STRONG NONLINEAR LIMIT-POINT/LIMIT-CIRCLE PROPERTIES FOR A CLASS OF FOURTH ORDER EQUATIONS

MIROSLAV BARTUŠEK AND JOHN R. GRAEF
Faculty of Science, Masaryk University Brno, Janáččkovo nám. 2a, 60200 Brno, The Czech Republic bartusek@math.muni.cz Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA john-graef@utc.edu

Abstract

The authors consider the nonlinear fourth order differential equation with p-Laplacian $$
\begin{equation*} \left(a(t)\left|y^{\prime \prime}\right|^{p-1} y^{\prime \prime}\right)^{\prime \prime}+r(t)|y|^{\lambda-1} y=0 \tag{E} \end{equation*}
$$ where $p>0, \lambda>0, a(t)>0$, and $r(t)>0$. Asymptotic properties of solutions are studied including the nonlinear limit-point/limit-circle and the strong nonlinear limit-point/limit-circle properties. Examples illustrating the results are also included.

AMS (MOS) Subject Classification. 34B20, 34C11, 34C15, 34D05.

1. INTRODUCTION

Consider the differential equation

$$
\begin{equation*}
\left(a(t)\left|y^{\prime \prime}\right|^{p-1} y^{\prime \prime}\right)^{\prime \prime}+r(t)|y|^{\lambda-1} y=0 \tag{1.1}
\end{equation*}
$$

where a, r are continuous functions, $p>0, \lambda>0, a(t)>0$, and $r(t)>0$ on $\mathbb{R}_{+}=[0, \infty)$.

Definition 1.1. A function $y \in C^{2}([0, \tau)), \tau \leq \infty$, is called a solution of (1.1) if $a(t)\left|y^{\prime \prime}(t)\right|^{p-1} y^{\prime \prime}(t) \in C^{2}([0, \tau))$ and (1.1) holds.

We will study solutions on their maximal interval of existence $[0, \tau), \tau \leq \infty$. If $\tau<\infty$, then y is called noncontinuable. A continuable solution y is called proper if it is nontrivial in any neighbourhood of ∞. We denote by \mathcal{S} the set of all solutions of (1.1) that are continuable.

It is easy to see that (1.1) is equivalent to the nonlinear system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=y_{2}, \tag{1.2}\\
y_{2}^{\prime}=a^{-\frac{1}{p}}(t)\left|y_{3}\right|^{\frac{1}{p}} \operatorname{sgn} y_{3}, \\
y_{3}^{\prime}=y_{4}, \\
y_{4}^{\prime}=-r(t)\left|y_{1}\right|^{\lambda} \operatorname{sgn} y_{1} .
\end{array}\right.
$$

The relation between a solution y of (1.1) and $\left(y_{1}, \ldots, y_{4}\right)$ of (1.2) is

$$
\begin{equation*}
y_{1}=y, \quad y_{2}=y^{\prime}, \quad y_{3}=a(t)\left|y^{\prime \prime}\right|^{p-1} y^{\prime \prime}, \quad y_{4}=\left(a(t)\left|y^{\prime \prime}\right|^{p-1} y^{\prime \prime}\right)^{\prime} \tag{1.3}
\end{equation*}
$$

Throught this paper as we consider a solution y of (1.1), we will employ the relationships in (1.3) without further mention. The following types of asymptotic properties of solutions will be investigated here.

Definition 1.2. Let y be a continuable solution of (1.1). Then y is called oscillatory if there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ of zeros of y tending to ∞ and y is nontrivial in any neighborhood of ∞. Otherwise, y is called nonoscillatory. In particular, a solution $y \equiv 0$ in a neighbourhood of ∞ is nonoscillatory. A solution y is said to be strongly oscillatory if the set of zeros of y has no finite accumulation point in its interval of definition.

Definition 1.3. A continuable solution y of Equation (1.1) is said to be of the nonlinear limit-circle type if

$$
\begin{equation*}
\int_{0}^{\infty}|y(\sigma)|^{\lambda+1} d \sigma<\infty \tag{NLC}
\end{equation*}
$$

and it is said to be of nonlinear limit-point type otherwise, i.e., if

$$
\begin{equation*}
\int_{0}^{1 \infty}|y(\sigma)|^{\lambda+1} d \sigma=\infty \tag{NLP}
\end{equation*}
$$

Equation (1.1) will be said to be of the nonlinear limit-circle type if every continuable solution y of (1.1) satisfies (NLC), and it will be said to be of the nonlinear limit-point type if there is at least one continuable solution y for which (NLP) holds.

The nonlinear limit-point/limit-circle problem is described in detail in the monograph by Bartušek, Došlá, and Graef [5]. A discussion of the relationship between these properties and other asymptotic properties of solutions such as oscillation and convergence to zero can be found there as well.

The following definitions are new. The notions of "strong" nonlinear limit-point and "strong" nonlinear limit-circle type solutions were first introduced for second order equations in [7] and [8], respectively, and subsequently used in [6, 9, 10, 11].

Definition 1.4. A continuable solution y of (1.1) is said to be of the strong nonlinear limit-circle type if

$$
\int_{0}^{\infty}|y(\sigma)|^{\lambda+1} d \sigma<\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{a(\sigma)}{r(\sigma)}\left|y^{\prime \prime}(\sigma)\right|^{p+1} d \sigma<\infty
$$

Equation (1.1) is said to be of the strong nonlinear limit-circle type if every continuable solution is of the strong nonlinear limit-circle type.

Definition 1.5. A continuable solution y of (1.1) is said to be of the strong nonlinear limit-point type if

$$
\int_{0}^{\infty}|y(\sigma)|^{\lambda+1} d \sigma=\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{a(\sigma)}{r(\sigma)}\left|y^{\prime \prime}(\sigma)\right|^{p+1} d \sigma=\infty
$$

Equation (1.1) is said to be of the strong nonlinear limit-point type if equation (1.1) has proper solutions and every one of these is of the strong nonlinear limit-point type.

The following section contains some preliminary results while Section 3 contains the main results in the paper. Some examples to illustrate our theorems are also included.

2. PROPERTIES OF SOLUTIONS

In this section, asymptotic properties of solutions of the types listed above will be studied. We begin with the following classification of solutions.

Denote by $\mathcal{O} \subset \mathcal{S}(\mathcal{N} \subset \mathcal{S})$ the set of all oscillatory (nonoscillatory) solutions of (1.1).

