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ABSTRACT. Using the technique of a suitable measure of noncompactness in Banach algebra, we

prove an existence theorem for some functional-integral equations which contains as particular cases

a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis

and its applications. Also, the famous Chandrasekhar’s integral equation is considered as a special

case.
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1. INTRODUCTION

In this paper we study the quadratic functional-integral equation with singular

kernel, namely

x(t) = f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds

)

.(1.1)

g

(

t, x(γ(t)), x(t)

∫

1

0

v(t, s, x(s)) ds

)

, t ∈ I = [0, 1], 0 < α ≤ 1.

The equations of such kind contain as spacial case many integral and functional equa-

tions that arise in nonlinear analysis and its applications. Also, Eq.(1.1) contains, as

spacial case, the integral equation of Chandrasekhar which arises in radiative transfer,

neutron transport and the kinetic theory of gases, [1, 5, 7, 8, 10, 11, 12, 15, 16, 17, 18].

Using the technique of a suitable measure of noncompactness in Banach algebra,

we prove an existence theorem for Eq.(1.1). In fact, our results in this paper are

motivated by extensions and generalization of the results in [2] and [7] based on the

regular measure of noncompactness in Banach algebra and fixed point theorem due

to Darbo.

2. AUXILIARY FACTS AND RESULTS

This section is devoted to collect some definitions and results which will be needed

further on. Assume that (E, ‖.‖) is a real Banach space with zero element θ. Denote
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by B(x, r) the closed ball centered at x and with radius r. The symbol Br stands for

the ball B(θ, r).

If X is a subset of E, then X̄ and ConvX denote the closure and convex closure of

X, respectively. We denote the standard algebraic operations on sets by the symbols

λX and X+Y. Moreover, we denote by ME the family of all nonempty and bounded

subsets of E and NE its subfamily consisting of all relatively compact subsets.

Next we give the concept of a regular measure of noncompactness [6]:

Definition 2.1. A mapping µ : ME → [0, +∞) is said to be a measure of noncom-

pactness in E if it satisfies the following conditions:

1) µ(X) = 0 ⇔ X ∈ NE.

2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3) µ(X̄) = µ(ConvX) = µ(X).

4) µ(λX) = |λ| µ(X), for λ ∈ R.

5) µ(X + Y) ≤ µ(X) + µ(Y )).

6) µ(X ∪ Y) = max{µ(X), µ(Y )}.

Remark 2.2. Notice that the condition

7) If {Xn} is a sequence of nonempty, bounded, closed subsets of E such that

Xn+1 ⊂ Xn, n = 1, 2, 3, . . ., and limn→∞
µ(Xn) = 0 then the set X

∞
=

⋂

∞

n=1
Xn

is nonempty.

follows immediately from definition 2.1 above. To see this, let us consider an arbitrary

sequence {xn}, where xn ∈ Xn for n = 1, 2, 3, 3, . . .. Further, fix an arbitrary

natural number k, k ≥ 2. Then, using 1) − 6), we get

µ({xn}) = µ({x1, x2, . . .} ∪ {xk, xk+1, . . .})

= max{µ({x1, x2, . . .}), µ({xk, xk+1, . . .})}

= µ({xk, xk+1, . . .})

≤ µ(Xk).

Since k was chosen arbitrary, the above estimate implies that µ({xn}) = 0. Thus

the sequence {xn} is relatively compact, so it has an accumlation point x. In view

of the closeness of Xk we infer that x ∈ Xk for any k = 1, 2, 3, . . . (since x is an

accumlation point of any subsequence {xk, xk+1, . . .}). Hence we deduce that

x ∈
∞
⋂

n=1

Xn.

This means that the set
⋂

∞

n=1
Xn is nonempty. This completes the proof of 7). Some

authors define a measure of noncompactness as satisfying 1-7, although we see that

it is not necessary to include 7).
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In what follows we will work in the Banach space C(I) consisting of all real

functions defined and continuous on I. The space C(I) is equipped with the standard

norm

‖ x ‖ = max{|x(t)| : t ∈ I}

Obviously, the space C(I) has also the structure of Banach algebra. Now, we recollect

the construction of a special measure of noncompactness in C(I) which will be used

in the next section, see [6].

