
Communications in Applied Analysis 11 (2007) 403-418

HIGHER ORDER OF CONVERGENCE VIA GENERALIZED

QUASILINEARIZATION METHOD FOR PARABOLIC

INTEGRO-DIFFERENTIAL EQUATIONS

TANYA G. MELTON AND A. S. VATSALA

Department of Mathematics and Physical Sciences, LSUA, LA

Department of Mathematics, University of Louisiana at Lafayette, LA

ABSTRACT. The method of quasilinearization has been generalized so that it is applicable to a

wide variety of nonlinear problems. This is known as Generalized Quasulinearization Method (GQM

method for short). It has all the advantages of the quasilinearization method such as linear iterates

and quadratic convergence. Also it has been developed with a weaker condition than asking for

the convexity or concavity of the original qasilineaization method. In this work we will focus on

the mathematical models which leads to nonlinear parabolic integro-differential equations. These

mathematical models are motivated by population models in biology and the Hodgkin-Huxley model

in medicine. We consider the situation when the component functions f(t, x, u) and g(t, x, u) of the

forcing function satisfy the following conditions: i) ∂m−1f(t,x,u)
∂um−1 and ∂m−1g(t,x,u)

∂um−1 exist and they are

nondecreasing in u for m > 2; ii) ∂m−1f(t,x,u)
∂um−1 and ∂m−1g(t,x,u)

∂um−1 are onesided Lipschitzian with respect

to u for m > 2. We develop two sequences which converge uniformly, monotonically, and rapidly to

the unique solution with the rate of convergence m. The earlier known results on cubic and quadrtic

convergence can be obtained as special cases of our current result. A numerical example is presented

as an application of our theoretical result. This result is a generalization of GQM method to obtain

higher order of convergence for nonlinear parabolic integro-differential equations.

Key Words and Phrases: Generalized quasilinearization, higher order of convergence, parabolic

integro-differential equation.
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1. INTRODUCTION

The method of quasilinearization [1, 2] combined with the method of upper and

lower solutions [6, 8] is an effective and fruitful technique for solving a wide vari-

ety of nonlinear differential equations. In [10, 11] we can see the application of the

quasilinearization method. It has been extended recently and referred to as a gen-

eralized quasilinearization method [9]. In the nuclear reactor model if the effect of

the temperature feedback is taken into consideration the neutron flux u ≡ u(t, x) is

governed by a Volterra type integro-differential equation [13]. On the other hand,

in the study of nerve propagation, a simplified Hodgkin-Huxley model for the prop-

agation of a voltage pulse through a nerve axon is governed by a similar Volterra
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type integro-differential equation [13]. Motivated by the above models we consider

nonlinear parabolic integro-differential equations in this paper.

Using generalized quasilinearization method the authors of [3, 5] obtained a quadratic

order of convergence for nonlinear integro-differential equations of ordinary and of par-

abolic type respectively. Assuming convexity assumption of the forcing function they

developed linear iterates to obtain the solution of the nonlinear integro-differential

problems. However, in [4] the authors have extended monotone method for first or-

der initial value problem to obtain rapid convergence. See also [7] for generalized

monotone method. In [12] the authors have obtained cubic convergence for first or-

der ordinary differential equation. In this paper we extend the above results when

the (m − 1)-st derivative of the forcing function is nondecreasing in u and onesided

Lipschitzian in u. Using an appropriate iterative scheme and natural lower and upper

solutions under suitable conditions, we obtain natural sequences which converge to

the unique solution of the nonlinear integro-differential equations of Volterra’s type

and the rate of convergence is m. Finally, we provide a numerical example to illustrate

the application of results obtained.

2. PRELIMINARIES

The following nonlinear second order parabolic integro-differential equation will

be considered in this paper.

(2.1)

Lu = f(t, x, u(t, x))+
∫ t

0
g(t, x, s, u(s, x))ds in QT ,

u(t, x) = Φ(t, x), x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where Ω is a bounded domain in Rm with boundary ∂Ω ∈ C2+α (α ∈ (0, 1)) and

closure Ω, QT = (0, T ) × Ω, QT = [0, T ] × Ω, T > 0. Let L be a second order

differential operator defined by

(2.2) L =
∂

∂t
− L,

where

(2.3) L =

m
∑

i,j=1

ai,j(t, x)
∂2

∂xi∂xj

+

m
∑

i=1

bi(t, x)
∂

∂xi

.

In this section we recall some known existence and comparison theorems and the list

of the assumptions which we will use in the proof of our main results.

Let us start with the list of the following assumptions.

(A0) (i) For each i, j = 1, . . . , m, ai,j, bj ∈ C
α
2

,α[QT , R] and L is strictly uniformly para-

bolic in QT ;

(ii) ∂Ω belongs to the class C2+α;
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(iii) f ∈ C
α
2

,α[[0, T ]×Ω×R, R], g ∈ C
α
2

,α[[0, T ]×Ω×R2, R] that is f(t, x, u), g(t, x, u)

are Hölder continuous in t and (x, u) with exponents α
2

and α, respectively;

(iv) Φ ∈ C1+ α
2

,2+α[[0, T ] × ∂Ω, R] and u0(x) ∈ C2+α[Ω, R];

(v) u0(x) = Φ(0, x), Φt = Lu0 + f(0, x, u0) for t = 0 and x ∈ ∂Ω.

