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ABSTRACT: This paper presents a simple steering algorithm for nonholonomic
control systems without drift. The effectiveness of the algorithm is tested on four
different nonholonomic control systems: a spacecraft, a front wheel drive car, a fire
truck model, and a model of mobile robot with trailer. The controllability Lie
Algebra of the spacecraft model contains Lie bracket of depth one while the model
of a front wheel drive car and a rue truck model contain Lie brackets of depth one
and two. The controllability Lie Algebra of the model of mobile robot with trailer
contains Lie brackets of depth one, two, and three. The feedback controls are piece-
wise constant, states dependent and the method is based on the construction of a
cost function V which is sum of the two semi positive definite functions VI and V2,

where VI consists of the function of the first m state variables which can be steered
along the given vector fields and V2 is the function of the remaining n - m state
variables which can be steered along the missing Lie brackets. The values of the
functions VI and V2 allow in determining a desired direction of system motion and
permit to construct a sequence of controls such that the sum of these functions
decreases in an average sense. This approach does not necessitate the conversion of
the system model into a "chained form", and thus does not rely on any special
transformation techniques.
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chained form and Lyapunov function.
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m
Z = LZj(Z) Uj, with i.e. z(O) = Zo, ZE 9tn, m < n

j=I

whereZj, i=I,2, ....,m, are linearly independent, smooth vector fields in 9tn, Uj are piece-

wise continuous and locally bounded in t, control functions defined on the interval [0, 00).

Such systems arise frequently in practice and typically represent models of mechanical systems



with velocity constraints, such as, for example, wheeled vehicles, for which no slipping occurs

between the wheels and the contact surface. Such systems are known to be difficult to control as

reflected by fact that the linearization of (1) is an uncontrollable system. It is also well known

that system (1) cannot be stabilized by continuous, static state feedback see [6]. Hence, a

considerable effort has been expended in order to find continuous, time-varying control laws

([1], [3], [7],[14], [15], [16]) discontinuous ones ([2], [8], [12]) as well as mixed strategies

([5],[17]). See [9] and the references therein for a comprehensive survey of the field.

Since discontinuous control is practical in many applications, our interest in this paper is to

propose a simple method for the construction of discontinuous feedback control for system (1).

The proposed method presents piece-wise constant and states dependent control laws with the

objective of steering the system (1) from any arbitrary initial state to any desired state. The

approach is based on the construction of a cost function which is a sum of two semi positive

definite functions VI (Z) and V2(z), where VI (z) consists of the m state variables which can be

steered along the given vector fields and V2 (z) is dependent on the remaining n - m state

variables which can be steered along the missing Lie brackets. The values of these functions

allow in determining a desired direction of system motion and permit to construct a sequence of

controls such that the sum of these functions decreases in an average sense. The individual

functions are hence not restricted to decrease monotonically but their oscillations are limited and

coordinated in a way to guarantee convergence. The task of the control is to decay the non-

differentiable cost function along the controlled system trajectories only asymptotically. This

approach does not necessitate conversion of the system model into a "chained form", and thus

does not rely on any special transformation techniques.

2. The Control problem and some assumptions

• (SP): Given a desired set point Zdes E ~n , construct a discontinuous feedback strategy

in terms of the controls Uj : ~n ~~, i = 1,2, ...., m such that the desired set point Zdes is

an attractive set for (1), so that there exists an e > 0, such that

z(t; 0, zo) ~ zdes' as t ~ 00 for any initial condition Zo E B(Zdes; e).



Without the loss of generality, it is assumed that zdes = 0, which can be achieved by a suitable

translation of the coordinate system. The following assumptions are assumed to hold for these

types of systems:

point for all z E M ~ 9t n , where M is some manifold in 9t n .

