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ABSTRACT. We develop some basic results for set valued differential equations on time scales.

Sufficient conditions for the stability of the trivial solution of set valued differential equations on

time scales are also discussed.
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1. INTRODUCTION

A more realistic approach to model a physical phenomenon is to use a dynamic

system on time scales, which replaces the notion of dependence on a continuous time

parameter t with a more general notion of a time scale or dynamic chain (an arbi-

trary closed set of real numbers) which may contain regions with specific types of

discontinuities. In other words, we can say that a dynamic system incorporates both

continuous and discrete times. In fact the theory of dynamic systems has recently

gained impetus as it puts together the theories of continuous and discrete dynamic

systems [1]. Another important subject of recent interest is that of setvalued differ-

ential equations and has been addressed by many authors, for instance, see [2-7] and

the references therein. The interesting feature of the setvalued differential equations

is that the results obtained in this new framework become the corresponding results

of ordinary differential equations as the Hukuhara derivative and the integral used in

formulating the set differential equations reduce to the ordinary vector derivative and

integral when the set under consideration is a single valued mapping. In reference

[8], the author has discussed the existence and uniqueness of the solution of an initial

value problem involving set valued differential equations on time scales. However, it

is just the beginning of the study of set differential equations on time scales and many

more aspects of this subject need to be addressed. It is imperative to note that time

scales take their domain values from specific subsets of R, not necessarily from the

whole set R (they can, however, map to any value in R) while the set valued functions
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have no restrictions on their domain values in R but they map to sets composed of

whole collection of points.

In this paper, we develop the basic theory of set valued differential equations on

time scales and employ it to establish the stability criteria in terms of Lyapunov-like

functions for set valued differential equations on time scales.

2. PRELIMINARIES

Let T be a time scale (any nonempty closed subset of the real numbers with order

and topological structure defined in a canonical way) with t0 ≥ 0 as the minimal

element and no maximal element. Since a time scale may or may not be connected,

a pair of jump operators needs to be defined.

Definition 2.1 The mappings σ, ρ : T → T defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

are called respectively forward and backward jump operators (or simply jump oper-

ators). It is worth remarking that the jump operators are crucial to establish the

concept of derivatives. Observe that ρ(t) ≤ t ≤ σ(t), ∀ t ∈ T.

Definition 2.2 A nonmaximal point t0 ∈ T is called right-scattered (rs) if σ(t0) >

t0 and right-dense (rd) if σ(t0) = t0. A nonminimal point t0 ∈ T is called left-scattered

(ls) if ρ(t0) < t0 and left-dense (ld) if ρ(t0) = t0.

Let K(Rn) denote the collection of nonempty, compact and convex subsets of R
n.

We define the Hausdorff metric as

D[X, Y ] = max[sup
y∈Y

d(y, X), sup
x∈X

d(x, Y )],

where d(y, X) = inf[d(y, x) : x ∈ X] and X, Y are bounded subsets of Rn. Notice that

K(Rn) with the metric is a complete metric space. Moreover, K(Rn) equipped with

the natural algebraic operations of addition and nonnegative scalar multiplication

becomes a semilinear metric space which can be embedded as a complete cone into

a corresponding Banach space. This space contains a zero element 0, namely the set

consisting of a single specific element, the zero vector of R
n. The Hausdorff metric

satisfies the following properties:

D[U + W, V + W ] = D[U, V ] and D[U, V ] = D[V, U ],

D[µU, µV ] = µD[U, V ],

D[U, V ] ≤ D[U, W ] + D[V, W ],

∀ U, V, W ∈ K(Rn) and µ ∈ R+. Note that the space K(Rn) does not have the

familiar properties of subtraction that are common in R
n and instead we have the

Hukuhara-based subtraction of the elements of K(Rn).
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Definition 2.3 The set Z ∈ K(Rn) satisfying X = Y + Z is known as the

Hukuhara difference of the sets X and Y in K(Rn) and is denoted as X − Y .