Next we introduce the following definition.

Definition 2.1. The functions α0 , β0 ∈ C1,2[QT , R] with g(t, x, u) nondecreasing in

u are said to be lower and upper solutions of (2.1), respectively, if

Lα0 ≤ f(t, x, α0(t, x)) +
∫ t

0
g(t, x, s, α0(s, x))ds in QT ,

α0(t, x) ≤ Φ(t, x), x ∈ ∂Ω,

α0(0, x) ≤ u0(x), x ∈ Ω,

and
Lβ0 ≥ f(t, x, β0(t, x)) +

∫ t

0
g(t, x, s, β0(s, x))ds in QT ,

β0(t, x) ≥ Φ(t, x), x ∈ ∂Ω,

β0(0, x) ≥ u0(x), x ∈ Ω.

Furthermore we state a known existence theorem relative to the equation (2.1).

Theorem 2.1. (see [5].) Assume that (A0) holds. Then (2.1) has a unique smooth

solution u(t, x) ∈ C1+ α
2

,2+α[QT , R].

In addition, we recall the positivity and comparison theorems in order to prove

the monotonicity and the order of convergence in our main results.

Theorem 2.2. (see [13].) Let u(t, x) ∈ C
1+α

2
,1+α[QT , R] be such that

Lu + cu ≥ 0 in QT ,

u(t, x) ≥ 0, x ∈ ∂Ω,

u(0, x) ≥ 0, x ∈ Ω,

and c ≡ c(t, x) is a bounded function in QT . Then u(t, x) ≥ 0 in QT .

Theorem 2.3. (see [14].) Assume that

(i) fu(t, x, u) and gu(t, x, s, u) are bounded functions with g(t, x, s, u) nondecreasing

in u on QT .

(ii) α(t, x) and β(t, x) satisfy

Lα ≤ f(t, x, α(t, x)) +
∫ t

0
g(t, x, s, α(s, x))ds in QT ,

Lβ ≥ f(t, x, β(t, x)) +
∫ t

0
g(t, x, s, β(s, x))ds in QT ,

with
α(t, x) ≤ β(t, x), x ∈ ∂Ω,

α(0, x) ≤ β(0, x), x ∈ Ω.

Then α(t, x) ≤ β(t, x) on QT .
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We also need the following comparison theorem which is a special case of Lemma

6.2 in [3].

Theorem 2.4. Suppose that

(i) g(t, x, s, u) is monotone nondecreasing in u for each fixed point (t,x,s),

(ii) α(t, x) satisfies

Lα ≤ f(t, x, α(t, x))+
∫ t

0
g(t, x, s, α(s, x))ds in QT ,

α(t, x) = 0, x ∈ ∂Ω,

α(0, x) = u0(x), x ∈ Ω,

(iii) r(t) is the solution of the following ordinary integro-differential equation

r′ = h1(t, r) +
∫ t

0
h2(t, s, r))ds,

r(0) = max{max
x∈Ω

u0(x), 0},

where

h1(t, r) ≥ max
x∈Ω

f(t, x, r) and h2(t, r) ≥ max
x∈Ω

g(t, x, s, r).

Then α(t, x) ≤ r(t) on QT .

3. MAIN RESULTS

In this section we extend the method of generalized quasilinearization to (2.1)

with higher order of convergence m (m > 2) when the nonlinearity of the iterates is

m− 1. Since the approximation of the solution depends entirely on m being an even

or odd number, we assume at first that m is an odd number, say m = 2k + 1. This

is precisely our first main result, which we state below.

Theorem 3.1. Assume that all of (A0) holds except (iii); further assume that

(i) α0, β0 are lower and upper solutions of (2.1) with α0(t, x) ≤ β0(t, x) on QT .

(ii)
∂lf(t, x, u)

∂ul ,
∂lg(t, x, s, u)

∂ul exist and are bounded functions on QT for

l = 0, 1, . . . , 2k such that
∂f l(t, x, u)

∂ul ,
∂lg(t, x, s, u)

∂ul ∈ C
α
2

,α[QT × R, R].

(iii) Also
∂lg(t, x, s, u)

∂ul are nondecreasing functions in u on QT for l = 0, 1, . . . , 2k

such that

gu(α0) ≥ g2k(β0)
(β0 − α0)

2k−1

(2k − 1)!
and

0 ≤
∂2kf(t, x, η1)

∂u2k −
∂2kf(t, x, η2)

∂u2k ≤ M1(η1 − η2) on QT ,

0 ≤
∂2kg(t, x, ξ1)

∂u2k −
∂2kg(t, x, ξ2)

∂u2k ≤ M2(ξ1 − ξ2) on QT ,

whenever

α0(t, x) ≤ η2(t, x) ≤ η1(t, x) ≤ β0(t, x),

α0(t, x) ≤ ξ2(t, x) ≤ ξ1(t, x) ≤ β0(t, x).
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Then there exist monotone sequences {αn(t, x)} , {βn(t, x)}, n ≥ 0 which converge

uniformly and monotonically to the unique solution of (2.1) and the convergence is

of order 2k + 1.

