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ABSTRACT. Using the technique of a suitable measure of noncompactness in Banach algebra, we
prove an existence theorem for some functional-integral equations which contains as particular cases
a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis
and its applications. Also, the famous Chandrasekhar’s integral equation is considered as a special

case.
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1. INTRODUCTION

In this paper we study the quadratic functional-integral equation with singular

kernel, namely

(L) o) = 1 (1), oy [ ).

g (t,$('y(t)),x(t)/0 v(t, s, x(s)) ds) ,tel=[0,1], 0 <a<1.

The equations of such kind contain as spacial case many integral and functional equa-

tions that arise in nonlinear analysis and its applications. Also, Eq.(1.1) contains, as
spacial case, the integral equation of Chandrasekhar which arises in radiative transfer,
neutron transport and the kinetic theory of gases, [1, 5, 7, 8, 10, 11, 12, 15, 16, 17, 18].

Using the technique of a suitable measure of noncompactness in Banach algebra,
we prove an existence theorem for Eq.(1.1). In fact, our results in this paper are
motivated by extensions and generalization of the results in [2] and [7] based on the

regular measure of noncompactness in Banach algebra and fixed point theorem due
to Darbo.

2. AUXILIARY FACTS AND RESULTS

This section is devoted to collect some definitions and results which will be needed

further on. Assume that (E, ||.||) is a real Banach space with zero element 6. Denote
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by B(z,r) the closed ball centered at x and with radius . The symbol B, stands for
the ball B(0,r).

If X is a subset of E, then X and ConvX denote the closure and convex closure of
X, respectively. We denote the standard algebraic operations on sets by the symbols
AX and X+Y. Moreover, we denote by Mg the family of all nonempty and bounded

subsets of E and Mg its subfamily consisting of all relatively compact subsets.

Next we give the concept of a regular measure of noncompactness [6]:

Definition 2.1. A mapping u : Mg — [0,400) is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:

u(X) =0« X e Ng.

X CY = p(X) < uY).

(X) = u(CovX) = pu(X).

(AX) = || u(X), for A € R.

(X +Y) < u(X) + u(¥).

(XUY) = max{u(X), u(Y)}.

Remark 2.2. Notice that the condition

7) If {X,} is a sequence of nonempty, bounded, closed subsets of E such that
Xpt1 C Xy, n=1,2,3,..., and lim,, o 1(X,,) = 0 then the set Xoo = X,

is nonempty.
follows immediately from definition 2.1 above. To see this, let us consider an arbitrary
sequence {z,}, where x, € X,, for n = 1, 2, 3, 3, .... Further, fix an arbitrary
natural number k, k > 2. Then, using 1) — 6), we get
:u({xn}) = H({l'l, L2, } U {$k> Lh+1; })

= max{u({z1, 72, ...}), p{ze, 2o, - 1)}

= pu({zr, The1, o))

< p(Xk).

Since k was chosen arbitrary, the above estimate implies that pu({x,}) = 0. Thus

the sequence {z,} is relatively compact, so it has an accumlation point z. In view

of the closeness of X, we infer that z € Xy for any £ = 1, 2, 3, ... (since x is an
accumlation point of any subsequence {zy, i1, ...}). Hence we deduce that
o0
T E ﬂ X,
n=1

This means that the set ()~ X,, is nonempty. This completes the proof of 7). Some
authors define a measure of noncompactness as satisfying 1-7, although we see that

it is not necessary to include 7).
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In what follows we will work in the Banach space C(I) consisting of all real
functions defined and continuous on I. The space C(I) is equipped with the standard
norm

| z || = max{|x(t)| : t € I}
Obviously, the space C(I) has also the structure of Banach algebra. Now, we recollect
the construction of a special measure of noncompactness in C(I) which will be used

in the next section, see [6].

Let us fix a nonempty and bounded subset X of C(I). For x € X and ¢ > 0

denoted by w(z,e) the modulus of continuity of the function z, i.e.,
w(z,e) =sup{|z(t) —z(s)| : t, s € [0,1], [t — s| < e}

Further, let us put
w(X,e) =sup{w(z,e):x € X}
and
wo(X) = lir%w(X, €).