Definition 2.1. (i) Let $\mathcal{O}_{1} \subset \mathcal{O}$ be the set of those solutions $y \in \mathcal{O}$ for which there are sequences $\left\{t_{k}^{i}\right\}_{k=1}^{\infty}, i=1,2,3,4$, such that

$$
\begin{gather*}
t_{k}^{1}<t_{k}^{4}<t_{k}^{3}<t_{k}^{2}<t_{k+1}^{1}, \quad \lim _{k \rightarrow \infty} t_{k}^{1}=\infty, \\
y_{j}\left(t_{k}^{j}\right)=0, \quad j=1,2,3,4, \\
y_{i}\left(t_{k}^{j}\right) \neq 0, \quad j=1,2,3,4, \quad i \neq j, \tag{2.1}\\
y_{i}(t) y_{1}(t)>0 \quad \text { for } \quad t \in\left(t_{k}^{1}, t_{k}^{i}\right), \quad i=2,3,4, \quad \text { and } \\
y_{i}(t) y_{1}(t)<0 \quad \text { for } \quad t \in\left(t_{k}^{i}, t_{k+1}^{1}\right), \quad i=2,3,4 .
\end{gather*}
$$

(ii) Let $\mathcal{O}_{2} \subset \mathcal{O}$ be the set of those solutions $y \in \mathcal{O}$ for which there are sequences $\left\{t_{k}^{i}\right\}_{k=1}^{\infty}, i=1,2,3,4$, such that

$$
\begin{gather*}
t_{k}^{1}<t_{k}^{2}<t_{k}^{3}<t_{k}^{4}<t_{k+1}^{1}, \quad \lim _{k \rightarrow \infty} t_{k}^{1}=\infty \\
y_{j}\left(t_{k}^{j}\right)=0, \quad j=1,2,3,4, \\
y_{i}\left(t_{k}^{j}\right) \neq 0, \quad j=1,2,3,4, \quad i \neq j, \tag{2.2}\\
(-1)^{i} y_{i}(t) y_{1}(t)>0 \quad \text { for } \quad t \in\left(t_{k}^{1}, t_{k}^{i}\right), \quad i=2,3,4, \quad \text { and } \\
(-1)^{i} y_{i}(t) y_{1}(t)<0 \quad \text { for } \quad t \in\left(t_{k}^{i}, t_{k+1}^{1}\right), \quad i=2,3,4 .
\end{gather*}
$$

Definition 2.2. The complete classification of nonoscillatory solutions of (1.1) is as follows.
(i) Let $\mathcal{N}_{1} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$ with the property

$$
\begin{equation*}
y_{i}(t) y_{1}(t)>0 \quad \text { on } \quad\left[t_{y}, \infty\right) \quad \text { for } \quad i=2,3,4 \tag{2.3}
\end{equation*}
$$

(ii) Let $\mathcal{N}_{2} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$ with the property

$$
\begin{array}{ll}
y_{j}(t) y_{1}(t)>0 & \text { for } \quad j=2,3, \quad \text { and } \\
y_{1}(t) y_{4}(t)<0 & \text { for } \\
t \in\left[t_{y}, \infty\right)
\end{array}
$$

(iii) Let $\mathcal{N}_{3} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$with the property

$$
\begin{array}{ll}
y_{i}(t) y_{1}(t)>0 & \text { for } \quad i=2,4, \quad \text { and } \\
y_{3}(t) y_{1}(t)<0 & \text { for } \quad t \in\left[t_{y}, \infty\right) . \tag{2.4}
\end{array}
$$

(iv) Let $\mathcal{N}_{4} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$with the property

$$
\begin{array}{lll}
y_{j}(t) y_{1}(t)<0 & \text { for } \quad j=3,4, \quad \text { and } \\
y_{1}(t) y_{2}(t)>0 & \text { for } \quad t \in\left[t_{y}, \infty\right) .
\end{array}
$$

(v) Let $\mathcal{N}_{5} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$ with the property

$$
\begin{array}{ll}
y_{i}(t) y_{1}(t)>0 & \text { for } \quad i=3,4, \quad \text { and } \\
y_{2}(t) y_{1}(t)<0 & \text { for } \quad t \in\left[t_{y}, \infty\right) \tag{2.5}
\end{array}
$$

(vi) Let $\mathcal{N}_{6} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$with the property

$$
\begin{array}{lll}
y_{j}(t) y_{1}(t)<0 & \text { for } \quad j=2,4, \quad \text { and } \\
y_{1}(t) y_{3}(t)>0 & \text { for } \quad t \in\left[t_{y}, \infty\right)
\end{array}
$$

(vii) Let $\mathcal{N}_{7} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$with the property

$$
\begin{array}{lll}
y_{j}(t) y_{1}(t)<0 & \text { for } \quad j=2,3, \quad \text { and } \\
y_{1}(t) y_{4}(t)>0 & \text { for } \quad t \in\left[t_{y}, \infty\right)
\end{array}
$$

(viii) Let $\mathcal{N}_{8} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ for which there exists $t_{y} \in \mathbb{R}_{+}$with the property

$$
y_{j}(t) y_{1}(t)<0 \quad \text { for } \quad j=2,3,4, \quad \text { and } \quad t \in\left[t_{y}, \infty\right)
$$

(ix) Let $\mathcal{N}_{9} \subset \mathcal{N}$ be the set of those solutions $y \in \mathcal{N}$ that are trivial in a neighborhood of ∞.

Our first two lemmas show, among other things, that some of the sets in our classifications of solutions are empty.

Lemma 2.3. The following statements hold.
(i) $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}$ and $\mathcal{N}=\mathcal{N}_{1} \cup \mathcal{N}_{3} \cup \mathcal{N}_{4} \cup \mathcal{N}_{5} \cup \mathcal{N}_{9}$.
(ii) If $\int_{0}^{\infty} a^{-\frac{1}{p}}(s) d s=\infty$, then $\mathcal{N}_{4}=\emptyset=\mathcal{N}_{5}$, so $\mathcal{N}=\mathcal{N}_{1} \cup \mathcal{N}_{3} \cup \mathcal{N}_{9}$.
(iii) If $\int_{0}^{\infty} a^{-\frac{1}{p}}(s) d s=\infty$ and $\int_{0}^{\infty} r(s) d s=\infty$, then $\mathcal{N}=\mathcal{N}_{9}$.

Proof. (i) According to Theorem 3 in [3], for any $y \in \mathcal{O}$ there exists a neighborhood of ∞ in which the zeros of y have no accumulation point. Hence, Theorem 2 in [3] implies y is strongly oscillatory, and so $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}$ by the Lemma in [1]. To show that $\mathcal{N}_{2}=\emptyset=\mathcal{N}_{6}$, assume that $y(t)>0$ for $t \geq t_{y}$ and integrate y_{3}^{\prime} and y_{4}^{\prime} to obtain

$$
\begin{aligned}
y_{3}(t)=y_{3}\left(t_{y}\right)+\int_{t_{y}}^{t}\left[y_{4}\left(t_{y}\right)-\int_{t_{y}}^{s} r(\sigma)\left|y_{1}(\sigma)\right|^{\lambda} d \sigma\right] & d s \\
& \leq y_{3}\left(t_{y}\right)+y_{4}\left(t_{y}\right) \int_{t_{y}}^{t} d \sigma \rightarrow-\infty
\end{aligned}
$$

as $t \rightarrow \infty$. This contradicts the fact that $y_{3}(t)>0$ for both of these classes. Using y_{1}^{\prime} and y_{2}^{\prime} in a similar way, we can show that $\mathcal{N}_{7}=\emptyset=\mathcal{N}_{8}$.

The proof of (ii) is similar to that of part (i) only using y_{2}^{\prime} and y_{3}^{\prime}. Part (iii) follows from Theorem 1 in [2].