Proof: To prove this we need to consider the following equations:

(3.1)

Lw = F1(t, x, α; w) +
∫ t

0
G1(t, x, s, α(s, x); w(s, x))ds

=
2k

∑

i=0

∂if(t, x, α)
∂ui

(w − α)i

i!

+
∫ t

0

2k
∑

i=0

∂ig(t, x, s, α(s, x))
∂ui

(w(s, x) − α(s, x))i

i!
ds in QT ,

w(t, x) = Φ(t, x), x ∈ ∂Ω,

w(0, x) = u0(x), x ∈ Ω,

(3.2)

Lv = F2(t, x, β; v) +
∫ t

0
G2(t, x, s, β(s, x); v(s, x))ds

=

2k
∑

i=0

∂if(t, x, β)
∂ui

(v − β)i

i!

+
∫ t

0

2k
∑

i=0

∂ig(t, x, s, β(s, x))
∂ui

(v(s, x) − β(s, x))i

i!
ds in QT ,

v(t, x) = Φ(t, x), x ∈ ∂Ω,

v(0, x) = u0(x), x ∈ Ω,

where α(t, x) ≤ v, w ≤ β(t, x) and α(0, x) ≤ u0(x) ≤ β(0, x).

Let us show that (α0, β0) are lower and upper solutions of (3.1) and (3.2), respectively.

By setting α = α0 and β = β0 in (3.1) we get

(3.3)

Lα0 ≤ f(t, x, α0) +
∫ t

0
g(t, x, s, α0(s, x))ds

= F1(t, x, α0; α0) +
∫ t

0
G1(t, x, s, α0(s, x); α0(s, x))ds;

α0(t, x) ≤ Φ(t, x), x ∈ ∂Ω,

α0(0, x) ≤ u0(x), x ∈ Ω,

(3.4)

Lβ0 ≥ f(t, x, β0) +
∫ t

0
g(t, x, s, β0(s, x))ds

=
2k−1
∑

i=0

∂if(t, x, α0)
∂ui

(β0 − α0)
i

i!
+

∂2kf(t, x, ξ1)
∂u2k

(β0 − α0)
2k

(2k)!

+
∫ t

0
[
2k−1
∑

i=0

∂ig(t, x, s, α0)
∂ui

(β0 − α0)
i

i!
+

∂2kg(t, x, s, ξ2)

∂u2k

(β0 − α0)
2k

(2k)!
]ds

≥
2k

∑

i=0

∂if(t, x, α0)
∂ui

(β0 − α0)
i

i!
+

∫ t

0
[

2k
∑

i=0

∂ig(t, x, s, α0)
∂ui

(β0 − α0)
i

i!

= F1(t, x, α0; β0) +

∫ t

0

G1(t, x, s, α0; β0)ds,

β0(t, x) ≥ Φ(t, x), x ∈ ∂Ω,
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β0(0, x) ≥ u0(x), x ∈ Ω,

where α0 ≤ ξ1, ξ2 ≤ β0.

Hence α0 and β0 are the lower and upper solutions of (3.1). Next we need to apply

Theorem 2.1. To do this we will verify (iii) of (A0) relative to the equation (3.1). For

η ∈ C
1+α

2
,1+α[QT , R] such that α0(x, t) ≤ w(x, t), η(t, x) ≤ β0(t, x) on QT we have

F1(t, x, η; w) =

2k
∑

i=0

∂if(t, x, η(t, x))
∂ui

[w(t, x) − η(t, x)]i

i!

=

2k
∑

i=0

∂if(t, x, η(t, x))
∂ui

Pi
j=0

(−1)j(i
j)w

i−j(t, x)ηj(t, x)
i!

=
2k

∑

i=0

i
∑

j=0

(−1)j(i
j)

i!
∂if(t, x, η(t, x))

∂ui wi−j(t, x)ηj(t, x)

= Ki,j

2k
∑

i=0

i
∑

j=0

di,j(t, x)wi−j(t, x),

where Ki,j =
(−1)j(i

j)

i!
and di,j(t, x) = ∂if(t,x,η(t,x))

∂ui ηj(t, x). Let us show that di,j(t, x)

belongs to C
α
2

,α[QT , R] for i, j = 0, 1, . . . , 2k by considering the term di,j(t, x) when

|η| ≤ C1 and |∂
if

∂ui | ≤ C2.

|di,j(t, x) − di,j(t, x)| = |
∂if(t, x, η(t, x))

∂ui ηj(t, x) −
∂if(t, x, η(t, x))

∂ui ηj(t, x)|

≤ |
∂if(t, x, η(t, x))

∂ui ηj(t, x) −
∂if(t, x, η(t, x))

∂ui ηj(t, x)|

+|
∂if(t, x, η(t, x))

∂ui ηj(t, x) −
∂if(t, x, η(t, x))

