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ABSTRACT. In this paper, we develop the theory of fractional differential inequalities involving

Riemann-Loiuville differential operators of order 0 < q < 1, use it for the existence of extremal

solutions and global existence. Necessary tools are discussed and the comparison principle is proved

which will be useful for further study of qualitative behavior of solutions.
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1. INTRODUCTION

In a recent paper [8], we investigated the basic theory of fractional differential

equations involving Riemann-Liouville differential operators of order 0 < q < 1, since

such equations are important in the modeling of several physical phenomena [1]–

[6], [9]–[11]. We followed the classical approach of differential equations [7] in order

to compare and contrast differences as well as the intricacies that might result in

the study. In our discussion, we employed the equivalent Volterra integral equation

of fractional order, which demands an extra assumption of monotone character of

the functions involved, as in the classical case. At that time, we were not sure

how to develop the corresponding theory of fractional differential inequalities and

the resulting comparison principle, that are fundamental to discuss the basic theory

parallel to the classical approach.

In this paper, we shall first develop the theory of fractional differential inequali-

ties, strict as well as nonstrict, use it for the existence of extremal solutions and global

existence. Also, necessary modifications are incorporated in the Peano’s Theorem,

discussed in [8]. Naturally, the comparison principle proved will also be useful for

further study of qualitative behavior of solutions of fractional differential equations,

in a general set up.
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2. FRACTIONAL DIFFERENTIAL INEQUALITIES

We consider the initial value problem (IVP) for fractional differential equations

given by

(1) Dqx = f(t, x), x(0) = x0,

where f ∈ C([0, T ] × R, R), Dqx is the fractional derivative of x and q is such that

0 < q < 1. Since f is assumed continuous, the IVP (1) is equivalent to the following

Volterra fractional integral

(2) x(t) = x0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds, 0 ≤ t ≤ T,

that is, every solution of (2) is also a solution of (1) and vice versa. Here and elsewhere

Γ denotes the Gamma function.

Before we proceed further, we shall prove the following two lemmas and some

needed notation.

Lemma 2.1: Let m : R+ → R be locally Hölder continuous such that for any

t1 ∈ (0,∞), we have

(3) m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1.

Then it follows that

(4) Dqm(t1) ≥ 0.

Proof: We know that

(5) Dqm(t) =
1

Γ(p)

d

dt

∫ t

0

(t − s)p−1m(s)ds,

where 1 − q = p. Let H(t) =
∫ t

0
(t − s)p−1m(s)ds. Consider for h > 0,

H(t1) − H(t1 − h) =

∫ t1−h

0

[(t1 − s)p−1 − (t1 − h − s)p−1]m(s)ds

+

∫ t1

t1−h

(t − s)p−1m(s)ds = I1 + I2,

say. Since [t1 − s)p−1 − (t1 − h − s)p−1] < 0 for 0 ≤ s ≤ t1 − h and m(s) ≤ 0 by

hypothesis, we have I1 ≥ 0. Also,

H(t1) − H(t1 − h) ≥

∫ t1

t1−h

(t1 − s)p−1m(s)ds = I2.

Since m(t) is locally Hölder continuous and m(t1) = 0, there exists a constant

K(t1) > 0, such that, for t1 − h ≤ s ≤ t1 + h,

−K(t1)(t1 − s)λ ≤ m(s) ≤ K(t1)(t1 − s)λ,
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where λ > 0 is such that λ + p − 1 > 0 and 0 < λ < 1. We then get

I2 ≥ −K(t1)

∫ t1

t1−h

(t1 − s)p−1+λds =
K(t1)

Γ(p + λ)
hp+λ.

Hence H(t1) − H(t1 − h) − K(t1)
Γ(p+λ)

hp+λ ≥ 0, for sufficiently small h > 0. Letting

h → 0, we obtain H ′(t1) ≥ 0, which implies Dqm(t1) = 1
Γ(p)

H ′(t1) ≥ 0 and the proof

is complete.

Lemma 2.2: Let {xε(t)} be a family of continuous functions defined on [0, T ], for each

ε > 0, where Dqxε(t) = f(t, xε(t)), xε(0) = x0, and |f(t, xε(t))| ≤ M for 0 ≤ t ≤ T.

Then the family {xε(t)} is equicontinuous on 0 ≤ t ≤ T .

