{
Ik(y(tk)) + (t− tk)Īk(y(tk)) +

∫ t

tk

(t− s)f(s, y(s))ds) : y ∈ Ak

}
,

is a totally bounded subset of En, where

A∗
k = {y ∈ C(Jk, E

n) : d∞(y(t), 0̂) ≤Mk, t ∈ Jk}

are satisfied. Then the IVP (1.4)-(1.7) has at least one fuzzy solution on J.
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Proof. The proof will be given in several steps.

Step 1: Consider the following problem

(4.1) y′′(t) = f(t, y(t)), t ∈ [0, t1],

(4.2) y(0) = a, y′(0) = b.

Transform the problem (4.1)–(4.2) into a fixed point problem. Consider the operator

N∗ : C([0, t1], E
n) → C([0, t1], E

n) defined by:

N∗y(t) = a+ bt +

∫ t

0

(t− s)f(s, y(s))ds.

Let

A∗
0 = {y ∈ C(J0, E

n) : d∞(y(t), 0̂) ≤M0, t ∈ J0}

Clearly, A∗
0 is a convex subset of the Banach space C(J0, E

n), so in particular A∗
0 is

an absolute retract. We shall show that the operator N∗ maps A∗
0 into A∗

0 and is

continuous and completely continuous.

Claim 1 N∗ : A∗
0 → A∗

0

Let y ∈ A∗
0 and t ∈ [0, t1]. From (A1) we have

d∞(N∗y(t), 0̂) ≤ d∞(N∗y(t), N∗y(0)) + d∞(a+ tb, 0̂)

= d∞

(∫ t

0

(t− s)f(s, y(s))ds, 0̂

)
+ d∞(a+ tb, 0̂)

≤

∫ t

0

(t− s)d∞(f(s, y(s)), 0̂)ds+ d∞(a + tb, 0̂)

≤

∫ t

0

(t− s)p(s)ψ(d∞(y(s), 0̂))ds+ d∞(a+ tb, 0̂)

≤ ψ(M0)

∫ t1

0

(t1 − s)p(s)ds+ d∞(a + t1b, 0̂)

≤ M0.

So, N∗(A
∗
0) ⊂ A∗

0.

Claim 2: N∗ is continuous.

Let {yn} ∈ A∗
0 be a sequence such that yn → y ∈ A∗

0 in C([0, t1], E
n).

H1(N∗yn(t), N∗y(t)) = H1

(
a+ tb +

∫ t

0

(t− s)f(s, yn(s)ds, a+ tb +

∫ t

0

f(s, y(s))ds

)

≤

∫ t

0

(t− s)H1(f(s, yn(s)), f(s, y(s))ds.
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Hence

H1(N∗yn, N∗y) ≤ t1

∫ t1

0

H1(f(s, yn(s)), f(s, y(s)))ds.

Let

ρn(s) = d∞(f(s, yn(s)), f(s, y(s))).

Since f is continuous then

ρn(t) → 0 as n→ ∞ for t ∈ [0, t1].

From (A1) we have that

ρn(t) ≤ d∞(f(t, yn(t), 0̂) + d∞(0̂, f(t, y(t)))

≤ p(t)[ψ(d∞(yn(t), 0̂)) + ψ(d∞(y(t), 0̂))]

≤ 2p(t)ψ(M0).

As a result

lim
n→∞

∫ t1

0

ρn(s)ds =

∫ t1

0

lim
n→∞

ρn(s)ds = 0.

Then

H1(N∗yn, N∗y) → 0 as n→ ∞.

Thus N∗ : A∗
0 → A∗

0 is continuous.

Claim 3: N(A∗
0) is an equicontinuous set of C([0, t1], E

n) .