Definition 2.4 A set valued function F : T → K(Rn) is called rd−continuous if

and only if for every right-dense point t0 ∈ T, we have limt→t
+

0
F (t) = F (t0)(∈ K(Rn)).

Remark 2.1 Crd[T, K(Rn)] will denote the set of rd−continuous functions from

T to K(Rn).

Definition 2.5 The forward derivative of F : T → K(Rn), denoted by F ∆, is

defined by

F∆(t) =
1

σ(t) − t
· [F (σ(t)) − F (t)] if t is right-scattered

and

F∆(t) = lim
s→t+

1

s − t
· [F (s) − F (t)] if t is right-dense.

Analogously, the backward derivative F∇ is defined as

F∇(t) =
1

t − ρ(t)
· [F (t) − F (ρ(t))] if t is left-scattered

and

F∇(t) = lim
s→t−

1

t − s
· [F (t) − F (s)] if t is left-dense.

Remark 2.2 The usual scalar subtraction occurs in the scalar co-efficient at

the beginning of the above expressions and the Hukuhara set difference occurs inside

the brackets. Clearly, the existence of Hukuhara difference ensures the existence of

the derivative in Definition 2.5 In the forthcoming analysis, we will be considering

the forward derivative as the results for backward derivative follow immediately with

suitable changes. The backward derivative has the following properties:

(i) Let F, G : T → K(Rn) be differentiable at t, then (F + G)∆(t) = F ∆(t) +

G∆(t);

(ii) (αF )∆(t) = αF ∆(t), α ∈ R+.

Definition 2.6 Let F : T → K(Rn). Then Fs : T → R
n is a selector of F if

Fs(t) ∈ F (t) for every t. Fs is an integrable selector of F if Fs is a selector of F and

Fs is integrable. Let S(F ) denote the set of all integrable selectors of F .

Given a, b ∈ T, the definite integral from a to b of a function F : T → K(Rn) is

defined as ∫ b

a

F (t)∆t = {

∫ b

a

Fs(t)∆t : Fs ∈ S(F )}.

Remark 2.3 If the sets in K(Rn) are singletons only, then there is only one

selector possible, namely F itself. In this case, the integral reduces to the generalized

integral from time scales into (Rn). The assumption n = 1 generalizes into the

integral for time scales. When T is everywhere right-dense, then we have ∆t = dt
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which results into the conventional formulation for integration of set valued functions.

Moreover, for a, b, c ∈ T, we have

(i)
∫ c

a
F (t)∆t =

∫ b

a
F (t)∆t +

∫ c

b
F (t)∆t,

(ii)
∫ b

a
F (t)∆t is closed and convex, but need not be necessarily compact.

Definition 2.7 Let F, G : T → K(Rn). Then the Hausdorff distance between

F and G, D[F (.), G(.)] : T → R+ is ∆− integrable and

D[

∫ t

t0

F (s)∆s,

∫ t

t0

G(s)∆s] ≤

∫ t

t0

D[F (s), G(s)]∆s.

3. SOME BASIC RESULTS

Consider the initial value problem

(1) X∆(t) = F (t, X), X(t0) = X0,

where F ∈ Crd[T × K(Rn), K(Rn)].

Now we prove some comparison and existence results for the IVP (1).

Theorem 3.1. Assume that F ∈ Crd[T × K(R+), K(R+)] and

D[F (t, X), F (t, Y )] ≤ g(t, D[X, Y ]), t ∈ T, X, Y ∈ K(Rn),

where g ∈ Crd[T × R+, R+]. Further, the maximal solution r(t) = r(t, t0, w0) of the

scalar differential equation

w∆(t) = g(t, w), w(t0) = w0 ≥ 0,

exists for t ≥ t0. If X(t) = X(t, t0, X0), Y (t) = Y (t, t0, Y0) are any two solutions of

(1) with X(t0) = X0, Y (t0) = Y0 (X0, Y0 ∈ K(Rn)) existing for t ≥ t0, then

D[X(t), Y (t)] ≤ r(t, t0, w0), t ≥ t0,

provided D[X0, Y0] ≤ w0.