For any solution y of (1.1), we define the function F by

$$
\begin{equation*}
F(t)=-y_{4}(t) y_{1}(t)+y_{2}(t) y_{3}(t) . \tag{2.6}
\end{equation*}
$$

Lemma 2.4. (i) Let y be a solution of (1.1) defined on $[0, \tau)$. Then

$$
F^{\prime}(t)=r(t)|y(t)|^{\lambda+1}+a(t)\left|y^{\prime \prime}(t)\right|^{p+1}, \quad t \in[0, \tau) ;
$$

hence, F is a nondecreasing function for any solution y of (1.1).
(ii) If $y \in \mathcal{O}_{1}$, then $\lim _{t \rightarrow \infty} F(t) \in(0, \infty]$.
(iii) If $y \in \mathcal{O}_{2}$, then $\lim _{t \rightarrow \infty} F(t) \in(-\infty, 0]$.
(iv) If $y \in \mathcal{N}_{3} \cup \mathcal{N}_{5} \cup \mathcal{N}_{9}$, then $\lim _{t \rightarrow \infty} F(t) \in(-\infty, 0]$.

Proof. (i) Clearly, $F^{\prime}(t) \geq 0$ by (1.2) and (1.3).
(ii) In view of (2.6) and (2.1), $F\left(t_{k}^{1}\right)=y_{2}\left(t_{k}^{1}\right) y_{3}\left(t_{k}^{1}\right)>0$ for $k \in\{2,3, \ldots\}$, and the conclusion follows from case (i).
(iii) Similarly, (2.6) and (2.2) yield $F\left(t_{k}^{1}\right)=y_{2}\left(t_{k}^{1}\right) y_{3}\left(t_{k}^{1}\right)<0$ for $k=2,3,4, \ldots$, and since F is nondecreasing, we have $\lim _{t \rightarrow \infty} F(t) \leq 0$.
(iv) If $y \in \mathcal{N}_{3} \cup \mathcal{N}_{5}$, then (2.6), (2.4), and (2.5) yield $F(t)<0$ for $t \geq t_{y}$, and the conclusion follows. If $y \in \mathcal{N}_{9}$, then $\lim _{t \rightarrow \infty} F(t)=0$.

The next lemma gives some preliminary results on the strong nonlinear limitcircle property.

Lemma 2.5. Let $y \in \mathcal{S}$ satisfy $\lim _{t \rightarrow \infty} F(t)<\infty$.
(i) Then

$$
\begin{equation*}
\int_{0}^{\infty} r(t)|y(t)|^{\lambda+1} d t<\infty \quad \text { and } \quad \int_{0}^{\infty} a(t)\left|y^{\prime \prime}(t)\right|^{p+1} d t<\infty \tag{2.7}
\end{equation*}
$$

(ii) If there exist positive constants r_{0} and a_{0} such that

$$
\begin{equation*}
r_{0} \leq r(t) \quad \text { and } \quad a_{0} \leq a(t) \quad \text { on } \quad \mathbb{R}_{+}, \tag{2.8}
\end{equation*}
$$

then

$$
\begin{align*}
\lim _{t \rightarrow \infty} y(t) & =\lim _{t \rightarrow \infty} y^{\prime}(t)=0 \tag{2.9}\\
\int_{0}^{\infty}|y(t)|^{\lambda+1} d t & <\infty, \quad \text { and } \quad \int_{0}^{\infty} \frac{a(t)}{r(t)}\left|y^{\prime \prime}(t)\right|^{p+1} d t<\infty . \tag{2.10}
\end{align*}
$$

Proof. (i) The conclusion follows directly from Lemma 2(i) by an integration on \mathbb{R}_{+}.
(ii) Property (2.10) follows from (2.7) and (2.8). Furthermore, (2.7) and (2.8) yield $y \in L_{\lambda+1}\left(\mathbb{R}_{+}\right)$and $y^{\prime \prime} \in L_{p+1}\left(\mathbb{R}_{+}\right)$. Hence, Lemma 1.5 in [15] yields (2.9).

Our next lemma gives some additional properties of solutions of (1.1) that belong to the class \mathcal{O}_{1}.

Lemma 2.6. Assume that $\lambda \leq p$ and there are positive constants $\varepsilon \leq p, a_{0}, r_{0}$, and M_{0}, and $t_{0} \in \mathbb{R}_{+}$such that

$$
\begin{equation*}
a_{0} \leq a(t) \leq M_{0} t^{p-\varepsilon} \quad \text { and } \quad r_{0} \leq r(t) \quad \text { for } \quad t \in\left[t_{0}, \infty\right) . \tag{2.11}
\end{equation*}
$$

Then $\lim _{t \rightarrow \infty} F(t)=\infty$ for any solution $y \in \mathcal{O}_{1}$.
Proof. Let $y \in \mathcal{O}_{1}$ and assume to the contrary that $\lim _{t \rightarrow \infty} F(t)=M \in(0, \infty)$. Then, (2.7) and (2.8) imply $y \in L_{\lambda+1}\left(\mathbb{R}_{+}\right)$and $y^{\prime \prime} \in L_{p+1}\left(\mathbb{R}_{+}\right)$as before. Since $\lambda \leq p$, Theorem 2 in $[12, \S \mathrm{~V} .3]$ implies $y^{\prime} \in L_{p+1}\left(\mathbb{R}_{+}\right)$. Using Hölder's inequality, (2.7) and (2.11), we have

$$
\begin{align*}
\int_{t_{0}}^{t} a(s)\left|y^{\prime}(s)\right| & \left|y^{\prime \prime}(s)\right|^{p} \leq\left(\int_{t_{0}}^{t}\left|y^{\prime}(s)\right|^{p+1} d s\right)^{\frac{1}{p+1}}\left(\int_{t_{0}}^{t} a^{\frac{p+1}{p}}(s)\left|y^{\prime \prime}(s)\right|^{p+1} d s\right)^{\frac{p}{p+1}} \\
& \leq\left(\int_{t_{0}}^{\infty}\left|y^{\prime}(s)\right|^{p+1} d s\right)^{\frac{1}{p+1}}\left(\int_{t_{0}}^{\infty} a(s)\left|y^{\prime \prime}(s)\right|^{p+1} d s\right)^{\frac{p}{p+1}} M_{0}^{\frac{1}{p}} t^{\frac{p-\varepsilon}{p}} \\
& \leq C t^{1-\frac{\varepsilon}{p}} \tag{2.12}
\end{align*}
$$

for $t \in\left[t_{0}, \infty\right)$, where C is a suitable positive constant. Now define

$$
\begin{equation*}
Z(t)=-y_{3}(t) y_{1}(t)+2 \int_{t_{1}}^{t} a(s) y^{\prime}(s)\left|y^{\prime \prime}(s)\right|^{p-1} y^{\prime \prime}(s) d s \tag{2.13}
\end{equation*}
$$

where $t_{1} \in\left[t_{0}, \infty\right)$ satisfies

$$
y_{1}\left(t_{1}\right)=0 \quad \text { and } \quad F(t) \geq M / 2 \quad \text { on } \quad\left[t_{1}, \infty\right) .
$$

Since $Z^{\prime}(t)=F(t)$ on $\left[t_{1}, \infty\right)$, if we take an increasing sequence $\left\{s_{k}\right\}_{k=1}^{\infty}$ of zeros of y_{1} with $s_{1} \geq t_{1}$, then (2.13) and (2.12) yield

$$
\frac{M}{2}\left(s_{k}-t_{1}\right) \leq \int_{t_{1}}^{s_{k}} F(s) d s=\int_{t_{1}}^{s_{k}} Z^{\prime}(s) d s=Z\left(s_{k}\right) \leq C s_{k}^{1-\frac{\varepsilon}{p}} .
$$

This is a contradiction for large k and so the conclusion follows from Lemma 2(ii).
Remark 2.7. If $a \equiv 1, p=1$, and $y \in \mathcal{O}_{1}$, then $\lim _{t \rightarrow \infty} F(t)=\infty$ without any additional assumptions on r and λ (see [4, Lemma 3.4]).