Let us fix a nonempty and bounded subset X of C(I). For x ∈ X and ε > 0

denoted by ω(x, ε) the modulus of continuity of the function x, i.e.,

ω(x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, 1], |t − s| ≤ ε}

Further, let us put

ω(X, ε) = sup{ω(x, ε) : x ∈ X}

and

ω0(X) = lim
ε→0

ω(X, ε).

It can be shown [4] that the function ω0(X) is a regular measure of noncompactness

in the space C(I). Finally, the fixed point theorem due to Darbo will be recalled [13]:

Theorem 2.3. Let Q be a nonempty, bounded, closed and convex subset of the space

E and let

H : Q → Q

be a continuous transformation which is a contraction with respect to the measure of

noncompactness µ, i.e., there exists a constant 0 ≤ k < 1 such that µ(H X) ≤ k µ(X)

for any nonempty subset X of Q.

Then H has a fixed point in the set Q

Moreover, the following theorem holds which is the main tool in carrying out our

proof, [4].

Theorem 2.4. Assume that Ω is nonempty, bounded, convex, and closed subset of

C(I) and the operators F and G transform continuously the set Ω into C(I) in such a

way that F(Ω) and G(Ω) are bounded. Moreover, assume that the operator T = F ·G

transforms Ω into itself. If the operators F and G satisfy on the set Ω the Darbo

condition, with respect to the measure of noncompactness ω0, with constant k1 and

k2, respectively. Then the operator T satisfies the Darbo condition on Ω with the

constant

‖F(Ω)‖ k2 + ‖G(Ω)‖ k1.

In particular, if ‖F(Ω)‖ k2 + ‖G(Ω)‖ k1 < 1 then T is a contraction with respect to

the measure of noncompactness ω0 and so has at least on fixed point in Ω.
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3. MAIN THEOREM

In this section, we will study Eq.(1.1) assuming that the following assumptions

are satisfied:

a1) f, g : I × R × R → R are continuous and there exist nonnegative constants

ai, bi; i = 1, 2, such that

|f(t, x, 0)| ≤ a1 + b1 |x|

|g(t, x, 0)| ≤ a2 + b2 |x|,

for all t ∈ I and x ∈ R.

a2) The functions f(t, x, y) and g(t, x, y) satisfy the Lipschitz condition with respect

to the variables x and y with constants l1, l2 ≥ 0 respectively, i.e.,

|f(t, x1, y)− f(t, x2, y)| ≤ l1 |x1 − x2|

|g(t, x1, y) − g(t, x2, y)| ≤ l1 |x1 − x2|,

for all t ∈ I and x1, x2, y ∈ R, and

|f(t, x, y1) − f(t, x, y2)| ≤ l2 |x1 − x2|

|g(t, x, y1) − g(t, x, y2)| ≤ l2 |x1 − x2|,

for all t ∈ I and x, y1, y2 ∈ R.

a3) u, v : I × I × R → R are continuous and there exist nonnegative constants

ci, di; i = 1, 2, such that

|u(t, s, x)| ≤ c1 + d1 |x|

|v(t, s, x)| ≤ c2 + d2 |x|,

for all s, t ∈ I and x ∈ R.

a4) β, γ : I → I are continuous and satisfy,

|β(t1) − β(t2)| ≤ |t1 − t2|

|γ(t1) − γ(t2)| ≤ |t1 − t2|,

for all t1, t2 ∈ I.

a5) The inequality

[l2 (c + d r) + (a + b r) Γ(α + 1)] · [l2 r (c + d r) + (a + b r)] ≤ r Γ(α + 1)

has a positive solution r0, where a = max{a1, a2}, b = max{b1, b2}, c = max{c1, c2}

and d = max{d1, d2}.

a6)

l1 [l2 (1 + r0) (c + d r0) + (a + b r0) Γ(α + 1)] < Γ(α + 1).

Now, we are in a position to state and prove our main result in this paper
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Theorem 3.1. Let assumptions a1)−a6) be satisfied. Then Eq.(1.1) has at least one

solution x in the Banach algebra C(I).