∂ui ηj(t, x)|

= |ηj(t, x)||
∂if(t, x, η(t, x))

∂ui −
∂if(t, x, η(t, x))

∂ui |

+|
∂if(t, x, η(t, x))

∂ui ||η(t, x) − η(t, x)||

j−1
∑

l=0

ηj−l−1(t, x)ηl(t, x)|

≤ C
j
1Ct(

∂if

∂ui )(|t − t|
α
2 + Ct(η)|t − t|

1+α
2 )

+jC2
1C2Ct(η)|t − t|

1+α
2 ≤ Ct(F1)|t − t|

α
2 ,

where Ct(F1) depends on C1, C2, Ct(
∂if

∂ui ), Ct(η), and T . Thus F1(t, x, α; w) is Hölder

continuous in t with exponent α
2
. Similarly, we can prove that F1(t, x, α; w) is Hölder

continuous in (x, w) with exponent α. That is:

|di,j(t, x) − di,j(t, x)| = |
∂if(t, x, η(t, x))

∂ui ηj(t, x) −
∂if(t, x, η(t, x))

∂ui ηj(t, x)|

≤ C
j
1Cx(

∂if

∂ui )(‖x − x‖α + Cx(η)‖x − x‖1+α)

+jC2
1C2Cx(η)‖x − x‖1+α ≤ Cx,w(F1)|x − x|α,
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where Cx,w(F1) depends on C1, C2, Cx(
∂if

∂ui ), and Cx(η). Hence we can conclude that

F1(t, x, α; w) is Hölder continuous in t and (x, w) with exponents α
2

and α, respectively.

The proof that G1(t, x, α; w) is Hölder continuous in t and (x, w) with exponents α
2

and

α, respectively, follows on the same lines. Similar conclusions hold for F2(t, x, β; v)

and G2(t, x, β; v). It follows by Theorem 2.1 that there exists a unique solution α1 of

(3.1). Now we prove that α0 ≤ α1 ≤ β0. Letting µ = α1 − α0 we get

Lµ = L(α1 − α0)

≥ F1(t, x, α0; α1) +
∫ t

0
G1(t, x, s, α0; α1)ds

−F1(t, x, α0; α0) −
∫ t

0
G1(t, x, s, α0; α0)ds

= F1u(t, x, α0; ξ1)µ +
∫ t

0
G1u(t, x, s, α0; ξ2)µds,

µ(t, x) ≥ 0, x ∈ ∂Ω,

µ(0, x) ≥ 0, x ∈ Ω.

Applying Theorem 2.2 one can obtain that µ ≥ 0 or α0 ≤ α1. Next set µ = β0 − α1.

Lµ = L(β0 − α1)

≥ F1(t, x, α0; β0) +
∫ t

0
G1(t, x, s, α0; β0)ds

−F1(t, x, α0; α1) −
∫ t

0
G1(t, x, s, α0; α1)ds

= F1u(t, x, α0; ξ1)µ +
∫ t

0
G1u(t, x, s, α0; ξ2)µds,

µ(t, x) ≥ 0, x ∈ ∂Ω,

µ(0, x) ≥ 0, x ∈ Ω.

Again using Theorem 2.2 one can conclude that µ ≥ 0 or α1 ≤ β0. Thus α0 ≤ α1 ≤ β0.

Similarly we will prove that (α0, β0) are lower and upper solutions of (3.2). Setting

α = α0 and β = β0 in (3.2) we get

(3.5)

Lβ0 ≥ f(t, x, β0) +
∫ t

0
g(t, x, s, β0(s, x))ds

= F2(t, x, β0; β0) +
∫ t

0
G2(t, x, s, β0(s, x); β0(s, x))ds;

β0(t, x) ≥ Φ(t, x), x ∈ ∂Ω,

β0(0, x) ≥ u0(x), x ∈ Ω,

and

(3.6)

Lα0 ≤ f(t, x, α0) +
∫ t

0
g(t, x, s, α0(s, x))ds

=
2k−1
∑

i=0

∂if(t, x, β0)
∂ui

(α0 − β0)
i

i!
+

∂2kf(t, x, ξ1)
∂u2k

(α0 − β0)
2k

(2k)!

+
∫ t

0
[

2k−1
∑

i=0

∂ig(t, x, s, β0)
∂ui

(α0 − β0)
i

i!
+

∂2kg(t, x, s, ξ2)
∂u2k

(α0 − β0)
2k

(2k)!
]ds

≤

2k
∑

i=0

∂if(t, x, β0)
∂ui

(α0 − β0)
i

i!
+

∫ t

0

2k
∑

i=0

∂ig(t, x, s, β0)
∂ui

(α0 − β0)
i

i!
ds

= F2(t, x, β0; α0) +
∫ t

0
G2(t, x, s, β0; α0)ds,

α0(t, x) ≤ Φ(t, x), x ∈ ∂Ω,

α0(0, x) ≤ u0(x), x ∈ Ω.
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where α0 ≤ ξ1, ξ2 ≤ β0.