Proof: For 0 ≤ t1 ≤ t2 ≤ T , consider

|xε(t1) − xε(t2)| =
1

Γ(q)

∣

∣

∣

∣

∫ t1

0

(t1 − s)q−1f(s, xε(s))ds −

∫ t2

0

(t2 − s)q−1f(s, xε(s))ds

∣

∣

∣

∣

≤
M

Γ(q)

∣

∣

∣

∣

∫ t1

0

[

(t1 − s)q−1 − (t2 − s)q−1
]

ds +

∫ t2

t1

(t2 − s)q−1ds

∣

∣

∣

∣

≤
M

Γ(q + 1)
[tq1 − t

q
2 + 2(t2 − t1)

q] ≤
2M

Γ(q + 1)
(t2 − t1)

q < ε,

provided |t2 − t1| < δ =
[

εΓ(q+1)
2M

]
1

q

, proving the claim.

Corresponding to each Dini derivative D±

±, one can define fractional Dini deriva-

tives from the relation, namely,

D
±q
± u(t) =

1

Γ(p)
D±

±

∫ t

0

(t − s)p−1u(s)ds,

where p = 1 − q, 0 < q < 1, as before. For example

D−u(t) = limh→0− inf 1
h
[u(t + h) − u(t)]. Also, it is not difficult to get the relation

D+q|u(t)| ≤ |Dqu(t)|, when Dqu(t) exists.

Let us first discuss a fundamental result relative to strict fractional differential

inequalities.

Theorem 2.3: Let v, w : [0, T ] → R be locally Hölder continuous, f ∈ C([0, T ] ×

R, R) and

(i) Dqv(t) ≤ f(t, v(t)), (ii) Dqw(t) ≥ f(t, w(t)), 0 ≤ t ≤ T,

one of the inequalities being strict. Then

(6) v(0) < w(0)

implies

(7) v(t) < w(t), 0 ≤ t ≤ T.

Proof: Suppose that the conclusion (7) is not true. Let us suppose that the inequality

(ii) is strict. Then, setting m(t) = v(t) − w(t), 0 ≤ t ≤ t1, we find that m(t) ≤ 0,
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0 ≤ t ≤ t1 and m(t1) = 0. Then by Lemma 2.1, we get Dqm(t1) ≥ 0, which yields,

using (i) and (ii), and the definition of m(t),

f(t1, v(t1)) ≥ Dqv(t1) ≥ Dqw(t1) > f(t1, w(t1)).

This is a contradiction since v(t1) = w(t1). Hence the conclusion (7) is valid and the

proof is complete.

The next result is for nonstrict fractional differential inequalities which requires

a one sided Lipshitz type condition.

Theorem 2.4: Assume that the conditions of theorem 2.3 hold with nonstrict in-

equalities (i) and (ii). Suppose further that

(8) f(t, x) − f(t, y) ≤
L

1 + tq
(x − y), wherever x ≥ y and L > 0.

Then v(0) ≤ w(0) implies, provided LT q ≤ 1
Γ(1−q)

,

(9) v(t) ≤ w(t), 0 ≤ t ≤ T.

Proof: We set wε(t) = w(t) + ε(1 + tq), for small ε > 0, so that we have

(10) wε(0) > w(0) and wε(t) > w(t), 0 ≤ t ≤ T.

Now

Dqwε(t) = Dqw(t) + εDq(1 + tq)

≥ f(t, w(t)) + ε

[

1

tqΓ(1 − q)
+ Γ(1 + q)

]

> f(t, wε(t)) − Lε + ε
1

tqΓ(1 − q)

> f(t, wε(t)), 0 ≤ t ≤ T.

Here we have used the relations (8), (10) and the assumptions LT q ≤ 1
Γ(1−q)

. We can

now apply Theorem 2.3 to v and wε(t) to get v(t) < wε(t), 0 ≤ t ≤ T . Since ε > 0 is

arbitrary, we conclude that (9) is true and we are done.

3. LOCAL EXISTENCE AND EXTREMAL SOLUTIONS

Let us start with Peano’s type existence result.