Proof. Define the operators F and G on the space C(I) in the following way

(Fx)(t) = f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds

)

,

(Gx)(t) = g

(

t, x(γ(t)), x(t)

∫

1

0

v(t, s, x(s)) ds

)

.

From Assumptions a1) and a3), it follows that the operators F and G transform the

space C(I) into itself.

Now, let us define the operator T on C(I) by setting

T x = (Fx) · (Gx).

Obviously, T transforms C(I) into itself. Also, let us fix x ∈ C(I). Then, using our

assumptions for t ∈ I, we get

|(F x)(t)| ≤

∣

∣

∣

∣

f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds

)

− f (t, x(β(t)), 0)

∣

∣

∣

∣

+ |f (t, x(β(t)), 0)|

≤
l2

Γ(α)

∫ t

0

|u(t, s, x(s))|

(t − s)1−α
ds + a1 + b1 |x(β(t))|

≤
l2

Γ(α + 1)
(c1 + d1 ‖x‖) + (a1 + b1 ‖x‖).(3.1)

On the other hand

|(G x)(t)| ≤

∣

∣

∣

∣

g

(

t, x(γ(t)), x(t)

∫ 1

0

v(t, s, x(s)) ds

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

g

(

t, x(γ(t)), x(t)

∫ 1

0

v(t, s, x(s)) ds

)

− g (t, x(γ(t)), 0)

∣

∣

∣

∣

+ |g (t, x(γ(t)), 0)|

≤ l2 |x(t)|

∫

1

0

|v(t, s, x(s))| ds + a2 + b2 |x(γ(t))|

≤ l2 ‖x‖ (c2 + d2 ‖x‖) + (a2 + b2 ‖x‖).(3.2)

By (3.1) and (3.2), we obtain

|(T x)(t)| = |(Fx)(t)| · |(Gx)(t)|

≤
1

Γ(α + 1)
[l2 (c1 + d1 ‖x‖) + (a1 + b1 ‖x‖) Γ(α + 1)]

×[l2 ‖x‖ (c2 + d2 ‖x‖) + (a2 + b2 ‖x‖)].

Hence

‖T x‖ ≤ [
l2

Γ(α + 1)
(c + d ‖x‖) + (a + b ‖x‖)] · [l2 ‖x‖ (c + d ‖x‖) + (a + b ‖x‖)].
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We deduce that, by taking into account assumption a5), the operator T maps the

ball Br0
into itself.

Next, we show that the operator F is continuous on Br0
. To do this fix ε > 0

and take x, y ∈ Br0
such that ‖x − y‖ ≤ ε. Then, for t ∈ I we get

|(Fx)(t) − (Fy)(t)| =

∣

∣

∣

∣

f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds

)

− f

(

t, y(β(t)),
1

Γ(α)

∫ t

0

u(t, s, y(s))

(t − s)1−α
ds

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds

)

− f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, y(s))

(t − s)1−α
ds

)
∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

t, x(β(t)),
1

Γ(α)

∫ t

0

u(t, s, y(s))

(t − s)1−α
ds

)

− f

(

t, y(β(t)),
1

Γ(α)

∫ t

0

u(t, s, y(s))

(t − s)1−α
ds

)
∣

∣

∣

∣

≤
l2

Γ(α)

∫ t

0

|u(t, s, x(s)) − u(t, s, y(s))|

(t − s)1−α
ds

+ l1 |x(β(t)) − y(β(t))|

≤
l2

Γ(α + 1)
ωr(u, ε) + l1 ‖x − y‖

≤
l2

Γ(α + 1)
ωr(u, ε) + ε l1,

where

ωr(u, ε) = Sup {|u(t, s, x) − u(t, s, y)| : t, s ∈ I, x, y ∈ [−r0, r0], |x − y| ≤ ε} .

By uniform continuity of the functions u on the set I × I × [−r0, r0], we infer that

ωr(u, ε) → 0 as ε → 0. Thus, the above estimate shows that the operator F is

continuous on the ball Br0
. Similarly, we can show that the operator G is continuous

on the ball Br0
and consequently the operator T is continuous on the ball Br0

.