One can conclude that α0 and β0 are the lower and upper solutions of (3.2) and by

Theorem 2.1 there exists a unique solution β1 of (3.2). Next we show that α0 ≤ β1 ≤

β0 by setting µ = β0 − β1 and µ = β1 − α0, respectively.

Lµ = L(β0 − β1)

≥ F2(t, x, β0; β0) +
∫ t

0
G2(t, x, s, β0; β0)ds

−F2(t, x, β0; β1) −
∫ t

0
G2(t, x, s, β0; β1)ds

= F2u(t, x, β0; ξ1)µ +
∫ t

0
G2u(t, x, s, β0; ξ2)µds,

µ(t, x) ≥ 0, x ∈ ∂Ω,

µ(0, x) ≥ 0, x ∈ Ω.

and
Lµ = L(β1 − α0)

≥ F2(t, x, β0; β1) +
∫ t

0
G2(t, x, s, β0; β1)ds

−F2(t, x, β0; α0) −
∫ t

0
G2(t, x, s, β0; α0)ds

= F2u(t, x, β0; ξ1)µ +
∫ t

0
G2u(t, x, s, β0; ξ2)µds,

µ(t, x) ≥ 0, x ∈ ∂Ω,

µ(0, x) ≥ 0, x ∈ Ω.

Applying Theorem 2.2 we obtain that µ ≥ 0 or β0 ≥ β1 and β1 ≥ α0. Hence

α0 ≤ β1 ≤ β0. In addition, we prove that β1 ≥ α1. For that purpose we observe that

(3.7)

f(t, x, α1) +
∫ t

0
g(t, x, s, α1(s, x))ds =

2k−1
∑

i=0

∂if(t, x, α0)
∂ui

(α1 − α0)
i

i!

+
∂2kf(t, x, ξ1)

∂u2k

(α1 − α0)
2k

(2k)!
+

∫ t

0
[
2k−1
∑

i=0

∂ig(t, x, s, α0)
∂ui

(α1 − α0)
i

i!

+
∂2kg(t, x, s, ξ2)

∂u2k

(α1 − α0)
2k

(2k)!
]ds ≥

2k
∑

i=0

∂if(t, x, α0)
∂ui

(α1 − α0)
i

i!

+
∫ t

0
[

2k
∑

i=0

∂ig(t, x, s, α0)
∂ui

(α1 − α0)
i

i!
]ds

= F1(t, x, α0; α1) +
∫ t

0
G1(t, x, s, α0; α1) = Lα1,

α1(t, x) = Φ(t, x), x ∈ ∂Ω,

α1(0, x) = u0(x), x ∈ Ω;



HIGHER ORDER OF CONVERGENCE 411

and

(3.8)

f(t, x, β1) +
∫ t

0
g(t, x, s, β1(s, x))ds =

2k−1
∑

i=0

∂if(t, x, β0)
∂ui

(β1 − β0)
i

i!

+
∂2kf(t, x, ξ1)

∂u2k

(β1 − β0)
2k

(2k)!
+

∫ t

0
[
2k−1
∑

i=0

∂ig(t, x, s, β0)
∂ui

(β1 − β0)
i

i!

+
∂2kg(t, x, s, ξ2)

∂u2k

(β1 − β0)
2k

(2k)!
]ds ≤

2k
∑

i=0

∂if(t, x, β0)
∂ui

(β1 − β0)
i

i!

+
∫ t

0
[

2k
∑

i=0

∂ig(t, x, s, β0)
∂ui

(β1 − β0)
i

i!
]ds

= F2(t, x, β0; β1) +
∫ t

0
G2(t, x, s, β0; β1) = Lβ1,

β1(t, x) = Φ(t, x), x ∈ ∂Ω,

β1(0, x) = u0(x), x ∈ Ω.

By (3.7) and (3.8) together with Theorem 2.3 one can conclude that β1 ≥ α1. Hence

we have α0 ≤ α1 ≤ β1 ≤ β0. Using the method of mathematical induction and the

last inequality, one can show that

α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 for all n.

Let now u be any solution of (2.1) such that α0 ≤ u ≤ β0 with α0(0) ≤ u0 ≤ β0(0) on

QT and suppose that for some u , we have αn ≤ u ≤ βn on QT . Then set Φ1 = u−αn+1

and Φ2 = βn+1 − u, respectively.

LΦ1 = Lu − Lαn+1 = f(t, x, u) +
∫ t

0
g(t, x, s, u(s, x))ds

−
2k

∑

i=0

∂if(t, x, αn)
∂ui

(αn+1 − αn)i

i!
−

∫ t

0

2k
∑

i=0

∂ig(t, x, s, αn(s, x))
∂ui

(αn+1 − αn)i

i!
ds

≥ f(t, x, u) − f(t, x, αn+1) +
∫ t

0
[g(t, x, s, u)− g(t, x, s, αn+1(s, x))]ds

≥ fu(t, x, η1)Φ1 +
∫ t

0
[gu(t, x, s, η2)Φ1]ds

Φ1(t, x) = 0, x ∈ ∂Ω,

Φ1(0, x) = 0, x ∈ Ω;