The next lemma shows that, in the case $\lambda \leq p$, all solutions of equation (1.1) are defined on \mathbb{R}_{+}.

Lemma 2.8. Let $\lambda \leq p$. Then all solutions of (1.1) are continuable.
Proof. Let y be a noncontinuable solution of (1.1) defined on $[0, \tau)$ with $\tau<\infty$. Then,

$$
\begin{equation*}
\limsup _{t \rightarrow \tau_{-}}\left|y_{4}(t)\right|=\infty \tag{2.14}
\end{equation*}
$$

Furthermore, (1.2) yields

$$
\begin{align*}
& \left|y_{1}(t)\right| \leq C_{1}+\int_{0}^{t}\left|y_{2}(s)\right| d s \\
& \left|y_{2}(t)\right| \leq C_{2}+\int_{0}^{t} a^{-\frac{1}{p}}(s)\left|y_{3}(s)\right|^{\frac{1}{p}} d s \tag{2.15}\\
& \left|y_{3}(t)\right| \leq C_{3}+\int_{0}^{t}\left|y_{4}(s)\right| d s
\end{align*}
$$

and

$$
\left|y_{4}(t)\right| \leq C_{4}+\int_{0}^{t} r(s)\left|y_{1}(s)\right|^{\lambda} d s
$$

with $C_{i}=\left|y_{i}(0)\right|, i=1,2,3,4$, and $t \in[0, \tau)$. Define v by $v(0)=\left|y_{4}(0)\right|, v(t)=$ $\max _{0 \leq s \leq t}\left|y_{4}(s)\right|$ for $t \in(0, \tau)$. Note that in view of (2.14), $\lim _{t \rightarrow \tau_{-}} v(t)=\infty$. Hence, (2.15) yields

$$
\begin{aligned}
\left|y_{4}(t)\right| \leq & C_{4}+\int_{0}^{t} r(s)\left[C_{1}+\int_{0}^{s}\left[C_{2}+\int_{0}^{s_{1}} a^{-\frac{1}{p}}\left(s_{2}\right)\right.\right. \\
& \left.\left.\times\left[C_{3}+\int_{0}^{s_{2}}\left|y_{4}\left(s_{3}\right)\right| d s_{3}\right]^{\frac{1}{p}} d s_{2}\right] d s_{1}\right]^{\lambda} d s \\
\leq & C_{4}+\int_{0}^{t} r(s)\left[C_{1}+\int_{0}^{s}\left[C_{2}+\left(C_{3}+v(s) \tau\right)^{\frac{1}{p}} \int_{0}^{\tau} a^{-\frac{1}{p}}\left(s_{2}\right) d s_{2}\right] d s_{1}\right]^{\lambda} d s \\
\leq & C_{4}+\int_{0}^{t} r(s)\left[C_{1}+\tau\left(C_{2}+\left(C_{3}+v(s) \tau\right)^{\frac{1}{p}} \int_{0}^{\tau} a^{-\frac{1}{p}}\left(s_{2}\right) d s_{2}\right)\right]^{\lambda} d s .
\end{aligned}
$$

Thus,

$$
\begin{align*}
v(t) & \leq C_{4}+\int_{0}^{t} r(s)\left[C_{5}+C_{6} v^{\frac{1}{p}}(s)\right]^{\lambda} d s \\
& \leq C_{4}+\int_{0}^{t} r(s) 2^{\lambda}\left(C_{5}^{\lambda}+C_{6}^{\lambda} v^{\frac{\lambda}{p}}(s)\right) d s \tag{2.16}
\end{align*}
$$

for suitable constants C_{5} and C_{6}. Since $\lim _{t \rightarrow \tau_{-}} v(t)=\infty$, there exists $t_{0} \in[0, \tau)$ such that $v(t) \geq 1$ on $\left[t_{0}, \tau\right)$, and so (2.16) and the fact that $\lambda / p \leq 1$ yield

$$
\begin{equation*}
v(t) \leq C_{7}+C_{8} \int_{t_{0}}^{t} v(s) d s, \quad t \in\left[t_{0}, \infty\right) \tag{2.17}
\end{equation*}
$$

where $C_{7}=C_{4}+2^{\lambda} C_{5}^{\lambda} \int_{0}^{\tau} r(s) d s$ and $C_{8}=2^{\lambda} C_{6}^{\lambda} \max _{0 \leq s \leq \tau} r(s)$. Now (2.17) and Gronwall's inequality imply v is bounded on $[0, \tau)$ contradicting (2.14).

Our final lemma gives bounds on the solutions of the system (1.2).
Lemma 2.9. Let $[a, b] \subset \mathbb{R}_{+}$and a_{0}, a_{1}, r_{0}, and r_{1} be positive constants. Let y be a solution of (1.2) such that $y_{i}, i=1,2,3,4$, have zeros on $[a, b]$, and let $\nu_{i}=$ $\max _{a \leq t \leq b}\left|y_{i}(t)\right|, i=1,2,3,4$.
(i) If $a_{0} \leq a(t) \leq a_{1}$ and $r(t) \leq r_{1}$ on $[a, b]$, then

$$
\begin{equation*}
\nu_{2} \leq K_{0} \nu_{1}^{\delta}, \quad \nu_{3} \leq K_{1} \nu_{1}^{\delta_{1}}, \quad \text { and } \quad \nu_{4} \leq K_{2} \nu_{1}^{\delta_{2}} \tag{2.18}
\end{equation*}
$$

with

$$
\begin{gathered}
\delta=\frac{1}{2}+\frac{\lambda+1}{2(p+1)}, \quad \delta_{1}=\frac{p(\lambda+1)}{p+1}, \quad \delta_{2}=\frac{1}{2}\left(\lambda+\frac{p(\lambda+1)}{p+1}\right), \\
K_{1}=\left(4 a_{0}^{-\frac{1}{2 p}} a_{1}^{\frac{1}{p}} r_{1}^{\frac{1}{2}}\right)^{2 p / p+1}, \quad K_{0}=\left(2 a_{0}^{-\frac{1}{p}} K_{1}^{\frac{1}{p}}\right)^{1 / 2}, \quad \text { and } \quad K_{2}=\left(2 r_{1} K_{1}\right)^{1 / 2} .
\end{gathered}
$$

(ii) If $a_{0} \leq a(t)$ and $r_{0} \leq r(t) \leq r_{1}$ on $[a, b]$, then

$$
\nu_{1} \leq K_{3} \nu_{3}^{\delta_{3}}, \quad \nu_{2} \leq K_{4} \nu_{3}^{\delta_{4}}, \quad \text { and } \quad \nu_{4} \leq K_{5} \nu_{3}^{\delta_{5}}
$$

with

$$
\begin{gathered}
\delta_{3}=\frac{p+1}{p(\lambda+1)}, \quad \delta_{4}=\frac{\lambda+p+2}{2 p(\lambda+1)}, \quad \delta_{5}=\frac{1}{2}\left(1+\frac{\lambda(p+1)}{p(\lambda+1)}\right), \\
K_{3}=\left(4 r_{0}^{-1} r_{1}^{\frac{1}{2}} a_{0}^{-\frac{1}{2 p}}\right)^{\frac{2}{\lambda+1}}, \quad K_{4}=\left(2 a_{0}^{-\frac{1}{p}} K_{3}\right)^{\frac{1}{2}}, \quad \text { and } \quad K_{5}=\left(2 r_{1} K_{3}^{\lambda}\right)^{\frac{1}{2}} .
\end{gathered}
$$