• (A2:) The system (1) satisfies the LARC (Lie algebraic rank condition) for controllability

(see [13]), namely that the Lie algebra, L(ZI"",Zm)(z) spans 9tn at each point

3. Basic approach to feedback control synthesis

It is clear that for system (1) there does not exist any Lyapunov function V for which the set

de!
S = {Z E 9tn : LZY(z) = 0, i= l, ...,m} = {OJ

I

This disables the construction of the control laws ui(Z), i = 1,...,m, which render ~V(z) < 0
dt

along the trajectories of the controlled system. A different approach is therefore suggested which

relies on the construction of two functions Vi (z), i= 1,2, whose behavior along the trajectories of

the controlled system is not limited to~ Vi (z) < 0, i = 1,2. While allowing the function VI (z) to
dt

de!
sum V(z) = VI (z) + Vz (z) decreases on average.

3. 1 Construction of the cost function and feedback strategy

For the construction of the functions VI (z) and Vz (z) consider the following two groups of

vector fields and missing Lie brackets:



de! de!
G1 (Z) = {ZI (Z), Z2 (Z), ... , Zm (Z)} and G2 (z) = {Zm+l (Z),oo.,Zn (Z)} .

We introduce the following semi-positive definite functions:

de! 1 de! 1
VI (Z) = - zT G1 (0)G1 T (O)z and V2 (z) = - zT G2 (O)Gl (O)z .

2 2

de!
The cost function is defined as: V(z) = VI (z) + V2 (z).

The suggested feedback strategy focuses on the decrease in V2 alone and the solution to the

steering problem of system (1) can be obtained by steering the system from any initial state zen)

de!
Sm = {Z E ~n : ZI = 00.= Zm = ° & Zr *- 0, r = m + 1'00"n}

de!
Sm+l = {ZE ~n: ZI =00'= Zm+l =0 & Zr *-0,r=m+2,00.,n}

de!
Sn-l = {ZE ~n :ZI =oo,=Zn-l =0& Zn *-O}

de!
Sn ={ZE~n:Zl=oo,=Zn=O}.

1 n
V(z) = - LzT we have:

2 i=1

d n. m n. m n {< ° if Z E ~n \ S
-V(Z)=LZiZi=LZiUi+ LZjZj=-Llz;\+ LZ}!/Z,Ui) _ . m
dt i=1 i=1 j=m+l i=1 j=m+l - ° if Z E Sm

If Z E Sm then the above strategy is failed due to the fact that ~ V (z) = 0, where as Z *- 0.
dt



Let Zk be the state variable associated with some Lie bracket[Zi' Z j], Zi & Z j are associated

with the given vector fields Zi &Z j respectively. The following four steps can generate the

motion along this lie bracket:

• (a) Apply the controls: ui(z)=l & U/Z) =0, V j*i untillz;j;;::lzkl. This step will

The steps (a)-(d) will generate the system motion along the Lie bracket [Zi, Z j]' The following

examples illustrate the method how to generate system motion along the Lie brackets of depth

;;::2.

4. Examples

4.1 Example 1: The model of a rigid spacecraft in actuator failure mode

The model of a rigid spacecraft in actuator failure mode represents a three-dimensional

nonholonomic control system with control deficiency order one and its controllability algebra

contains Lie bracket of depth one. The kinematics model of a model of a rigid spacecraft in

actuator failure mode is given as [10]:

[

coszz ]
where, Zl (z) = Si~Zz tan Zl '

-smzz secZl



If the motion is restricted to the manifold: M = {z E 9\3 : Iztl <!!.... } then the LARC (Lie algebraic
2

rank condition) for controllability is satisfied, namely the Lie algebra, L(ZI' Z2) spans 9\3 at

each point Z E M i.e.

4. 1.1 Construction of the cost function and feedback strategy

For the construction of the functions VI (z) and V2 (z) consider the following two groups of

vector fields and the missing Lie brackets:

dif dif
GI (z) = {ZI (Z),Z2 (z)} andG2 (z) = {Z3 (z)} .