LΦ2 = Lβn+1 − Lu = −f(t, x, u) −
∫ t

0
g(t, x, s, u(s, x))ds

+

2k
∑

i=0

∂if(t, x, βn)
∂ui

(βn+1 − βn)i

i!
+

∫ t

0

2k
∑

i=0

∂ig(t, x, s, βn(s, x))
∂ui

(βn+1 − βn)i

i!
ds

≥ −f(t, x, u) + f(t, x, βn+1) +
∫ t

0
[−g(t, x, s, u(s, x)) + g(t, x, s, βn+1(s, x))]ds

≥ fu(t, x, η3)Φ2 +
∫ t

0
[gu(t, x, s, η4)Φ2]ds

Φ2(t, x) = 0, x ∈ ∂Ω,

Φ2(0, x) = 0, x ∈ Ω,

where η1, η2 are between u and αn+1, and η3, η4 are between u and βn+1. Thus

αn+1 ≤ u ≤ βn+1 by Theorem 2.2. Initially α0 ≤ u ≤ β0. By the method of
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mathematical induction αn ≤ u ≤ βn for all n. Hence

α0 ≤ α1 ≤ · · · ≤ αn ≤ u ≤ βn ≤ · · · ≤ β1 ≤ β0.

Since {αn(t, x)} and {βn(t, x)} are in C1+ α
2

,2+α[QT , R], one can show that these se-

quences converge to (ρ, r) using the same technique as in [13]. That is

lim
n→∞

αn(t, x) = ρ(t, x) ≤ u ≤ r(t, x) lim
n→∞

βn(t, x).

Next we show that ρ(t, x) ≥ r(t, x). It follows by equations (3.1) and (3.2) that

Lρ(t, x) = F1(t, x, ρ; ρ) +
∫ t

0
G1(t, x, s, ρ(s, x); ρ(s, x))ds

= f(t, x, ρ) +
∫ t

0
g(t, x, s, ρ(s, x))ds,

ρ(t, x) = Φ(t, x), x ∈ ∂Ω,

ρ(0, x) = u0(x), x ∈ Ω

and
Lr(t, x) = F2(t, x, r; r) +

∫ t

0
G2(t, x, s, r(s, x); r(s, x))ds

= f(t, x, r) +
∫ t

0
g(t, x, s, r(s, x))ds,

r(t, x) = Φ(t, x), x ∈ ∂Ω,

r(0, x) = u0(x), x ∈ Ω.

Let us set Θ = r(t, x) − ρ(t, x) and apply (iii).

LΘ = Lr − Lρ = f(t, x, r) +

∫ t

0

g(t, x, s, r(s, x))ds

− f(t, x, ρ) −

∫ t

0

g(t, x, s, ρ(s, x))ds

≤ L1(r − ρ) +

∫ t

0

L2(r − ρ)ds ≤ L1Θ +

∫ t

0

L2Θds, L1, L2 ≥ 0,

Θ(t, x) = 0, x ∈ ∂Ω,

Θ(0, x) = 0, x ∈ Ω.

Now applying Theorem 2.2 we have r(t, x) ≤ ρ(t, x). This proves r(t, x) = ρ(t, x) =

u(t, x) is the unique solution of (2.1). Hence {αn(t, x)} and {βn(t, x)} converge uni-

formly and monotonically to the unique solution of (2.1).

Let us consider the order of convergence of {αn(t, x)} and {βn(t, x)} to the unique

solution u(t, x) of (2.1). Set at first

pn(t, x) = u(t, x) − αn(t, x) ≥ 0,

qn(t, x) = βn(t, x) − u(t, x) ≥ 0.
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Using the definitions for αn, βn, the Taylor expansion with Lagrange remainder, and

the mean value theorem, we obtain

Lpn+1 = Lu − Lαn+1

= f(t, x, u) +

∫ t

0

g(t, x, s, u(s, x))ds

−

2k
∑

i=0

∂if(t, x, αn)

∂ui

(αn+1 − αn)i

i!
−

∫ t

0

2k
∑

i=0

∂ig(t, x, s, αn(s, x))

∂ui

(αn+1 − αn)i

i!
ds

= f(t, x, u) − f(t, x, αn+1) +
∂2kf(t, x, ξ1)

∂u2k

(αn+1 − αn)2k

(2k)!

−
∂2kf(t, x, αn)

∂u2k

(αn+1 − αn)2k

(2k)!
+

∫ t

0

[g(t, x, s, u) − g(t, x, s, αn+1(s, x))

+
∂2kg(t, x, s, ξ2(s, x))

∂u2k

(αn+1 − αn)2k

(2k)!
−

∂2kg(t, x, s, αn(s, x))

∂u2k

(αn+1 − αn)2k

(2k)!
]ds

≤ fu(t, x, η1)(u − αn+1) +
M1

(2k)!
(ξ1 − αn)(αn+1 − αn)2k

+

∫ t

0

[gu(t, x, s, η2)(u − αn+1) +
M2

(2k)!
(ξ2 − αn)(αn+1 − αn)2k]ds

≤ K1pn+1 + K2p
2k+1
n +

∫ t

0

[K3pn+1 + K4p
2k+1
n ]ds,

pn+1(t, x) = 0, x ∈ ∂Ω,

pn+1(0, x) = 0, x ∈ Ω,

where αn ≤ ξ1, ξ2 ≤ αn+1, αn+1 ≤ η1, η2 ≤ u, |fu| ≤ K1,
M1

(2k)!
= K2, |gu| ≤ K3,

and M2

(2k)!
= K4. Let r(t) be the solution of the following ordinary integro-differential

equation.

r′(t) = K1r(t) + K3

∫ t

0

r(s)ds + (K2 + K4T ) max
Ω

p2k+1
n , r(0) = 0.