Proof. (i) We can choose intervals $J_{i} \subset[a, b], i=1,2,3$ such that

$$
\min _{t \in J_{i}}\left|y_{i}(t)\right|=0 \quad \text { and } \quad \nu_{i}=\max _{t \in J_{i}}\left|y_{i}(t)\right|,
$$

where ν_{i} occurs at one of the endpoints of the interval J_{i} and y_{i} does not change its sign on $J_{i}, i=1,2,3$. Then (1.2) and (1.3) yield

$$
\begin{align*}
\nu_{2}^{2} & \leq 2 \int_{J_{1}}\left|y_{2}(s) y_{2}^{\prime}(s)\right| d s=2 \int_{J_{1}} a^{-\frac{1}{p}}(s)\left|y_{2}(s)\right|\left|y_{3}(s)\right|^{\frac{1}{p}} d s \\
& \leq 2 a_{0}^{-\frac{1}{p}} \nu_{1} \nu_{3}^{\frac{1}{p}} \tag{2.19}
\end{align*}
$$

$$
\begin{align*}
\nu_{3}^{2} & \leq 2 \int_{J_{2}}\left|y_{3}(s) y_{3}^{\prime}(s) d s\right| \leq 2 \int_{J_{2}} a^{\frac{1}{p}}(s)\left|y_{2}^{\prime}(s)\right|\left|y_{3}(s)\right|^{\frac{p-1}{p}}\left|y_{4}(s)\right| d s \\
& \leq 2 a_{1}^{\frac{1}{p}} \nu_{2} \nu_{3}^{\frac{p-1}{p}} \nu_{4} \tag{2.20}
\end{align*}
$$

and

$$
\begin{align*}
\nu_{4}^{2} & \leq 2 \int_{J_{3}}\left|y_{4}(s) y_{4}^{\prime}(s)\right| d s \leq 2 \int_{J_{3}} r(s)\left|y_{1}(s)\right|^{\lambda}\left|y_{3}^{\prime}(s)\right| d s \\
& \leq 2 r_{1} \nu_{1}^{\lambda} \nu_{3} . \tag{2.21}
\end{align*}
$$

From (2.19)-(2.21), we have

$$
\nu_{3}^{2} \leq 2 a^{\frac{1}{p}}\left(2 a_{0}^{-\frac{1}{p}} \nu_{1} \nu_{3}^{\frac{1}{p}}\right)^{\frac{1}{2}}\left(2 r_{1} \nu_{1}^{\lambda} \nu_{3}\right)^{\frac{1}{2}} \nu_{3}^{\frac{p-1}{p}}
$$

and

$$
\begin{equation*}
\nu_{3} \leq K_{1} \nu_{1}^{\frac{p(\lambda+1)}{p+1}} . \tag{2.22}
\end{equation*}
$$

Hence, the second inequality in (2.18) is proved. Furthermore, (2.19) and (2.22) yield $\nu_{2} \leq K_{0} \nu_{1}^{\delta}$, so the first inequality in (2.18) holds. The last inequality in (2.18) follows from (2.21) and (2.22).
(ii) System (1.2) can be rewritten as the system $Z=\left(Z_{1}, \ldots, Z_{4}\right)$

$$
\begin{array}{ll}
Z_{1}^{\prime}=Z_{2}, & Z_{3}^{\prime}=Z_{4}, \\
Z_{2}^{\prime}=-r(t)\left|Z_{3}\right|^{\lambda} \operatorname{sgn} Z_{3}, & Z_{4}^{\prime}=a^{-\frac{1}{p}}(t)\left|Z_{1}\right|^{\frac{1}{p}} \operatorname{sgn} Z_{1}, \tag{2.23}
\end{array}
$$

with $Z_{1}=y_{3}, Z_{2}=y_{4}, Z_{3}=y_{1}$, and $Z_{4}=y_{2}$. As the proof of (i) does not depend on the signs of the coefficients $a^{\frac{1}{p}}$ and $-r$ in (1.2), the results follow from part (i) applied to (2.23).

3. MAIN RESULTS

This section contains our main results on the behavior of solutions of equation (1.1).

Theorem 3.1. (i) If

$$
\int_{0}^{\infty} a^{-\frac{1}{p}}(\sigma) d \sigma=\infty \quad \text { and } \quad \int_{0}^{\infty} r(\sigma) d \sigma=\infty
$$

then $\mathcal{N}=\mathcal{N}_{9}$.
(ii) Assume there are positive constants a_{0} and r_{0} such that

$$
\begin{equation*}
a_{0} \leq a(t) \quad \text { and } \quad r_{0} \leq r(t) \quad \text { on } \quad \mathbb{R}_{+} \tag{3.1}
\end{equation*}
$$

If $y \in \mathcal{O}_{2} \cup \mathcal{N}_{9}$, then

$$
\int_{0}^{\infty}|y(t)|^{\lambda+1} d t<\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{a(t)}{r(t)}\left|y^{\prime \prime}(t)\right|^{p+1} d t<\infty
$$

Proof. Part (i) follows from Lemma 2.3(ii). Part (ii) follows from Lemma 2.4(iii) and Lemma 2.5(ii) if $y \in \mathcal{O}_{2}$; if $y \in \mathcal{N}_{9}$, the result is obvious.

The next theorem is concerned with the solutions of (1.1) that belong to the class \mathcal{N}_{1}.

Theorem 3.2. Let $y \in \mathcal{N}_{1}$. Then $\int_{0}^{\infty}|y(s)|^{\lambda+1} d s=\infty$. Moreover,
(i) if $\int_{0}^{\infty} a^{-\frac{1}{p}}(s) r^{-1}(s) d s=\infty$, then $\int_{0}^{\infty} \frac{a(s)}{r(s)}\left|y^{\prime \prime}(s)\right|^{p+1} d s=\infty$;
(ii) if

$$
\begin{equation*}
\int_{t_{0}}^{\infty} r(s)\left(\int_{t_{0}}^{s} \int_{t_{0}}^{\sigma} a^{-\frac{1}{p}}\left(\sigma_{1}\right) d \sigma_{1} d \sigma\right)^{\lambda} d s=\infty \quad \text { for } \quad t_{0} \in \mathbb{R}_{+} \tag{3.2}
\end{equation*}
$$

then $\mathcal{N}_{1}=\emptyset$.
Proof. Let $y \in \mathcal{N}_{1}$ and suppose for simplicity that $y_{i}(t)>0$ for $i=1,2,3,4$ and $t \geq t_{y}$. In view of (1.2), $y_{1}(t)=y(t) \geq y_{1}\left(t_{y}\right)>0$, so we have

$$
\int_{0}^{\infty}|y(t)|^{\lambda+1} d t=\infty
$$

Moreover, since y_{4} is positive and decreasing, we have

$$
\begin{align*}
y_{3}\left(t_{y}\right) & \leq y_{3}(t)=y_{3}\left(t_{y}\right)+\int_{t_{y}}^{t} y_{3}^{\prime}(s) d s \tag{3.3}\\
& \leq y_{3}\left(t_{y}\right)+y_{4}\left(t_{y}\right)\left(t-t_{y}\right) \leq 2 y_{4}\left(t_{y}\right) t
\end{align*}
$$

for t large enough, say for $t \geq t_{1} \geq t_{y}$. Hence,

$$
\begin{equation*}
C a^{-\frac{1}{p}}(t) \leq y^{\prime \prime}(t)=\left(y_{3}(t) a^{-1}(t)\right)^{\frac{1}{p}} \tag{3.4}
\end{equation*}
$$

with $C=y_{3}^{\frac{1}{p}}\left(t_{y}\right)$. Part (i) then follows immediately.
To prove (ii), notice that the first inequality in (3.4) yields

$$
\begin{equation*}
y_{1}(t) \geq C \int_{t_{y}}^{t} \int_{t_{y}}^{s} a^{-\frac{1}{p}}(\sigma) d \sigma d s \tag{3.5}
\end{equation*}
$$