It can be shown [4] that the function wy(X) is a regular measure of noncompactness
in the space C(I). Finally, the fixed point theorem due to Darbo will be recalled [13]:

Theorem 2.3. Let ) be a nonempty, bounded, closed and convexr subset of the space
E and let

H:Q—Q
be a continuous transformation which is a contraction with respect to the measure of

noncompactness i, i.e., there exists a constant 0 < k < 1 such that u(H X) < k p(X)
for any nonempty subset X of Q.

Then H has a fixed point in the set Q)

Moreover, the following theorem holds which is the main tool in carrying out our
proof, [4].

Theorem 2.4. Assume that €2 is nonempty, bounded, convex, and closed subset of
C(I) and the operators F and G transform continuously the set Q into C'(1) in such a
way that F(Q) and G(Q) are bounded. Moreover, assume that the operator T = F -G
transforms 1 into itself. If the operators F and G satisfy on the set £ the Darbo
condition, with respect to the measure of noncompactness wg, with constant ki and
ko, respectively. Then the operator T satisfies the Darbo condition on 0 with the

constant
| F (] k2 4+ 1G]] Fi.
In particular, if || F(Q)|] k2 + ||G(Q)|| k1 < 1 then T is a contraction with respect to

the measure of noncompactness wg and so has at least on fixed point in 2.
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3. MAIN THEOREM
In this section, we will study Eq.(1.1) assuming that the following assumptions
are satisfied:

a;) f, g : I xR xR — R are continuous and there exist nonnegative constants
a;, b;; 1 =1, 2, such that
|f(t,$,0)| < +b1 |ZI§'|
|g(t,$,0)| < as+ b2 |$|7

forallt €l and x € R.
ay) The functions f(t,z,y) and g(t, z, y) satisfy the Lipschitz condition with respect

to the variables  and y with constants [y, lo > 0 respectively, i.e.,

|f(t 1, y) = [t 22, y)| < o1 — a2
9(t,21,y) — g(t, 22, y)| < 1 |21 — 22,
forall t € I and z1, 2, y € R, and
[tz y1) = f(E2,y2)| < o |z — 2
9(t, 2, 91) — g(t, 2, 92)| < lp |21 — 22,
forall t € I and z, y1, y2 € R.
az) u, v : I x I x R — R are continuous and there exist nonnegative constants
¢, dg; 1 =1, 2, such that
lu(t, s, z)| < ¢ +dy |z
lu(t,s,z)| < co+ds |2,
forall s, t €l and z € R.

ay) B, v:1— T are continuous and satisfy,

|B(t1) = B(t2)] < [t — 12
[y(t1) = (t2)] < [t — 1o,
for all t;, ty € L.
as) The inequality
lo(c+dr)+(a+br)T(a+1)]-[lar(c+dr)+(a+br)] <r T(a+1)

has a positive solution ry, where a = max{ay, as}, b = max{by, bo}, c = max{ecy, co}
and d = max{d;, d>}.
ag)
Lifla(I+7g) (c+drg)+(a+bry) I'a+1)] <T(a+1).

Now, we are in a position to state and prove our main result in this paper
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Theorem 3.1. Let assumptions a;) — ag) be satisfied. Then Eq.(1.1) has at least one

solution x in the Banach algebra C(I).

Proof. Define the operators F and G on the space C(I) in the following way

o) = £ (a6, 1y | T ).

(Gz)(t) =9 (t,x(v(t)),m(t) /01 u(t, s, x(s)) dS) :

From Assumptions a;) and ag), it follows that the operators F and G transform the

space C(I) into itself.
Now, let us define the operator 7 on C(I) by setting

Tr=(Fx)-(Gx).

Obviously, 7 transforms C(I) into itself. Also, let us fix x € C(I). Then, using our
assumptions for ¢ € I, we get

ool < |7 (nao), mo [ e g)|
(

tult, s, z(s)

< | (ot i [ as) - £ atte).o
rlrtestsool
< / e N 0)]

t—s

(3.1) <

F(a+ 1) (c1 4 dy [|z]]) + (a1 + by [|]]).