We introduce the following semi-positive definite functions:

IT T 122 IT T 12
VI(z)=-z GI(O)GI (O)Z=-(ZI +Z2), V2(z)=-z G2(0)G2 (0)Z=-(Z3) and

2 2 2 2

de! 1222
V(z) = VI(Z)+V2(Z) = "2(ZI +Z2 +Z3)'

The solution to the steering problem of system (4) can be obtained by steering the system as:

z(O) -+ S2 -+ S3 = {Zdes = O}

dif dif
where, S2 = {z E 9\3 : ZI = Z2 = 0& Z3* O} and S3 = {z E 9\3 : ZI = Z2 = Z3 = O}.

Steering algorithm for a model of rigid spacecraft in actuator failure mode

• Data: e > 0

• [Step 1] Apply the controls: ui = -sign(Zi)' i = 1, 2 until the system trajectories

de!
converge to B(S2;e), where, S2 = {ZE 9\3 :ZI = Z2 =0, Z3 *O}. At S2 ' VI =0

de!
• [Step 2] Steer the system from S2 to S3 = {z E 9\3 : ZI = Z2 = Z3 = O}by generating the

de!
system motion along the Lie bracket Z3 (z) = [ZI' Z2 ](z) as:

• (2a) Apply the controls ul = 0 & u2 = 1 until IZ21;;::IZ31.

(This step makes Z2 * 0 and hence VI * 0 .)



• (2b) Apply the controls ul = -sign(Z3) & U2 = 0 until z3 = 0 .

(This step makes V2 = 0 and also gives ZI "* 0 .)

• (2c) Steer Z2 to zero by using ul = 0 & u2 = -1.

• (2d) Apply the controls ul = -sign(ZI) &u2 = Ountilzi = O.

(This step gives Vi (z) = 0 and does not disturb z3 since in the beginning of this step

Z2 & Z3 = 0 and during this step its dynamics is

Z3 =-sinZ2 seczI! -0 (-sign(ZI» =0.)
Z2-

Theorem 2

The above feedback strategy steers the system (4) from any initial state z(O) to the desired state

VI=0 VI=0
v2 *0 S v2 =0 S { O}'Z(O)----) 2 ----) 3 = Zdes= I.e.

4.2. Example 2: The front wheel drive car

The example considered below represents fourth dimensional nonholonomic control system with

control deficiency orders two. Its controllability Lie algebra contains Lie brackets of depth one

and two. The kinematics model of a front wheel drive car is given as [11]:



t/J =uI

i=cosBu2

Y = sinB u2

. 1
B=-tant/Ju2

I

de!
After redefining the states variables as (ZI,Z2,Z3,Z4{ = (t/J,x,y,B)T in the kinematics model

(6) and assuming I = 1 we have the following:

l 0 jCOSZ3
Z2 (z) = .

tan ZI

sin z3

de!
show that if the motion of the system is restricted to the manifold: M = {z E 9i4 : IztI < Jr} then2

4.3.1 Construction of the cost function and feedback strategy

For the construction of the functions VI (z) and V2 (z) consider the following two groups of

vector fields and missing Lie brackets:

de! de!
GI (Z) = {ZI (Z), Z2 (z)} and G2 (z) = {Z3 (Z), Z4 (z)} .

We introduce the following semi-positive definite functions:

IT T IT 12 2VI(Z)=-Z GI(O)GI (O)Z=-Z Z=-(ZI +Z2)222



de!
8Z = {ZE 9{4 : Zl = Zz = 0 & Z3, Z4 * O} by using the controls Ui = -sign(Zi)' i = 1,2 . Further

decrease in V2 (z) can be achieved by steering the system from

de! 4 de! 4
8z = {ZE 9{ : Zl = Zz =0& Z3,Z4 *O} to 84 = {ZE 9{ : Zl = Zz = Z3 = Z4 =O} by

Z4 (z) = [Z2' [Zl, Z2 ]](z) simultaneously. For this simultaneous motion consider the reduced

system of Z3and Z4:

Z3 = vU2

Z4 = sin Z3 u2

Z3(0) *!!.- then the control u2 = -sign(Z3v), where
2

1
v = --[1-cos(Z3(0»]