It follows from (1.2) that

$$
y_{4}(t)=y_{4}\left(t_{y}\right)-\int_{t_{y}}^{t} r(s)\left(y_{1}(s)\right)^{\lambda} d s>0 \quad \text { on } \quad\left[t_{y}, \infty\right)
$$

so (3.5) yields

$$
C^{\lambda} \int_{t_{y}}^{\infty} r(s)\left[\int_{t_{y}}^{s} \int_{t_{y}}^{\sigma} a^{-\frac{1}{p}}\left(\sigma_{1}\right) d \sigma_{1} d \sigma\right]^{\lambda} d s \leq \int_{t_{y}}^{\infty} r(s) y_{1}^{\lambda}(s) d s<\infty .
$$

This contradicts (3.2) and completes the proof.

Notation. Let $h \in C^{0}\left(\mathbb{R}_{+}\right)$. If $\int_{t}^{\infty} h(s) d s=\infty$ for $t \in \mathbb{R}_{+}$, then we set

$$
\int_{0}^{\infty} \int_{s}^{\infty} h(\sigma) d \sigma d s=\infty
$$

Next, we turn our attention to solutions in the class \mathcal{N}_{3}.
Theorem 3.3. Let $y \in \mathcal{N}_{3}$. Then:
(i) $\int_{0}^{\infty}|y(s)|^{\lambda+1} d s=\infty$.
(ii) If

$$
\int_{0}^{\infty} a^{-\frac{1}{p}}(t) r^{-1}(t)\left(\int_{t}^{\infty} \int_{s}^{\infty} r(\sigma) d \sigma d s\right)^{\frac{p+1}{p}} d t=\infty
$$

then

$$
\int_{0}^{\infty} \frac{a(s)}{r(s)}\left|y^{\prime \prime}(s)\right|^{p+1} d s=\infty
$$

Proof. Let $y \in \mathcal{N}_{3}$ be such that $y_{1}>0, y_{2}>0, y_{3}<0$, and $y_{4}>0$ on $\left[t_{y}, \infty\right)$. (If $y_{1}<0$, the proof is similar.) From (1.2), we have $\left|y_{i}\right|$ is decreasing for $i=2,3,4$ and y_{1} is increasing on $\left[t_{y}, \infty\right)$.

Part (i) follows from the fact that $y(t) \geq y\left(t_{y}\right)>0$ on $\left[t_{y}, \infty\right)$. To prove (ii), note that using (1.2), we have

$$
\begin{aligned}
\left|y_{3}(t)\right| & \geq \int_{t}^{\infty} y_{4}(s) d s \geq \int_{t}^{\infty} \int_{s}^{\infty} r(\sigma) y^{\lambda}(\sigma) d \sigma d s \\
& \geq y^{\lambda}\left(t_{y}\right) \int_{t}^{\infty} \int_{s}^{\infty} r(\sigma) d \sigma d s
\end{aligned}
$$

and thus

$$
\left|y^{\prime \prime}(t)\right| \geq y^{\frac{\lambda}{p}}\left(t_{y}\right) a^{-\frac{1}{p}}(t)\left(\int_{t}^{\infty} \int_{s}^{\infty} r(\sigma) d \sigma d s\right)^{\frac{1}{p}}
$$

for $t \geq t_{y}$. Hence,

$$
\begin{aligned}
& \int_{t_{y}}^{\infty} \frac{a(s)}{r(s)}\left|y^{\prime \prime}(s)\right|^{p+1} d s \\
& \geq C \int_{t_{y}}^{\infty} a^{-\frac{1}{p}}(t) r^{-1}(t)\left(\int_{t}^{\infty} \int_{s}^{\infty} r(\sigma) d \sigma d s\right)^{\frac{p+1}{p}} d t=\infty
\end{aligned}
$$

with a suitable constant $C>0$, and the statement holds.
For our next result, we consider those solutions that belong to the class \mathcal{O}_{1}.
Theorem 3.4. Let $\lambda \leq p$, let a_{0}, a_{1}, r_{0}, and r_{1} be positive constants, and let $y \in \mathcal{O}_{1}$.
(i) If $a_{0} \leq a(t) \leq a_{1}$ and $r(t) \leq r_{1}$ on \mathbb{R}_{+}, then

$$
\int_{0}^{\infty}|y(t)|^{\lambda+1}=\infty
$$

(ii) If $a_{0} \leq a(t) \leq a_{1}$ and $r_{0} \leq r(t) \leq r_{1}$ on \mathbb{R}_{+}, then

$$
\int_{0}^{\infty} \frac{a(t)}{r(t)}\left|y^{\prime \prime}(t)\right|^{p+1} d t=\infty .
$$

Proof. Let $y \in \mathcal{O}_{1}$.
(i) We will first prove that y is unbounded on \mathbb{R}_{+}, so suppose that y is bounded there. Then Lemma 2.9 and (2.23) imply that $y_{i}(t), i=2,3,4$, are bounded, so $\lim _{t \rightarrow \infty} F(t)<\infty$. This contradicts Lemma 2.6 and shows that

$$
\limsup _{t \rightarrow \infty}\left|y_{1}(t)\right|=\infty
$$

Thus, there is a subsequence of $\left\{t_{k}^{2}\right\}_{k=1}^{\infty}$, which for simplicity we denote by $\left\{t_{k}^{2}\right\}_{k=1}^{\infty}$ itself, such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|y_{1}\left(t_{k}^{2}\right)\right|=\infty \tag{3.6}
\end{equation*}
$$