Now, we show that the operators F and G satisfy the Darbo condition on the ball

Br0
. To do this take a nonempty subset X of Br0

. Next, choose an arbitrary number

ε > 0 and t1, t2 ∈ I such that |t2 − t1| ≤ ε. Then we obtain

|(Fx)(t2) − (Fx)(t1)| =

∣

∣

∣

∣

f

(

t2, x(β(t2)),
1

Γ(α)

∫ t2

0

u(t2, s, x(s))

(t2 − s)1−α
ds

)

− f

(

t1, x(β(t1)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)∣

∣

∣

∣

≤

∣

∣

∣

∣

f

(

t2, x(β(t2)),
1

Γ(α)

∫ t2

0

u(t2, s, x(s))

(t2 − s)1−α
ds

)
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− f

(

t2, x(β(t2)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)
∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

t2, x(β(t2)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)

− f

(

t1, x(β(t1)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)
∣

∣

∣

∣

≤
l2

Γ(α)

∣

∣

∣

∣

∫ t2

0

u(t2, s, x(s))

(t2 − s)1−α
ds −

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

t2, x(β(t2)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)

− f

(

t1, x(β(t2)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

t1, x(β(t2)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)

− f

(

t1, x(β(t1)),
1

Γ(α)

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

)
∣

∣

∣

∣

.

But
∣

∣

∣

∣

∫ t2

0

u(t2, s, x(s))

(t2 − s)1−α
ds −

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t2

0

u(t2, s, x(s))

(t2 − s)1−α
ds −

∫ t2

0

u(t1, s, x(s))

(t2 − s)1−α
ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t2

0

u(t1, s, x(s))

(t2 − s)1−α
ds −

∫ t2

0

u(t1, s, x(s))

(t1 − s)1−α
ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t2

0

u(t1, s, x(s))

(t1 − s)1−α
ds −

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

∣

∣

∣

∣

≤

∫ t2

0

|u(t2, s, x(s)) − u(t1, s, x(s))|

(t2 − s)1−α
ds

+

∫ t2

0

|u(t1, s, x(s))|[(t2 − s)α−1 − (t1 − s)α−1] ds

+

∫ t2

t1

|u(t1, s, x(s))|

(t1 − s)1−α
ds

≤ ωu(ε, ., .)

∫ t2

0

(t2 − s)α−1 ds

+L

∫ t2

0

[(t2 − s)α−1 − (t1 − s)α−1] ds

+L

∫ t2

t1

(t1 − s)α−1 ds.

Then

|(Fx)(t2) − (Fx)(t1)| ≤
l2

Γ(α + 1)
{ωu(ε, ., .) t2

α + L (t2
α − t1

α)}
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+ωf (ε, ., .) + l1 |x(β(t2))x(β(t1))| ,

where

ωu(ε, ., .) = Sup {|u(τ, s, x) − u(t, s, x)| : t, τ, s ∈ I, x ∈ [−r0, r0], |τ − t| ≤ ε} ,

L = Sup {|u(t, s, x)| : t, s ∈ I, x ∈ [−r0, r0]}

and

ωf (ε, ., .) = Sup {|f(τ, x, y) − f(t, x, y)| : t, τ ∈ I, x ∈ [−r0, r0],

y ∈ [−r0 L, r0 L], |τ − t| ≤ ε} .

Thus from the last inequality, we get

|(Fx)(τ) − (Fx)(t)| ≤
l2

Γ(α + 1)

{

ωu(ε, ., .) + L α ε δα−1
}

+ωf(ε, ., .) + l1 ω(x, ε).

or

ω(Fx, ε) ≤
l2

Γ(α + 1)

{

ωu(ε, ., .) + L α ε δα−1
}

+ ωf(ε, ., .) + l1 ω(x, ε),

where δ ∈ (t1, t2). Thus, taking the supremum in X, then the limit as ε → 0, and

taking into account the uniform continuity of the functions f and u on bounded sets,

we can deduce that

(3.3) ω0(FX) ≤ l1 ω0(X).

In the similar way, we can prove that

(3.4) ω0(GX) ≤ l1 ω0(X).