Theorem 3.1: Assume that f ∈ C[R0, R] where R0 = [(t, x) : 0 ≤ t ≤ a, and

|x− x0| ≤ b], and let |f(t, x)| ≤ M on R0. Then there exists at least one solution for

the IVP (1) on 0 ≤ t ≤ α, where α = min(a,
[

b
M

Γ(q + 1)
]

1

q ), 0 < q < 1.

Proof: Let x0(ε) be a continuous function on [−δ, 0], δ > 0 such that x0(0) = x0,

|x0(t) − x0| ≤ b and |Dqx0(t)| ≤ M , where Dqx0(t) is the continuous fractional

derivative. For 0 < ε ≤ δ, we define the function xε(t) = x0(t) on [−δ, 0] and

(11) xε(t) = x0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, xε(s − ε))ds



FRACTIONAL DIFFERENTIAL INEQUALITIES 399

on [0, α1], where α1 = min(α, ε). We observe that Dqxε(t) exists and

|xε(t) − x0| ≤
1

Γ(q)

∫ t

0

(t − s)q−1|f(s, xε(s − ε))|ds(12)

≤
M

Γ(q)

∫ t

0

(t − s)q−1ds =
Mαq

Γ(q + 1)
≤ b,

because of the choice of α1. If α1 < α, we can employ (11) to extend xε(t) as a

continuously fractional differentiable function on [−δ, α2], α2 = min(α, 2ε) such that

|xε(t) − x0| ≤ b holds. Continuing this process, we can define xε(t) over [−δ, α] so

that |xε(t)−x0| ≤ b, it has a continuous fractional derivative and satisfies (11) on the

same interval [−δ, α]. Moreover, |Dqxε(t)| ≤ M , since |f(t, xε(t−ε))| ≤ M on R0, and

therefore the family {xε(t)} forms an equicontinuous and uniformly bounded functions

by Lemma 2.2. As application of Ascoli-Arzela’s theorem shows the existence of a

sequence {εn} such that ε1 > ε2 > ... > εn → 0 as n → ∞, and x(t) = limn→∞ xεn
(t)

exists uniformly on [−δ, α]. Since f is uniformly continuous, we obtain f(t, xεn
(t−εn))

tends to uniformly to f(t, x(t)) as n → ∞, and hence term by term integration of

(11) with ε = εn, α1 = α yields

x(t) = x0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds.

This proves that x(t) is a solution of IVP (1) and the proof is complete.

Employing Theorems 3.1 and 2.3, we can now prove the existence of extremal

solutions for the IVP (1).

Theorem 3.2: Under the assumptions of theorem 3.1, there exist extremal solutions

for the IVP (1) on 0 ≤ t ≤ α0, α0 = min

(

a,
[

bΓ(1+q)
2M+b

]
1

q

)

.

Proof: We shall prove the existence of the maximal solution only, since the case of

the minimal solution is very similar. Let 0 < ε ≤ b
2

and consider the IVP

(13) Dqx = f(t, x) + ε, x(0) = x0 + ε.

Note that fε(t, x) = f(t, x) + ε is defined and continuous on

Rε =

[

(t, x) : 0 ≤ t ≤ a and |x − (x0 + ε)| ≤
b

2

]

,

Rε ⊂ R0 and |fε(t, x)| ≤ M + b
2

on Rε. We then deduce from Theorem 3.1 that IVP

(13) has a solution x(t, ε) on 0 ≤ t ≤ α0.

Now for 0 < ε2 < ε1 ≤ ε, we have

x(0, ε2) < x(0, ε1)

Dqx(t, ε2) ≤ f(t, x(t, ε2)) + ε2

Dqx(t, ε1) > f(t, x(t, ε1)) + ε2, on 0 ≤ t ≤ α0.
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We apply Theorem 2.3 to get

x(t, ε2) < x(t, ε1), 0 ≤ t ≤ α0.

Consider the family of continuous functions {x(t, ε)} on 0 ≤ t ≤ α0. Then it follows

that

|x(t, ε) − x(0, ε)| ≤
1

Γ(q)

∫ t

0

(t − s)q−1|f(s, x(s, ε))|ds ≤
2M + b

2Γ(q)

∫ t

0

(t − s)q−1ds

≤
2M + b

2

α
q
0

Γ(q + 1)
≤

b

2
≤ b,

showing that the family is uniformly bounded. Since |Dqx(t, ε)| = |f(t, x(t, ε))| ≤

M + b
2
, the family is also equicontinuous by Lemma 2.2. Hence there exists a sequence

{εn} with εn → 0 as n → ∞ and the uniform limit η(t) = limn→∞ x(t, εn) exists on

[0, α0]. Clearly η(0) = x0. The uniform continuity of f , gives arguing as before (as in

Theorem 3.1) that η(t) is a solution of IVP (1).