Let $\Delta_{k}=\left[t_{k}^{1}, t_{k}^{2}\right]$ and $\Delta_{k}^{1}=\left[\tau_{k}, t_{k}^{2}\right]$ where τ_{k} is defined by $\tau_{k} \in \Delta_{k},\left|y_{1}\left(\tau_{k}\right)\right|=\frac{1}{2}\left|y_{1}\left(t_{k}^{2}\right)\right|$, $k=1,2, \ldots$. Observe that y_{2}, y_{3} and y_{4} have zeros on Δ_{k} (see (2.1)) and all conditions in Lemma 2.9(i) are satisfied on Δ_{k} for $k \in\{1,2, \ldots\}$. Furthermore, $\frac{1}{2}\left|y_{1}\left(t_{k}^{2}\right)\right| \leq$ $\left|y_{1}(t)\right| \leq\left|y_{1}\left(t_{k}^{2}\right)\right|$, and the first inequality in (2.18) yields

$$
\frac{1}{2}\left|y_{1}\left(t_{k}^{2}\right)\right|=\left|y_{1}\left(t_{k}^{2}\right)\right|-\left|y_{1}\left(\tau_{k}\right)\right|=\int_{\Delta_{k}^{1}}\left|y_{2}(s)\right| d s \leq K_{0}\left(t_{k}^{2}-\tau_{k}\right)\left|y_{1}\left(t_{k}^{2}\right)\right|^{\delta}
$$

where K_{0} is given in Lemma 2.9 and $\delta=\frac{1}{2}+\frac{\lambda+1}{2(p+1)} \leq 1$. From this and (3.6), we see that there is a positive constant M such that

$$
t_{k}^{2}-\tau_{k} \geq M, \quad k=1,2, \ldots
$$

We then have

$$
\int_{0}^{\infty}|y(t)|^{\lambda+1} d t \geq \sum_{k=1}^{\infty} \int_{\Delta_{k}^{1}}\left|y_{1}(t)\right|^{\lambda+1} d t \geq \frac{M}{2^{\lambda+1}} \sum_{k=1}^{\infty}\left|y_{1}\left(t_{k}^{2}\right)\right|^{\lambda+1}=\infty
$$

(ii) Let $\Delta_{k}=\left[t_{k}^{3}, t_{k+1}^{4}\right]$ and $\Delta_{k}^{1}=\left[\tau_{k}, t_{k+1}^{4}\right]$ where τ_{k} is defined by $\tau_{k} \in \Delta_{k}$ and $\left|y_{3}\left(\tau_{k}\right)\right|=\frac{1}{2}\left|y_{1}\left(t_{k+1}^{4}\right)\right|, k=1,2, \ldots$ Then, similar to what we did in the proof of part (i), we can show that $\lim _{k \rightarrow \infty}\left|y_{3}\left(t_{k+1}^{4}\right)\right|=\infty, t_{k+1}^{4}-\tau_{k} \geq M_{1}, k=1,2, \ldots$, for a suitable constant M_{1} by using Lemma 2.9(ii) and the fact that $\delta_{5} \leq 1$. Hence,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{a(t)}{r(t)}\left|y^{\prime \prime}(t)\right|^{p+1} d t & =\int_{0}^{\infty} \frac{\left|y_{3}(t)\right|^{\frac{p+1}{p}}}{a^{\frac{1}{p}}(t) r(t)} d t \geq a_{1}^{-\frac{1}{p}} r_{1}^{-1} \sum_{k=1}^{\infty} \int_{\Delta_{k}^{1}}\left|y_{3}(t)\right|^{\frac{p+1}{p}} d t \\
& \geq a_{1}^{-\frac{1}{p}} r_{1}^{-1} \frac{M}{2^{\lambda+1}} \sum_{k=1}^{\infty}\left|y_{3}\left(t_{k+1}^{4}\right)\right|=\infty
\end{aligned}
$$

This completes the proof of the theorem.
The next theorem summarizes many of the results obtained here on solutions of (1.1).

Theorem 3.5. Let $\lambda \leq p$ and let a_{0}, a_{1}, r_{0}, and r_{1} be positive constants such that

$$
a_{0} \leq a(t) \leq a_{1}, \quad r_{0} \leq r(t) \leq r_{1} \quad \text { on } \quad \mathbb{R}_{+} .
$$

(i) All solutions of (1.1) are continuable, $\mathcal{S}=\mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \mathcal{N}_{9}$, and $\mathcal{O}_{1} \neq \emptyset$.
(ii) For any solution y of (1.1), the following statements are equivalent:
(a) y is of the nonlinear limit-circle type;
(b) y is of the strong nonlinear limit-circle type;
(c) $y \in \mathcal{O}_{2} \cup \mathcal{N}_{9}$.
(iii) For any solution y of (1.1), the following statements are equivalent:
(a) y is of the nonlinear limit-point type;
(b) y is of the strong nonlinear limit-point type;
(c) $y \in \mathcal{O}_{1}$.

Proof. Parts (i) and (iii) of Lemma 2.3 together with Lemma 2.8 imply that all solutions of (1.1) are continuable and $\mathcal{S}=\mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \mathcal{N}_{9}$. Now if y is a solution of (1.1) such that $F(0)>0$, then parts (iii) and (iv) of Lemma 2.4 imply $y \notin \mathcal{O}_{2} \cup \mathcal{N}_{9}$. Hence, $y \in \mathcal{O}_{1}$, and so part (i) holds. Parts (ii) and (iii) follow from Theorems 3.1 and 3.4.

It is reasonable to ask if it is possible to obtain results similar to those in Theorem 3.5 for $\lambda>p$. To show the difficulties involved, we consider the case where $p=1$, $\lambda>1$, and $a(t) \equiv 1$ in equation (1.1), i.e.,

$$
\begin{equation*}
y^{(4)}+r(t)|y|^{\lambda-1} y=0 \tag{3.7}
\end{equation*}
$$

We will need the following lemma.
Lemma 3.6. Let $\left[T, T_{1}\right] \subset \mathbb{R}_{+}, T \leq T_{1}-2, C_{i} \in \mathbb{R}$ for $i=1,2,3,4, \lambda>1$, $\mu=\left(3 \lambda^{2}+8 \lambda+5\right) /\left(3 \lambda^{2}+6 \lambda+7\right)$, and

$$
0<r_{0} \leq r(t) \leq r_{1} \quad \text { on } \quad\left[T, T_{1}\right]
$$

Then there exist constants $\delta>0$ and $K>0$, which do not depend on T, T_{1}, r_{0}, or r_{1}, such that a solution of the Cauchy initial value problem consisting of equation (1.1) and the conditions

$$
\begin{equation*}
y^{(i)}=C_{i+1}, \quad i=0,1,2,3, \tag{3.8}
\end{equation*}
$$

is noncontinuable if

$$
-C_{1} C_{4}+C_{2} C_{3}>K r_{0}^{-\frac{1}{\mu-1}} r_{1}^{\frac{3(\lambda+1) \mu}{(3 \lambda+5)(\mu-1)}}\left(T_{1}-T\right)^{-\frac{2 \mu}{(\lambda+1)(\mu-1)}}
$$

and

$$
\left|C_{1}\right|+\left|C_{2}\right|+\left|C_{3}\right|+\left|C_{4}\right|>4^{\frac{\mu+1}{\mu-1}} r_{0}^{-\frac{\lambda}{\lambda-1}}\left(\delta r_{0}+r_{1}\right)\left(T_{1}-T\right)^{-\frac{4}{\mu-1}} .
$$

Proof. This follows from the proof of Theorem 1 of Chanturia [13]. Observe that $\mu>1$.