Proof. Since X(t) and Y (t) are the solutions of (1), the Hukuhara differ-

ence X(σ(t)) − X(t), Y (σ(t)) − Y (t) exist if t is right-scattered. We set m(t) =

D[X(t), Y (t)]. Then

m(σ(t)) − m(t) = D[X(σ(t)), Y (σ(t))] − D[X(t), Y (t)]

≤ D[X(σ(t)), X(t) + (σ(t) − t)F (t, X)]

+ D[X(t) + (σ(t) − t)F (t, X), Y (t) + (σ(t) − t)F (t, Y )]

+ D[Y (t) + (σ(t) − t)F (t, Y ), Y (σ(t))] − D[X(t), Y (t)]

≤ D[X(σ(t)), X(t) + (σ(t) − t)F (t, X)]

+ D[Y (t) + (σ(t) − t)F (t, Y ), Y (σ(t))]

+ (σ(t) − t)D[F (t, X), F (t, Y )].
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Thus

m(σ(t)) − m(t)

σ(t) − t
≤ D[

X(σ(t)) − X(t)

σ(t) − t
, F (t, X)]

+ D[F (t, Y ),
Y (σ(t)) − Y (t)

σ(t) − t
] + D[F (t, X), F (t, Y )],

which, in view of Definition 2.5, yields

m∆(t) ≤ D[X∆(t), F (t, X)] + D[F (t, Y ), Y ∆(t)] + D[F (t, X), F (t, Y )].

Consequently, we have

m∆(t) ≤ D[F (t, X), F (t, Y )] ≤ g(t, D[X, Y ]) = g(t, m(t)).

Since m(t0) = D[X(t0), Y (t0)] = D[X0, Y0] ≤ w0, therefore, by Theorem 1.4.1 [9],

it follows that m(t) ≤ r(t, t0, w0), that is, D[X(t), Y (t)] ≤ r(t, t0, w0), t ≥ t0. This

completes the proof.

Now, we prove an existence and uniqueness result under the assumptions more

general than the Lipschitz condition [8].

Theorem 3.2. Assume that

(i) Let B0 ⊂ T × K(Rn) and F ∈ Crd[B0, K(Rn)], and there exist values a, b such

that |t − t0| ≤ a, D[X, X0] ≤ b, t ∈ J = [t0, t0 + a]. Further, there exists M0

such that max(t,X)∈B0
‖F (t, X)‖ = M0.

(ii) g ∈ Crd[J × [0, 2b], R+] with g(t, w) ≤ M1 on J × [0, 2b], g(t, 0) ≡ 0, g(t, w) is

nondecreasing in w for each t ∈ J and w(t) ≡ 0 is the only solution of

(2) w∆(t) = g(t, w), w(t0) = 0 on J.

(iii) D[F (t, X), F (t, Y )] ≤ g(t, D[X, Y ]) on B0.

Then the successive approximations given by

Xn+1(t) = X0 +

∫ t

t0

F (s, Xn(s))∆s, X(t0) = X0, n = 0, 1, 2, . . . ,

exist on B0 for all values of t ∈ J0 = [t0, t0 + h], where h = min{a, b/M2}, M2 =

max(M0, M1) and converge uniformly to the unique solution of (1) on J0.

Proof. As a first step, we show that the family of successive approximations

exists on the region B0 for all t ∈ J0. Since

D[Xn+1(t), X0] = D[X0 +

∫ t

t0

F (s, Xn(s))∆s, X0] = D[

∫ t

t0

F (s, Xn(s))∆s, 0]

= ‖

∫ t

t0

F (s, Xn(s))∆s‖ ≤

∫ t

t0

‖F (s, Xn(s))‖∆s ≤ M0(t − t0) ≤ M0b/M2 ≤ b,

therefore, (t, Xn(t)) ∈ B0 for all t ∈ J0. Hence the successive approximations {Xn}

are well defined on J0.
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Next, we define the successive approximations for (2) as

w0(t) = M2(t − t0), wn+1(t) =

∫ t

t0

g(s, wn(s))∆s, t ∈ J0, n = 0, 1, 2, . . .