Next we show that η(t) is the required maximal solution of (1). Let x(t) be any

solution of (1) on 0 ≤ t ≤ α0. then we have

x0 < x0 + ε = x(0, ε),

Dqx(t) < f(t, x(t)) + ε,

Dqx(t, ε) ≥ f(t, x(t, ε)) + ε.

By Theorem 2.3, we obtain x(t) < x(t, ε), 0 ≤ t ≤ α0 for every ε > 0. The uniqueness

of maximal solution shows that x(t, ε) tends to η(t) on [0, α0] as ε → 0. The proof is

therefore complete.

4. GLOBAL EXISTENCE

We need the following comparison theorem before we proceed further.

Theorem 4.1: Assume that m ∈ C([0, T ], R+), locally Hölder continuous, g ∈

C([0, T ] × R+, R+), and

(14) Dqm(t) ≤ g(t, m(t)), 0 ≤ t < T.

Let η(t) be the maximal solution of

Dqu(t) = g(t, u(t)), u(0) = u0 ≥ 0,

existing on [0, T ) such that m(0) ≤ u0. then we have

(15) m(t) ≤ η(t), 0 ≤ t < T.

Proof: In view of the definition of the maximal solution η(t), it is enough to prove,

to conclude (15), that

(16) m(t) < u(t, ε), 0 ≤ t < T,
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where u(t, ε) is any solution of

(17) Dqu = g(t, u) + ε, u(0) = u0 + ε, ε > 0.

Now it follows from (17) that

Dqu(t, ε) > g(t, u(t, ε)).

Then applying Theorem 2.3, we get immediately (16) and since limε→0 u(t, ε) = η(t)

uniformly on each 0 ≤ t ≤ T0 < T , the proof is complete.

We are now in the position to prove the global existence result.

Theorem 4.2: Assume that f ∈ C([0,∞) × R, R), g ∈ C([0,∞) × R+, R+), g(t, u)

is nondecreasing in u for each t and

(18) |f(t, x)| ≤ g(t, |x|).

Suppose that we have local existence of solutions x(t, x0) of

(19) Dqx = f(t, x), x(0) = x0,

and the maximal solution of

(20) Dqu = g(t, u), u(0) = u0 ≥ 0,

exists on [0,∞). Then the largest interval of existence of any solution x(t, x0) of (19)

such that |x0| ≤ u0 is [0,∞).

Proof: Let x(t, x0) be any solution of (19) with |x0| ≤ u0 which exists on [0, β),

β < ∞ and the value of β cannot be increased further. Set m(t) = |x(t, x0)| for

0 ≤ t < β. Then using the assumption (18) we get

Dqm(t) ≤ |Dqx(t, x0)| = |f(t, x(t, x0))| ≤ g(t, |x(t, x0)|) ≤ g(t, m(t)), 0 ≤ t < β,

and m(0) ≤ u0. Applying Theorem 4.1, we obtain

m(t) ≤ η(t), 0 ≤ t < β,

and therefore |Dqx(t, x0)| ≤ g(t, m(t)) ≤ g(t, η(t)) ≤ M on 0 ≤ t ≤ β, since η(t) is

assumed to exist on [0,∞), it follows that g(t, η(t)) ≤ M . Now for 0 ≤ t1 ≤ t2 < β,

we find by Lemma 2.2,

|x(t1, x0) − x(t2, x0)| ≤
2M

Γ(q + 1)
(t2 − t1)

q.

Letting t1, t2 → β− and using Caushy criterion, it follows that limt→β− x(t, x0) exists.

We denote x(β, x0) = limt→β− x(t, x0) and consider the new IVP

Dqx = f(t, x), x(β) = x(β, x0).

By the assumed local existence, we find that x(t, x0) can be continued beyond β,

contradicting our assumption. Hence every solution x(t, x0) of (19) exists on [0,∞)

and the proof is complete.
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