We then have the following result.
Theorem 3.7. Assume that $\lambda>1, r_{0}<r_{1}$, and

$$
\begin{equation*}
r_{0} \leq r(t) \leq r_{1} t^{\sigma} \quad \text { for } \quad t \in \mathbb{R}_{+} \tag{3.9}
\end{equation*}
$$

with $\sigma<\frac{2}{\lambda+1} \frac{3 \lambda+5}{3 \lambda+3}$. Then equation (3.7) is of the strong nonlinear limit-circle type.
Proof. By Lemma 2.3(ii), $\mathcal{N}=\mathcal{N}_{9}$. We will prove that $\mathcal{O}_{1}=\emptyset$. Suppose $y \in \mathcal{O}_{1} \neq \emptyset$. Then Lemma 2.4(ii) implies $\lim _{t \rightarrow \infty} F(t)>0$, and there exists $T \in \mathbb{R}$ such that

$$
F(T)=-y(T) y^{\prime \prime \prime}(T)+y^{\prime}(T) y^{\prime \prime}(T)>0 .
$$

Choose $T_{1} \in[T+2, \infty)$ such that

$$
F(T)>K r_{0}^{-\frac{1}{\mu-1}}\left(r_{1} T_{1}\right)^{\frac{3(\lambda+1) \mu \sigma}{(3 \lambda+5)(\mu-1)}}\left(T_{1}-T\right)^{-\frac{2 \mu}{(\lambda+1)(\mu-1)}}
$$

and

$$
\sum_{i=0}^{3}\left|y^{(i)}(T)\right|>4^{\frac{\mu+1}{\mu-1}} r_{0}^{-\frac{\lambda}{\lambda-1}}\left(\delta r_{0}+r_{1} T_{1}^{\sigma}\right)\left(T_{1}-T\right)^{-\frac{4}{\mu-1}}
$$

where δ, K, and μ are given in Lemma 3.6; this choice is possible since $\mu>1$,

$$
\frac{2 \mu}{(\lambda+1)(\mu-1)}>\frac{3(\lambda+1) \mu \sigma}{(3 \lambda+5)(\mu-1)},
$$

and $4 /(\mu-1)>\sigma$. Now all the conditions of Lemma 3.6 hold with $r_{0}=r_{0}, T=T$, $T_{1}=T_{1}, r_{1}=r_{1} T_{1}^{\sigma}$, and so the solution y is noncontinuable. This contradiction proves that $\mathcal{O}_{1}=\emptyset$. Thus, $\mathcal{O}=\mathcal{O}_{2}$ and the conclusion of the theorem follows from Theorem 3.1(ii).

Remark 3.8. By Lemma 3.4 in [4], for equation (3.7), we have $\lim _{t \rightarrow \infty} F(t) \in\{0, \infty\}$. If (3.9) holds, then we only have $F(t) \rightarrow 0$ as $t \rightarrow \infty$. Moreover, $F(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if y is a nonlinear limit-circle solution. It remains as an open problem whether Theorem 3.7 can be extended to equation (1.1).

To illustrate some of our results, we consider equation (1.1) with $a(t)$ and $r(t)$ being powers of t, namely, the equation

$$
\begin{equation*}
\left(t^{\alpha}\left|y^{\prime \prime}\right|^{p-1} y^{\prime \prime}\right)^{\prime \prime}+t^{\beta}|y|^{\lambda-1} y=0 \tag{3.10}
\end{equation*}
$$

We see that, in view of Theorem 3.1(i), if

$$
p \geq \alpha \quad \text { and } \quad \beta \geq-1
$$

then equation (3.10) has no proper nonoscillatory solutions. Now if

$$
\beta \leq(p-\alpha) / p,
$$

then any solution of (3.10) that belongs to \mathcal{N}_{1} is of the strong nonlinear limit-point type by Theorem 3.2(i). By part (iii) of Theorem 3.2, if

$$
\beta \geq-1
$$

then in fact $\mathcal{N}_{1}=\emptyset$. By Theorem 3.3, if

$$
\beta \geq-2 \quad \text { or } \quad-2>\beta>\alpha-3 p-2,
$$

then any solution of equation (3.10) that belongs to \mathcal{N}_{3} is of the strong nonlinear limit-point type.

It should be clear that the point-wise conditions on the coefficient functions a and r are less than desirable. This is especially true in the case of the function r; equation (1.1) and equations similar to it often appear in the literature with $a(t) \equiv 1$. However, by Theorem 10.3 of Kiguradze and Chanturia [14],

$$
\begin{equation*}
\int_{0}^{\infty} s^{3} r(s) d s<\infty \tag{3.11}
\end{equation*}
$$

is a necessary and sufficient condition for proper nonoscillatory solutions of equation (3.7) to exist, that is, Theorem 3.1(i) is not true if (3.11) holds. In this same spirit, if (3.11) holds, then by Theorem 16.9 in [14] there is a solution tending a nonzero constant so that equation (3.10) is of the nonlinear limit-point type contrary to Theorem 3.7. Now condition (3.11) implies $\liminf _{t \rightarrow \infty} r(t)=0$, so in view of the above observations, the condition $r(t) \geq r_{0}$ may not be as restrictive as it first seems.

In conclusion, we wish to point out that this is the first time that the strong nonlinear limit-point and limit-circle properties have been defined for fourth order equations. Hence, the form that analogous results take for equation (1.1) with $r(t)<0$ remains as an open problem.

ACKNOWLEDGMENTS

The research of J. R. Graef was supported in part by the Office of Academic and Research Computing Services of the University of Tennessee at Chattanooga.

REFERENCES

[1] M. Bartušek, On asymptotic properties of oscillatory solutions of the system of differential equations of fourth order, Arch. Math. (Brno) 17 (1981), 125-136.
[2] M. Bartušek, On oscillatory solutions of the system of differential equations with deviating argument, Czechoslovak Math. J. 33 (110) (1986), 529-532.
[3] M. Bartušek, On oscillatory solutions of differential inequalities, Czechoslovak Math. J. 42 (117) (1992), 45-52.
[4] M. Bartušek, Asymptotic Properties of Oscillatory Solutions of the System of Differential Equations of the n-th Order, Folia F. S. N. Univ. Masar. Brunen. Math. 3, Masaryk University, Brno 1992.
[5] M. Bartušek, Z. Došlá, and J. R. Graef, The Nonlinear Limit-Point/Limit-Circle Problem, Birkhäuser, Boston, 2004.
[6] M. Bartušek and J. R. Graef, Asymptotic properties of solutions of a forced second order differential equation with p-Laplacian, Panamer. Math. J. 15 (2006), 41-59.
[7] M. Bartušek and J. R. Graef, The strong limit-point property for Emden-Fowler equations, Differential Equations Dynam. Systems 14 (2006), 383-405.
[8] M. Bartušek and J. R. Graef, The strong nonlinear limit-point/limit-circle properties for sub-half-linear equations, Dynam. Systems Appl. 15 (2006), 585-602.
[9] M. Bartušek and J. R. Graef, The strong nonlinear limit-point/limit-circle properties for super-half-linear equations, Panamer. Math. J. 17 (2007), 25-38.
[10] M. Bartušek and J. R. Graef, Asymptotic behavior of solutions of a differential equation with p-Laplacian and a forcing term, Differential Equations Dynam. Systems 15 (2007), 61-87.
[11] M. Bartušek and J. R. Graef, Nonlinear limit-point/limit-circle properties of solutions of second order differential equations with P-Laplacian, to appear.
[12] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin-Göttingen-Heildelberg, 1961.
[13] T. A. Chanturia, On the existence of singular and unbounded oscillating solutions of differential equations of Emden-Fowler type, Differ. Uravn. 28 (1992), 1009-1022, (in Russian). Translation in Differ. Equ. 28 (1992), 811-824.
[14] I. Kiguradze and T. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer, Dordrecht, 1993.
[15] M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Springer-Verlag, Berlin, 1992.