Z4(0)

steer z3(t) and Z4(t) exactly to zero in finite time. From (9), we have

1 de! -1 1- COS (Z3 (0»
--[1-cos(Z3(0»]=V=tanZ1~Zl = Zl =tan {-----}.
4~ ~ 4~

Steering Algorithm for the front wheel drive car

• Data: e > 0



de!
B(S2;e),where 82 ={ZE~4:Z1=Z2=O, Z3,Z4*O}. At S2 we have VI(z)=O

• (2a) Apply by the controls ul = 1& u2 = 1 until IZll ::::hdes\' (This step makes

Zl' Z2 * o and hence VI * 0.)

• (4a) Steer zi to zero by using ul = -1 & u2 = O.

• (4b) Steer z2 to zero by using u2 = -sign(Z2) & ul = 0

(This step gives VI (z) = 0 and will not disturb z3 & Z4 since in the beginning of this step

Zl = Z3 = Z4 = 0 and during this step their dynamics are Z3 = tan zll =0 (-sign(Z2» =0
Zl-

Theorem 3

The above feedback strategy steers the system (7) from any initial state z(O) to the desired state

Vt=O
z(O) v2>,0) S2

VI=0
v2=0 ) S4 = {Zdes = O}



The fire truck is an example of a nonholonomic system with three inputs and six configuration

variables, for which the controllability Lie algebra contains two Lie brackets of depth one and

one Lie bracket of depth two. After redefining the states variables as

de!
(ZI ,Z2, Z3, Z4, zs,z6l = (x, ¢Jo, ¢>l,8o,Ot, y)T in the kinematics model of fire truck as given in

[4] and assuming 10 = 11 = 1 we have following:

o
o
1

Z3 = o
o
o

tanz2 secz4
- sin(Z3 - Z4 + zs) sec z3 sec z4

tan Z4

Figure 2: The Fire Truck Model

Calculating the Lie brackets, which are linearly independent at the origin, yields:



de!
Z4(Z) = [ZI' Z2](Z) =

o
o
o

2 '- (see Z2) see Z4

o
o

de!
ZS(Z) = [ZI, Z3](Z) =

o
o
o
o

see Z3 see Z4(cos(Z3 - Z4 + ZS) + sin(Z3 - z4 + ZS) tan Z3

o

de!
Z6 (Z) = [ZI' [ZI' Z2 ]](Z) =

o
o
o
o

(see Z2 see Z4)2 see Z3 (cos(Z3 - Z4 + Zs) - sin(Z3 - Z4 + zs)tan z4

(see Z2)2 (see ZS)3

It is clear that, if the motion of the system is restricted to the manifold:

de! 6 Jf .
M = {z E 9t : IZi I < - , I = 2, 3, 4}

2

4. 4.1 Construction of the cost function and feedback strategy

For the construction of the functions VI (z) and V2 (z) consider the following two groups of

vector fields and missing Lie brackets:

de! de!
G1(z) = {ZI(Z),Z2(Z),Z3(Z)} and G2(z) = {Z4(Z),ZS(Z),Z6(Z)}.



1 z z 1 z de!
Define VZ1(Z)=2"(Z4 +Z6)' and VZZ(Z)=2"zs then Vz(z) = VZ1(z)+Vzz(z).

First of all steer the system (12) from any initial state z(O) to surface

de!
S3 = {Z E 9{6 : ZI = Zz = Z3 = 0 & Z4, Zs, Z6 * O} by using the controls

de!
S3 = {Z E 9{6 : Z3 = Z4 = Z6 = 0& ZI,ZZ,ZS * O}which is equivalent to generating the system

Z6 (z) = [21, [21, 2z ]](z) simultaneously. For this consider the reduced system which consists of

z4and Z6:

Z4 = VUI

Z6 = tanZ4 UI

where v = tan Zz see Z4' Assuming that vand ul are constant and that v * 0, integration of (11)

yields:

Z4(t) = Z4(0)+tvuI

1
Z6 (t) = z6 (0)+ -[lncos (Z4 (0» -lncos (Z4 (0) + vUI t)]

V

Z4(0) *!!.... then the control ul = -sign(Z4v), where
2

1
v = ---[lncos(z4 (0»]

Z6(0)

steer Z4 (t) and Z6 (t) exactly to zero in finite time. From (13), we have

1 de! -I lncos(Z4(t»
---[lncos(Z4(t»] = v = tan Zz secZ4 => Zz = Zz = -tan {cOSZ4 ----}.