By computing the solution of the above equation, we get

r(t) ≤
2exp(

√

K2
1 + 4K3 T )

√

K2
1 + 4K3

[(K2 + K4T ) max
Ω

p2k+1
n ].

One can see easily that
∫ t

0

K4p
3
nds ≤ K4T max

Ω
p2k+1

n .

It follows that pn+1(t, x) ≤ r(t) by Theorem 2.4. Hence

max
QT

|pn+1(t, x)| ≤ [(K2 + K4T )]
[2exp(

√

K2
1 + 4K3 T )

√

K2
1 + 4K3

]

max
QT

|p2k+1
n (t, x)|.
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Similarly, one can prove that

max
QT

|qn+1(t, x)| ≤ [(K2 + K4T )]
[2exp(

√

K2
1 + 4K3 T )

√

K2
1 + 4K3

]

max
QT

|q2k+1
n (t, x)|.

Hence the order of convergence of the sequences {αn(t, x)}, {βn(t, x)} is 2k +1. That

completes the proof of Theorem 3.1.

Assume now that m is an even number, say m = 2k. Next we state our second

main theorem.

Theorem 3.2. Assume that all of (A0) holds except (iii); further assume that

(i) α0, β0 are lower and upper solutions of (2.1) with α0(t, x) ≤ β0(t, x) on QT .

(ii)
∂lf(t, x, u)

∂ul ,
∂lg(t, x, s, u)

∂ul exist and are bounded functions on QT for l =

0, 1, 2, . . . , 2k − 1 such that
∂f l(t, x, u)

∂ul ,
∂lg(t, x, s, u)

∂ul ∈ C
α
2

,α[QT × R, R].

(iii) Also g, gu, guu are nondecreasing functions in u on QT and

gu(α0) ≥ [
∂2k−2g(β0)

∂u2k−2 −
∂2k−2g(α0)

∂u2k−2 ]
(β0 − α0)

2k−3

(2k − 3)!
,

0 ≤
∂2k−1f(t, x, η1)

∂u2k−1 −
∂2k−1f(t, x, η2)

∂u2k−1 ≤ M1(η1 − η2) on QT ,

0 ≤
∂2k−1g(t, x, ξ1)

∂u2k−1 −
∂2k−1g(t, x, ξ2)

∂u2k−1 ≤ M2(ξ1 − ξ2) on QT ,

such that
α0(t, x) ≤ η2(t, x) ≤ η1(t, x) ≤ β0(t, x),

α0(t, x) ≤ ξ2(t, x) ≤ ξ1(t, x) ≤ β0(t, x).

Then there exist monotone sequences {αn(t, x)} , {βn(t, x)}, m ≥ 0 which converge

uniformly and monotonically to the unique solution of (2.1) and the convergence is

of order 2k.

Proof: In order to construct monotone sequences {αn(t, x)} and {βn(t, x)}, n ≥ 0

which converge uniformly and monotonically to the unique solution of (2.1) when

m = 2k is an even number, we need to consider the following nonlinear parabolic

integro-differential equations for n = 1, 2, . . .

(3.9)

Lαn+1 = F1(t, x, αn; αn+1) +
∫ t

0
G1(t, x, s, αn(s, x); αn+1(s, x))ds

=
2k−1
∑

i=0

∂if(t, x, αn)
∂ui

(αn+1 − αn)i

i!

+
∫ t

0

2k−1
∑

i=0

∂ig(t, x, s, αn(s, x))
∂ui

(αn+1(s, x) − αn(s, x))i

i!
ds in QT ,

αn+1(t, x) = Φ(t, x), x ∈ ∂Ω,

αn+1(0, x) = u0(x), x ∈ Ω,
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and

Lβn+1 = F2(t, x, αn, βn; βn+1) +
∫ t

0
G2(t, x, s, αn(s, x), βn(s, x); βn+1(s, x))ds

=

2k−2
∑

i=0

∂if(t, x, βn)
∂ui

(βn+1 − βn)i

i!
+

∂2k−1f(t, x, αn)
∂u2k−1

(βn+1 − βn)2k−1

(2k − 1)!

(3.10)

+
∫ t

0
[
2k−2
∑

i=0

∂ig(t, x, s, βn(s, x))
∂ui

(βn+1(s, x) − βn(s, x))i

i!