On the other hand
1
G o)D) < \g(t,xw(t)),x(t) | wtesato) ds)

IN

1
‘g (t,xw»,x(t) | otts.ate) ds) gt 2(4(9),0)
g (t2(v(1).0)]
1

b [(2)] /0 [o(t, 5,2(5))| ds + as + by [2(1(0)
(3.2) < 1y 2l (e + da lz]) + (az + By [1z]).
By (3.1) and (3.2), we obtain

(T = [(Fo)®)]- |G

IN

A

< ﬁ [l2 (c1 +di |lz]l) + (a1 + b1 [[2]) T'(e +1)]
X[l |||l (c2 + da [|z[]) + (a2 + b2 [|lz]])]-
Hence
l
1Tz < [e——(c+d|]) + (a+bl|z])] - (2 || (c+d [|z])) + (a +b [|=]))]-

I'(a+1)
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We deduce that, by taking into account assumption as), the operator 7 maps the
ball B,, into itself.

Next, we show that the operator F is continuous on B,,. To do this fix ¢ > 0
and take z, y € B,, such that ||z —y|| <e. Then, for t € I we get

o0 - Eol = |7 (e, o [t a)

(«

— 1 (o), i [ D )

AN
~
VR
J@i—
=
@
=

=
2"
O\H
=&
&L\?‘_
I %
w |~
==
|| ®»
o Nt
QL
)
~~

= (o) J, (t—s)i-=
+ 1 |2(B()) — y(B(2)
lo

< Fa @)+ e -l
lo

< Fla 1 1) wr(u,e) +¢ by,

where
wr(u,e) = SUp{|U(t,S,Z[}) - U(t,S,y)l : t? s € 17 T,y c [_TO?TO]? |‘T - y| S E}'

By uniform continuity of the functions u on the set I x I x [—rg, 7o, we infer that
wy(u,e) — 0 as e — 0. Thus, the above estimate shows that the operator F is
continuous on the ball B,,. Similarly, we can show that the operator G is continuous
on the ball B,, and consequently the operator 7 is continuous on the ball B,,.

Now, we show that the operators F and G satisfy the Darbo condition on the ball
B,,. To do this take a nonempty subset X of B,,. Next, choose an arbitrary number
e >0 and t, ty € I such that |ty — t;| < e. Then we obtain

(Fz)(t) — (Fa)(t)] = ‘f <t2,w(5(t2))7r(1a) /0 2 qét;’_s’;l(fl) ds>

GGy AL

(@) (tr—s)t=

7 (100 g [ )

IN
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-1 (ot i [ G o)
| (et o [ g o)
ey S

ls u(ta, s, x(s)) (tl,s x(s ))
= T /0 CEDE /0 <t1—s> o ‘
+|f <t2,:c(ﬁ( 2)), F(la) ttll’_ssml a )

1 u(ty, s, x

)

(s))
_f<t17x(ﬂ(t2)) F(a)/ (tl—S)l « ds
1 u(ty, s,2(s))
+‘f <t17$(6(t2)) F(Oé)/ (tl—S)l « d8>
- N 1 u(ty, s, z(s)) o
f (tl, (ﬁ(h))? F(Oé)/(] (tl _s)l—a d >‘
But
/(; t2 — 5)1_0‘ ds /0 (tl — 8)1_a ds
2 u(ty, s,2(s)) u(ty, s, z(s))
=1, W ‘“‘/ ﬁ ds‘
ulty, s, z(s u(ty, s, x(s))
+A tQ—Sla /; (tl_sla '
u(ty, s, x(s)) u(ty, s, z(s))
t1—51a /0 (tl_sla ‘
/ |u ta, s, z( —u(tl,s z(s)l 4
t2
/ lu(ty, s,2(s)|[(tz — s)* ' — (t; — 5)* 7! ds
2 Ju(ty, s, 2(s))|
+ " (tl _ S)l—oe
. 2 o a—1 d
< wy(e, -, )/0 (ta — )" ds
+L/ 2[(1&2 —§)* "t — (4 — 5)° 1] ds
0
+L/t2(t —5) " ds
Then

|(Fa)(t2) — (F)(t1)

447
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+wp(e, )+ |z(B(t2))z(B(t))]

where

wu(e,.,.) = Sup{lu(r, s, x) —u(t,s,x)| : t, 7, s€l, x € [—rg,ro), |T—t] < e},

L =Sup{|u(t,s,x)|:t, s€l, x €[—ror}

and

Wf(E,., ) = Sup{\f(T,a?,y) - f(t,CC,yN it TE I? VS [_T07T0]7
y€[-roLro L], |t —t] <e}.