Z6(t) des Z6(t)



Steering algorithm for the fire truck model

e Data: e > °

def
B(S3;e), where S3 = {ZE M ~ 9{6 :ZI = Zz = Z3 = 0, Z4 ,Z5 ,Z6 *-O}. At S3, VI =0

and V2 *-0.

e [Step2] Steer the system from S3 to

Adef 6 def -I Incos(Z4(t))
S={ZE9t :Z3=0,ZZ=ZZd =-tan {COSZ4-----},ZI'Z4,Z5'Z6*-0}aS:

es Z6 (t)

def -I Incos(Z4(t))
where,zZ =-tan {COSZ4-----}. (This step makes ZI,ZZ *-Oand hence

des Z6(t)

e (2b) Apply the controls Uz = -sign(zz - ZZdes) & ul = u3 = ° until Zz = zZdes .

e [Step3] Steer the system from S to

_def 6
S3 = {Z E M ~ 9{ :Z3 = Z4 = Z6 = 0, ZI, Zz ,Z5 *-O} as:

v = tan ZZdes sec Z4' (This step gives VZ1 = 0.)

e[Step4] Steer the system fromS3 to

def
S5 = {Z E M ~ 9{6 : ZI = Zz = Z3 = Z4 = Z6 = 0, Z5 *-O} as:

e(4a) Steer Zz to zero by using Uz = -sign(zz) & UI = U3 = ° .
e(4b) Steer Z3 to zero by using UI = -sign(ZI) & Uz = u3 = ° .

(This step gives VI(z) = °and does not disturb Z4 & z6 since in the beginning of this step

are 24 = tan Zz see Z4 IZ2=O (-sign(ZI)) =0 and 26 = tan Z4 IZ4=o (-sign(ZI)) =0.)

Steps 2-4 generate the system motion along the Lie brackets Z4 (z) = [ZI' Zz ](z) and

Z6 (z) = [ZI ,[ZI' Zz]](z) simultaneously.



de!
• [Step5] Steer the system from 8s to 86 = {z E M ~ 9t6 : Zj = Zz = Z3 = Z4 = Zs = Z6 = 0 }

by generating the system motion along the Lie bracket Zs (z) = [2j, 23 ](Z) as:

• (5a) Apply the controls Uj = Uz = 0& u3 = 1 until IZ31 ~ Izsl.
(This step makes z3 "* 0 and hence VI "* 0.)

• (5b) Apply the controls Uj = -sign(zs) & Uz = U3 = 0 until Zs = 0 .

(This step gives V22 = 0 and also makes Zj "* 0 and do not disturb Z4 & Z6 since in the

beginning of this step Zz = Z4 = z6 = 0 and during this step their dynamics

Theorem 6

The above feedback strategy steer the system (l0) from any initial state z(O) to the desired state

Zdes = 0 through a sequence of motions

VI=0 vr;co vr"o vt=O vj=o

z(O) v2"'0 ) 83
v2"'0 >S V21=0, V22",0

) &3
V21=0,v22 ",0

) 8s
V21= V22=0

) 86 = {Zdes = O}

in finite

Zj 0 x x 0 0

Zz 0 ZZdes VI",0 ZZdes VI=0 0 0
VI=0 0 vt"'o 0

V21=0,
0

v2t=0,
0 VI=0 0

z(O) =
Z3 v2"'0 v2"'0 V22"'0 V22 ",0 v2=0

= {Zdes = O}
Z4 X X 0 0 0

Zs x x x x 0

Z6 X X 0 0 0



4.3. Example3: The mobile robot with trailer model

The example considered below represents a fifth dimensional system with control deficiency

order three, possessing a non-nilpotent controllability Lie algebra which contains Lie brackets of

depth one, two, and three. Although, the algebraic structure of mobile robot with trailer is more

complicated, the decomposition idea can still be employed successfully.