+
∂2k−1g(t, x, αn(s, x))

∂u2k−1
(βn+1(s, x) − βn(s, x))2k−1

(2k − 1)!
]ds in QT ,

βn+1(t, x) = Φ(t, x), x ∈ ∂Ω,

βn+1(0, x) = u0(x), x ∈ Ω,

where αn(t, x) ≤ αn+1(t, x), βn+1(t, x) ≤ βn(t, x) and α(0, x) ≤ u0(x) ≤ β(0, x). We

omit the details of the proof, since it follows on the same lines as in Theorem 3.1.

4. NUMERICAL RESULTS

In this section we demonstrate the application of the main results which we have

developed in Section 3. Let us consider the following nonlinear parabolic integro-

differential equation:

(4.1)

ut − uxx = u4 − 9u + sin2 t +
∫ t

0
[0.5u4(s, x) + 6u(s, x)]ds, 0 ≤ x, t ≤ 1

u(0, t) = 1, u(1, t) = 0, 0 ≤ t ≤ 1

u(0, x) = cos(0.5πx), 0 ≤ x ≤ 1.

If we choose α0(t, x) ≡ 0 and β0(t, x) ≡ 1 with 0 ≤ t, x ≤ 1, we have

0 ≤ sin2 t, 0 ≤ t ≤ 1,

0 ≥ 1 − 15 + sin2 t + 13t, 0 ≤ t ≤ 1,

0 ≤ 1, 0 ≤ t ≤ 1,

0 ≤ cos(0.5πx) ≤ 1, 0 ≤ x ≤ 1.

Hence α0(t, x) ≡ 0 and β0(t, x) ≡ 1 are natural lower and upper solutions for (4.1)

respectively. Denote

f(t, x, u) = u4(t, x) − 9u(t, x) + sin2 t,

g(t, x, u) = 0.5u4(t, x) + 6u(t, x).

It is true that

gu(0) = 2(0)3 + 6 ≥ [guu(1) − guu(0)](1 − 0) = 6(1 − 0),

0 ≤ fuuu(t, x, u1) − fuuu(t, x, u2) ≤ 24(u1 − u2), u1 ≥ u2,

0 ≤ guuu(t, x, u1) − guuu(t, x, u2) ≤ 12(u1 − u2), u1 ≥ u2.

Thus we can apply the iterates of Theorem 3.2 with the Lipschitzian constants M1 =

24 and M2 = 12 to find the approximate solution of the equation (4.1). After only
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three iterates of α and β we can derive the approximate solution u of (4.1) as shown

in the following table for t = 0.5:

Table of Three α, β − Iterates and the Solution

x α1(t) α2(t) α3(t) u β3(t) β2(t) β1(t)

0.1 0.7464340 0.7494670 0.749467 0.749467 0.749467 0.7494670 0.7650150

0.1 0.5573120 0.5605830 0.560583 0.560583 0.560583 0.5605850 0.5914700

0.3 0.4166630 0.4193020 0.419302 0.419302 0.419302 0.4193040 0.4671700

0.4 0.3101140 0.3122690 0.312269 0.312269 0.312269 0.3122730 0.3735150

0.5 0.2301470 0.2316430 0.231643 0.231643 0.231643 0.2316470 0.3059930

0.6 0.1671680 0.1683730 0.168373 0.168373 0.168373 0.1683780 0.2478720

0.7 0.1177880 0.1185300 0.118530 0.118530 0.118530 0.1185350 0.1991020

0.8 0.0753628 0.0759111 0.075911 0.075911 0.075911 0.0759147 0.1449800

0.9 0.0376411 0.0378713 0.037871 0.037871 0.037871 0.0378728 0.0832674

On the follow figure we also can see the α-iterates (with unbroken line) and the

β-iterates (with broken line) for t = 0.5 again.

0.2 0.4 0.6 0.8 1
t

0.2

0.4

0.6

0.8

1

u

In addition the graph in next figure shows the approximate solution of (4.1) using the

finite-difference method and Mathematica for each iterate.



HIGHER ORDER OF CONVERGENCE 417

0
0.25

0.5
0.75

10

0.25

0.5

0.75

1

0
0.25
0.5

0.75
1

0
0.25

0.5
0.75

1

Since the convergence of the iterates is of order 4 we obtained the approximate solution

very fast, in three steps only.

Remark: The above result can be extended to include the situation when f(t, x, u) =

f1(t, x, u)+f2(t, x, u) where f1(t, x, u) satisfies the hypothesis of the theorem whereas

f2(t, x, u) satisfies

0 ≥
∂2k−1f2(t, x, ζ1)

∂u2k−1 −
∂2k−1f2(t, x, ζ2)

∂u2k−1 ≥ M1(ζ1 − ζ2) on QT

for α0(t, x) ≤ ζ2(t, x) ≤ ζ1(t, x) ≤ β0(t, x).

Conclusion: In the above theorems we assumed that the m − 1-th derivative of the

functions f(t, x, u) and g(t, x, u) are nondecreasing and one-sided Lipschitzian with

respect to u. We have developed iterates of nonlinearity of order m−1 which converge

rapidly (order m) to the unique solution of nonlinear integro-differential equations

of parabolic type. We demonstrate the application of the theoretical results with

numerical example.
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