Let l1, l2 ∈ [0, t1], l1 < l2, and let y ∈ A∗
0. Then

d∞(N∗y(l2), N∗y(l1)) = d∞

(
a+ l2b+

∫ l2

0

(l2 − s)f(s, y(s))ds, a+ l1b

+

∫ l1

0

(l1 − s)f(s, y(s))ds

)

= d∞

(
l2b +

∫ l2

0

(l2 − s)f(s, y(s))ds, l1b

+

∫ l1

0

(l1 − s)f(s, y(s))ds

)

= d∞

(
(l2 − l1)b+

∫ l1

0

(l2 − l1)f(s, y(s))ds

+

∫ l2

l1

(l2 − s)f(s, y(s))ds, 0̂

)

≤ (l2 − l1)d∞(b, 0̂) +

∫ l1

0

(l2 − l1)d∞(f(s, y(s)), 0̂))ds

cr +

∫ l2

l1

l2d∞(f(s, y(s)), 0̂))ds
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≤ (l2 − l1)d∞(b, 0̂) +

∫ l1

0

(l2 − l1)d∞(f(s, y(s)), 0̂)ds

+

∫ l2

l1

l2p(s)ψ(y(s), 0̂))ds

≤ (l2 − l1)d∞(b, 0̂) +

∫ l1

0

(l2 − l1)p(s)ψ(M0)ds

+

∫ l2

l1

l2p(s)ψ(M0)ds.

= ψ(M0)

∫ l1

0

(l2 − l1)p(s)ds+ ψ(M0)

∫ l2

l1

l2p(s)ds

+ (l2 − l1)d∞(b, 0̂).

As a consequence of Claim 2 and (A2) together with the Arzela-Ascoli theorem we

can conclude that N∗ : A∗
0 → A∗

0 is continuous and completely continuous and by

Theorem 2.6 N∗ has a fixed point y1 which a solution of the problem (4.1)–(4.2).

Step 2: Consider now the following problem

(4.3) y′′(t) = f(t, y(t)), t ∈ [t1, t2],

(4.4) y(t+1 ) = I1(y1(t1))

(4.5) y′(t+1 ) = Ī1(y1(t1)).

Let the operator N ∗ : C([t1, t2], E
n) → C([t1, t2], E

n) defined by:

N ∗y(t) = I1(y1(t1)) + (t− t1)Ī1(y1(t1)) +

∫ t

t1

(t− s)f(s, y(s))ds.

Set

A∗
1 = {y ∈ C(J1, E

n) : d∞(y(t), 0̂) ≤M1, t ∈ J1}.
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Clearly, that A1 is an absolute retract. Now we prove that N ∗(A
∗
1) ⊂ A∗

1. Let y ∈ A∗
1,

then from (A2) we have

d∞(N ∗y(t), 0̂) ≤ d∞

(∫ t

t1

(t− s)f(s, y(s))ds, 0̂

)

+d∞(I1(y1(t1)) + (t− t1)Ī1(y1(t1)), 0̂)

≤

∫ t

t1

(t− s)d∞(f(s, y(s)), 0̂)ds

+d∞(I1(y1(t1)) + (t2 − t1)Ī1(y1(t1)), 0̂)

≤

∫ t

t1

(t2 − s)p(s)ψ(d∞(y(s), 0̂))ds

+d∞(I1(y1(t1)) + (t2 − t1)Ī1(y1(t1)), 0̂)

≤

∫ t2

t1

t2p(s)ψ(M1)ds+ d∞(I1(y1(t1))

+(t2 − t1)Ī1(y1(t1)), 0̂)

≤ M1.

The same reasoning as in Step 1 shows that N ∗ has a fixed point y2 which is a solution

to problem (3.3)–(3.4).

Step 3: We continue this process and taking into account that ym := y
∣∣∣
[tm,T ]

is

a solution to the problem

(4.6) y′′(t) = f(t, y(t)), t ∈ (tm, T ),

(4.7) y(t+m) = Im(ym−1(t
−
m))

(4.8) y′(t+m) = Īm(ym−1(t
−
m)).

The solution y of the problem (1.4)–(1.7) is then defined by

y(t) =





y1(t), if t ∈ [0, t1],

y2(t), if t ∈ (t1, t2],

...

ym(t), if t ∈ (tm, T ].
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