Finally, liking (3.1) − (3.4) and keeping in mind Theorem2.3, we deduce that the

operator T satisfies on the ball Br0
the Darbo condition with respect to the measure

ω0 with constant

k =
l1 l2

Γ(α + 1)
(1 + r0)(c + d r0) + l1 (a + b r0).

Thus, the operator T is a contraction on Br0
with respect to the measure ω0, thanks

to assumption a6). Therefore, applying Darbo’s theorem we get that the operator T

has a fixed point in Br0
. Consequently, Eq.(1.1) has at least one solution in Br0

. This

completes the proof.
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4. EXAMPLES

Example 4.1. If f(t, x, y) = f1(t, x) and g(t, x, y) = 1, then Eq.(1.1) is the well-

known functional equation of the first order with delay

x(t) = f1(t, x(β(t))),

see [7] and references therein.

Example 4.2. If f(t, x, y) = a(t) + y and g(t, x, y) = 1, then Eq.(1.1) reduces to the

Abel integral equation of the second kind

x(t) = a(t) +
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds.

On the other hand, for f(t, x, y) = 1 and g(t, x, y) = a(t) + y, Eq.(1.1) reduces to the

well-known quadratic integral equation of Urysohn type

x(t) = a(t) + x(t)

∫

1

0

v(t, s, x(s)) ds.

Example 4.3. If g(t, x, y) = 1, β(t) = t and α = 1, then Eq.(1.1) becomes a

functional-integral equation

(4.1) x(t) = f

(

t, x(t),

∫ t

0

u(t, s, x(s)) ds

)

.

The authors proved in [14] the existence of solutions to Eq.(4.1). These solutions are

continuous and bounded on the interval [0,∞) and are globally attractive.

Example 4.4. In the case f(t, x, y) = 1, g(t, x, y) = 1+ y and v(t, s, x) = t
t+s

φ(s) x,

Eq.(1.1) has the form

(4.2) x(t) = 1 + x(t)

∫ 1

0

t

t + s
φ(s) x(s) ds.

Eq.(4.2) is the famous quadratic integral equation of Chandrasekhar type considered

in many papers and monographs (cf. [1, 5, 10, 15] for instance). Some Problems

considered in the theory of radiative transfer, in the theory of neutron transport and

in the kinetic theory of gases lead to Eq.(4.2) (cf. [3, 5, 7, 9, 10, 12, 15, 16]).

Remark 4.5. In order to apply our technique to Eq.(4.2) we have to impose an

additional condition that the characteristic function φ is continuous and satisfies

φ(0) = 0. This condition will ensure that the kernel v(t, s, x) defined by

v(t, s, x) =

{

0, s = 0, t ≥ 0, x ∈ R

t
t+s

φ(s) x, s 6= 0, t ≥ 0, x ∈ R

is continuous on I × I × R in accordance with assumption a3), see [7].
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[6] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in

Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980.

[7] J. Caballero, A.B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation

of Chandrasekhar type in the theory of radiative transfer, EJDE 57 (2006), 1–11.

[8] J. Caballero, J. Rocha and K. Sadarangani, On monotonic solutions of an integral equations

of Volterra type, J. Comput. Appl. Math. 174 (2005), 119–133.

[9] K.M. Case and P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA 1967.

[10] S. Chandrasekher, Radiative Transfer, Dover Publications, New York, 1960.

[11] M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311

(2005), 112–119.

[12] K. Deimling, Nonlinear fuctional analysis, Springer-Verlag, Berlin, 1985.

[13] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw,

1982.

[14] X. Hu, J. Yan, The global attractivity and asympototic stability of solution of a nonlinear

integral equation, J. Math. Anal. Appl. 321 (2006), 147–156.

[15] S. Hu, M. Khavani and W. Zhuang, Integral equations arrising in the kinetic theory of gases,

Appl. Analysis, 34 (1989), 261–266.

[16] C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport the-

ory, J. Integral Eq. 4 (1982), 221–237.

[17] R. W. Leggett, A new approach to the H-equation of Chandrasekher, SIAM J. Math. 7 (1976),

542–550.

[18] C.A. Stuart, Existence theorems for a class of nonlinear integral equations, Math. Z. 137

(1974), 49–66.