In view of the monotone character of g(t, w) in w, it follows by an easy induction

(which holds on time scales [1]) that the successive approximations {wn} are well

defined on J0 and 0 ≤ wn+1 ≤ wn, n = 0, 1, 2, . . . on J0. As |w∆
n (t)| ≤ g(t, wn−1) ≤

M1, therefore by Arzela-Ascoli theorem together with the monotonicity of {wn}, we

conclude that limn→∞ wn(t) = w(t) uniformly on J0. Clearly w(t) satisfies (2) and by

the assumption (ii), we have w(t) ≥ 0, t ∈ J0.

Now we prove the uniform convergence of the successive approximations {Xn(t)}

on J0. Observe that

D[X1(t), X0] ≤

∫ t

t0

‖[F (s, X0(s))‖∆s ≤ M2(t − t0) = w0(t).

For k > 1, we assume that

D[Xk(t), Xk−1(t)] ≤ wk−1(t).

In view of (iii) and the monotone character of (g(t, w), we find that

D[Xk+1(t), Xk(t)] ≤

∫ t

t0

D[F (s, Xk(s)), F (s, Xk−1(s))]∆s

≤

∫ t

t0

g(s, wk−1(s))∆s = wk(t).

Thus, by mathematical induction, the estimate

(3) D[Xn+1(t), Xn(t)] ≤ wn(t), t ∈ J0,

is true for all n.

Letting x(t) = D[Xn+1(t), Xn(t)], t ∈ J0 and repeating the arguments used in

the proof of Theorem 3.1, it follows that

x∆(t) ≤ g(t, D[Xn(t), Xn−1(t)]) ≤ g(t, wn−1(t)), t ∈ J0.

Now, for n ≤ p, we set y(t) = D[Xn(t), Xp(t)], t ∈ J0. Employing the method of

proof of Theorem 3.1 together with the monotonicity of of g(t, w) in w and the fact

that wp−1 ≤ wn−1 ({wn} is a decreasing sequence), we obtain

y∆(t) ≤ D[X∆
n (t), X∆

p (t)] = D[F (t, Xn(t)), F (t, Xp(t))

≤ D[F (t, Xn(t)), F (t, Xn−1(t)) + D[F (t, Xn−1(t)), F (t, Xp−1(t))

+ D[F (t, Xp(t)), F (t, Xp−1(t))

≤ g(t, wn−1(t)) + g(t, wp−1(t)) + g(t, D[Xn(t), Xp(t)])

≤ g(t, y(t)) + 2g(t, wn−1(t)), t ∈ J0,
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which, by the Comparison Theorem 1.4.1 [9], yields

y(t) ≤ rn(t), t ∈ J0,

where rn(t) is the maximal solution of

r∆
n (t) = g(t, rn(t)) + 2g(t, wn−1(t)), rn(t0) = 0, for each n.

As 2g(t, wn−1(t)) → 0 uniformly on J0 as n → ∞, it follows by Lemma 1.3.1 [9]

that rn(t) → 0 uniformly on J0 as n → ∞. Thus, from the inequality (3) and the

definition of y(t), we deduce that Xn(t) converges uniformly to X(t) and hence X(t)

is a solution of (1).

In order to establish the uniqueness of the solution, let Y (t) be another solution

of (1) on J0. Setting m(t) = D[X(t), Y (t)] and noting that m(t0) = 0, and applying

the arguments of proof and conclusion of Theorem 3.1, we obtain

m∆(t) ≤ g(t, m(t)), t ∈ J0,

and m(t) ≤ r(t, t0, 0) t ∈ J0. By the assumption r(t, t0, 0) = 0, we obtain X(t) ≡ Y (t)

on J0. This completes the proof.

4. STABILITY CRITERIA

Definition 4.1 For V ∈ Crd[T × K(Rn), R+], we define V ∆(t, X(t)) as: given

any ε > 0, there exists a neighbourhood Nε of t ∈ T, that is, Nε = (t − δ, t + δ) ∩ T

for some δ > 0 such that

|[V (σ(t), X(σ(t)))−V (s, X(σ(t)))]−(σ(t)−s)[F (t, X(t))+V ∆(t, X(t))]| ≤ ε|σ(t)−s|,

for each s ∈ Nε, s > t. If t is right-scattered and V (t, X(t)) is continuous at t, then

the above definition takes the form

V ∆(t, X(t)) =
V (σ(t), X(σ(t))) − V (t, X(t))

σ(t) − t
.