The kinematics model of a mobile robot with trailer (see [ll]), is given below:

Xl= cos x3 cos x4 ul

Xz = cos x3 sin x4 ul

x3 =uz
. 1.
x4 =ismx3 ul

. 1. ( )Xs =dsm x4 -xs cosx3 ul

def
and can be suitably re-written by defining (xI,xZ,x3,x4'xS) = (zl,z4,zZ,z3'zS):

cosz3 cos Zz
o

where, Zl (z) = sin zz
coszz sin z3

cos zz sin(Z3 - ZS)

o
1

ZZ(z)= 0
o
o



def
Z3(Z) = [Zj,ZZ](Z)=

- sinzz cos z3

o
def

Z4(z) = [Zj,[Zj,ZZ]](Z)=

- sin Z3

o
ocos Zz

- sinzz sin z3

- sin Zz sin(z3 - zs)
cos z3

cos(Z3 - zs)

def
Zs(z) = [Zj,[Zj,[Zj,Zz]]](z)=

sinzz cos Z3

o
o

sinzz sin z3

sin Zz sin(Z3 - zs) + cos Zz

4. 5.1 Construction of the cost function and feedback strategy

For the construction of the functions VI(z) and V2 (z) consider the following two groups of

vector fields and missing Lie brackets:

de! de!
Gj (Z) = {21 (Z), 22 (z)} and G2 (z) = {23 (Z), 24 (z),2S (Z)} .

IT T 1222Vz (Z) = - z GZ (0)G2 (O)Z = -(Z3 + Z4 + Zs )
2 2

de!
and V(z) = V1(Z)+V2(z).

I 2 Z 1 z de!
Define V21(z) = "2(Z3 + Z4), and Vzz (z) ="2 Zs then V2 (z) = VZ1(z) + Vzz (z).

First of all steer the system (15) from any initial state z(O) to surface

de!
8Z = {Z E ~S : Zj = Z2 = 0 & Z3,Z4,ZS * O}by using the controls

Ul = -sign(ZI) & U2 = -sign(z2) . For further decrease in Vz (z) can be achieved by steering the

de!
system from 8z ={ZE~S :Zl =Z2 =0 & Z3,Z4,ZS *O}to

de!
8z ={ZE~S :Z3 =Z4 =0& Zj,ZZ,ZS *O} by generating the system motion along the Lie



Z3 = VUI

Z4 = COS Zz sin Z3 UI = ~1- vZ sin Z3 UI

~l-vZ
Z4 (t) = Z4 (0)+---[cos(Z3(0» - cos(Z3 (0) + vUI t)]

V

where Z3 (0) and Z4 (0) are the initial values of Z3(t) and Z4 (t). Clearly if Z3 (0) * 0 and

Z4 (0) * 0 then ul = -sign(Z3 v) , where

de! V 1
V = ~ =--[1-cos(Z3(0»]

v1-vz Z4(0)

1 V de! -I 1-cos(Z3(0»
--[1-cos(Z3(0»] = ~ = tanzz => Zz = Zz = tan { }.
Z4 (0) v1- vZ des Z4 (0)

Steering algorithm for the mobile robot with trailer model

• Data: e > 0

de!
converge to B(Sz;e), where Sz = {ZE 9\5 :ZI = Zz = 0, Z3 'Z4 ,Z5 * O}. At Sz, VI=0

and V2*0.

de!
• [Step2] Steer the system from S z = {z E 9\ 5 : ZI = Zz = 0, z3' Z4 ' Z5 * O} to

A de! 5 de! -I 1-cos(Z3(0»
Sz = {z E 9\ : Zz = Zz = tan {-----},ZI'Z3'Z4'Z5 * O} as:

des Z4 (0)

• (2a) Apply the controls ul = 1& Uz = -1 until Izz I ~ IZZdes I· (This step makes

ZI, Zz * o and hence VI * 0.)