Thus from the last inequality, we get

|(Fzx)(1) — (Fx)(t)| b ] {waule,.,.) +Laed* "}

< 7
- INa+1
+wy(e,.,.) + 1l w(z,e).

or

ly o
w(Frx,e) < ot D) {wale,,.) + Laed® '} +wp(e,.,.) + 1 w(z,e),

where § € (t1,t3). Thus, taking the supremum in X, then the limit as ¢ — 0, and
taking into account the uniform continuity of the functions f and u on bounded sets,

we can deduce that

(3.3) wo(FX) < 11 wo(X).
In the similar way, we can prove that

(3.4) wo(GX) <1y wo(X).

Finally, liking (3.1) — (3.4) and keeping in mind Theorem2.3, we deduce that the
operator 7 satisfies on the ball B,, the Darbo condition with respect to the measure
wo with constant
po_tlz (1+7o)(c+dro) + 1 (a+brp)
= To)(C T a To).
T(a+ 1) 0 0 1 0
Thus, the operator 7 is a contraction on B,, with respect to the measure wy, thanks
to assumption ag). Therefore, applying Darbo’s theorem we get that the operator 7°
has a fixed point in B,,. Consequently, Eq.(1.1) has at least one solution in B,,. This
completes the proof. O
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4. EXAMPLES
Example 4.1. If f(t,z,y) = fi(t,x) and ¢(t,z,y) = 1, then Eq.(1.1) is the well-
known functional equation of the first order with delay
2(t) = fi(t, z(B(1))),
see [7] and references therein.

Example 4.2. If f(t,z,y) = a(t) +y and g(¢,z,y) = 1, then Eq.(1.1) reduces to the
Abel integral equation of the second kind

z(t) = a(t) + F(la) /0 u(it,_s;fl((_si) ds.

On the other hand, for f(t,z,y) =1 and g(¢,x,y) = a(t) +y, Eq.(1.1) reduces to the

well-known quadratic integral equation of Urysohn type

x(t) = a(t) + x(t)/o v(t, s, x(s)) ds.

Example 4.3. If g(t,z,y) = 1, f(t) = t and a« = 1, then Eq.(1.1) becomes a

functional-integral equation

(4.1) o(t) = f (t, z(t), /0 t ult, s, 2(s)) ds) .

The authors proved in [14] the existence of solutions to Eq.(4.1). These solutions are

continuous and bounded on the interval [0, 0c0) and are globally attractive.
Example 4.4. In the case f(t,z,y) =1, g(t,z,y) = 1+y and v(t, s,z) = HLS o(s) z,
Eq.(1.1) has the form

t
t+ s

(4.2) z(t) =1+ az(t)/o o(s) z(s) ds.

Eq.(4.2) is the famous quadratic integral equation of Chandrasekhar type considered
in many papers and monographs (cf. [1, 5, 10, 15] for instance). Some Problems
considered in the theory of radiative transfer, in the theory of neutron transport and
in the kinetic theory of gases lead to Eq.(4.2) (cf. [3, 5, 7, 9, 10, 12, 15, 16]).

Remark 4.5. In order to apply our technique to Eq.(4.2) we have to impose an
additional condition that the characteristic function ¢ is continuous and satisfies
®(0) = 0. This condition will ensure that the kernel v(¢, s, z) defined by

(tsa)={ s=0,t>0, z€R
v, s,x) =
Lo(s)a, s#0,t>0,z€R

t+s

is continuous on I X I x R in accordance with assumption as), see [7].
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