The following comparison theorem provides a basis to investigate the stability criteria

of set differential equation on time scales in term of Lyapunov-like functions.

Theorem 4.1 Assume that

(A1) V ∈ Crd[T × K(Rn), R+] and |V (t, X) − V (t, Y )| ≤ KD[X, Y ] for each right-

dense t ∈ T, X, Y ∈ K(Rn) and locally Lipschitz constant K;

(A2) g ∈ Crd[T × R+, R+] and for X ∈ K(Rn), t ∈ T,

V ∆(t, X(t)) ≤ g(t, V (t, X(t)));

(A3) there exists the maximal solution r(t, t0, w0) on T of

w∆(t) = g(t, w(t)), w(t0) = w0 ≥ 0.
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Then, if V (t0, X0) ≤ w0, we have V (t, X(t)) ≤ r(t, t0, w0), t ∈ T, t ≥ t0.

Proof. Define m(t) = V (t, X(t)) so that m(t0) = V (t0, X0) ≤ w0 and consider

m(σ(t)) − m(t) = V (σ(t), X(σ(t))) − V (t, X(t))

= V (σ(t), X(σ(t))) − V (σ(t), X(t) + (σ(t) − t)F (t, X(t))

+ V (σ(t), X(t) + (σ(t) − t)F (t, X(t)) − V (t, X(t))

≤ KD[X(σ(t)), X(t) + (σ(t) − t)F (t, X(t))]

+ V (σ(t), X(t) + (σ(t) − t)F (t, X(t)) − V (t, X(t)).

Let Z(t) be the Hukuhara difference of X(σ(t)) and X(t) which is assumed to exist

if t is right-scattered, that is, X(σ(t)) = X(t) + Z(t). Then we have

m(σ(t)) − m(t) ≤ KD[Z(t), (σ(t) − t)F (t, X(t))] + V (σ(t), X(σ(t))) − V (t, X(t)),

which in view of definition 2.5 and assumption (A2), implies that

m(σ(t)) − m(t)

σ(t) − t
≤ KD[

X(σ(t)) − X(t)

σ(t) − t
, F (t, X)]

+
V (σ(t), X(σ(t))) − V (t, X(t))

σ(t) − t

= V ∆(t, X(t)) ≤ g(t, V (t, X(t))).

Thus, we have

m∆(t) ≤ g(t, m(t), m(t0) ≤ w0,

which, as before (in the proof of Theorem 3.1), provides the desired estimate

V (t, X(t)) ≤ r(t, t0, w0), t ∈ T, t ≥ t0.

This proves the assertion of the theorem.

Remark 4.1 In order to match the behavior of the solution of set differential

equations with the corresponding solutions of ordinary differential equations, we sup-

pose that the Hukuhara difference W0 exists for any given initial values X0, Y0 ∈

K(Rn), that is, X0 = W0 + Y0 and then consider the stability of the solution

X(t, t0, X0 − Y0) = X(t, t0, W0) of (1).

We are now in a position to formulate the stability criteria for the trivial solution

of (1) as follows:

Theorem 4.2. Assume that the assumptions (A1) and (A2) of Theorem 4.1 hold on

T ×Ω(ρ) instead of K(Rn), where Ω(ρ) = [X ∈ K(Rn) : ‖X‖ < ρ]. Further, suppose

that b(‖X‖) ≤ V (t, X) ≤ a(‖X‖) on T × Ω(ρ), where a, b ∈ [[0, ρ], R+] are the usual

K class functions. Then the stability properties of the trivial solution of (2) imply

the corresponding properties of the trivial solution of (1) subject to the condition

X(t, t0, X0 − Y0) = U(t, t0, W0).
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Proof. We only provide the outline of the proof. By Theorem 4.1 and using the

standard method of proof of known results [9], the conclusion of the theorem can be

established in a straightforward way.
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