• (2b) Apply the controls ul = 0 & Uz = -sign(zz - ZZdes) until Zz = zZdes.

A - de! 5
• [Step3] Steer the system from Sz to Sz = {ZE 9\ : z3 = z4 = 0, ZI,zZ,Z5 * O} as:



A V •
V = ~ z = tan ZZdes' (This step gives Z3 = Z4 = 0 & VZj= 0.)

I-v
- de! S

.[Step4] Steer the system fromSz to Ss = {Z E 9\ : ZI = Zz = Z3 = Z4 = 0, Zs *' O} as:

• (4a) Steer Zz to zero by using ul = 0 & Uz = -sign(zz) .

• (4b) Steer ZI to zero by using UI = -sign(ZI) & Uz = 0 .

(This step gives VI(z) = 0 and does not disturb Z3 & Z4 since in the beginning of this step

Zz = Z3 = Z4 = 0 and during this step their dynamics are

Z3 = sinzz IZ2;o (-sign(ZI» =0 and Z4 = coszz sinz3 IZ3;O (-sign(ZI» =0.)

Steps 2-4 generate the system motion along the Lie brackets Z3 (z) = [ZI, Zz ](z) and

de!
• [Step5] Steer the system from S4 to Ss = {z E 9\s : ZI = Zz = z3 = Z4 = Zs = O} by

generating the system motion along the Lie bracket Zs(z) = [ZI,[Z.,[ZI'ZZ]]](Z) as:

• (5a) Apply the controls ul = 0 & Uz = 1 until Zz = 1l.

(This step makes Z z *' 0 and hence VI *' 0 .)

• (5b) Apply the controls ul = -sign(zs) & Uz = 0 until Zs = 0 .

(This step gives V22 = 0 and also makes ZI *' 0 and does not disturb Z3 & Z4 since in the

beginning of this step Z3 = Z4 = Zs = 0 and during this step their dynamics

arez3 =sinZzlz2;J!'(-sign(zs»=Oand Z4 =cosZZsinZ3Iz3;o(-sign(zs»=0.)

• (5c) Steer Zz to zero position by using ul =O&uz =-1

• (5d) Steer ZI to zero position by using UI = -sign(ZI) & Uz = O.

(This step gives VI(z) = Vz(z) = 0 and does not disturb Z3' Z4 & Zs since in the beginning

of this step Zz = Z3 = Z4 = Zs = 0 and during this step their dynamics



Theorem 6

The above feedback strategy steer the system (15) from any initial state z(O) to the desired state

Zdes = 0 through a sequence of motions

VI =0 vl'"o VI ",0 VI =0 VI =0

z(O)
v2",0

) S2
v2",0

) S2
v2! =0, V22 ",0

)S2
V21=0, V22 ",0

) S4
V21 = V22=0

)Ss = {Zdes =O}

in finite

Zl 0 x X 0 0
0

VI ",0 VI =0
0 0Z2 V! =0 VI ",0 Z2des

V21=0, Z2des
V21=0, v1=O

z(O) = Z3
v2"'0 ) X

v2"'0
X

V22"'0 0 V22"'0 ) 0 v2=0 ) 0 = {Zdes = O}
Z4 X X 0 0 0

Zs x x x x 0

A systematic method for the construction of steering control for nonholonomic systems is

introduced with out transforming into "chain form", and the conditions are stated which

guarantee that the resulting feedback control strategy yields global asymptotic convergence to

the origin. The approach is applied to steer a spacecraft model, a front wheel drive car, and a fire

truck model and the mobile robot with trailer model. This method is general and can be

employed to steer a variety of mechanical systems with velocity constraints.
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