A NOTE ON FACTORIZATION OF BOUNDED LINEAR OPERATORS

M.S. Kashimoto ${ }^{1}$ and M.Z. Nashed ${ }^{2}$
${ }^{1}$ Departamento de Matemática e Computação
Universidade Federal de Itajubá
Caixa postal 50, Itajubá - MG, 37500-903, Brazil
${ }^{2}$ Department of Mathematics
University of Central Florida
Orlando, FL 32816, USA
Communicated by D.D. Bainov

Abstract

We give some conditions for simultaneous factorization of a finite family of bounded linear operators with values in a normed space such that the collection of its closed balls has the binary intersection property.

AMS (MOS) Subject Classification: 47A68, 47A05

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume that all normed spaces are real.
A family of sets is said to be chained if every pair of sets of the family has a nonempty intersection. We shall describe a normed space W as an \mathcal{M}-type space if the collection of its closed balls has the binary intersection property, that is, every chained family of closed balls of W has a nonempty intersection. An example of an \mathcal{M}-type space is given by the space of all real bounded functions on a set Ω, endowed with the norm $\|f\|=\sup \{|f(x)|: x \in \Omega\}$. In particular, the real line is an \mathcal{M}-type space. For further information see Nachbin [3] and Kantorovich and Akilov [2].

Let U and V be normed spaces. We shall denote by $L(U, V)$ the space of all bounded linear operators on U into V and by $L(U)$ when $U=V$. The null space and the range of a linear operator $T \in L(U, V)$ will be denoted by $\mathcal{N}(T)$ and $\mathcal{R}(T)$, respectively. For $T \in L(U, V)$, we associate the usual adjoint $T^{*} \in L\left(V^{*}, U^{*}\right)$, where U^{*} and V^{*} are the dual spaces of U and V, respectively.

Example 1. Let $F_{b}(\Omega)$ be the space of all real bounded functions on the nonempty set Ω, endowed with the supremum norm. Consider the space $F_{b}(\Omega) \times F_{b}(\Omega)$ with
the norm $\left\|\left(f_{1}, f_{2}\right)\right\|=\left\|f_{1}\right\|+\left\|f_{2}\right\|$. Given $P, Q, B \in L\left(F_{b}(\Omega)\right)$, consider the linear operators:

$$
\begin{aligned}
T_{1}: F_{b}(\Omega) \times F_{b}(\Omega) & \rightarrow F_{b}(\Omega) \times F_{b}(\Omega), \\
\left(f_{1}, f_{2}\right) & \mapsto\left(0, P f_{1}\right), \\
T_{2}: F_{b}(\Omega) \times F_{b}(\Omega) & \rightarrow F_{b}(\Omega) \times F_{b}(\Omega), \\
\left(f_{1}, f_{2}\right) & \mapsto\left(Q f_{2}-B f_{1}, 0\right), \\
S_{1}: F_{b}(\Omega) \times F_{b}(\Omega) & \rightarrow F_{b}(\Omega), \\
\left(f_{1}, f_{2}\right) & \mapsto P f_{1}, \\
S_{2}: F_{b}(\Omega) \times F_{b}(\Omega) & \rightarrow F_{b}(\Omega), \\
\left(f_{1}, f_{2}\right) & \mapsto Q f_{2}-B f_{1} .
\end{aligned}
$$

These operators satisfy the following conditions:
(i) $\left\|S_{1}\left(f_{1}, f_{2}\right)+S_{2}\left(g_{1}, g_{2}\right)\right\| \leq\left\|T_{1}\left(f_{1}, f_{2}\right)+T_{2}\left(g_{1}, g_{2}\right)\right\|$ for all

$$
\left(f_{1}, f_{2}\right),\left(g_{1}, g_{2}\right) \in F_{b}(\Omega) \times F_{b}(\Omega)
$$

(ii) There exists $A \in L\left(F_{b}(\Omega) \times F_{b}(\Omega), F_{b}(\Omega)\right)$ such that $A T_{i}=S_{i}$ for $i=1,2$.
(iii) $R\left(S_{i}^{*}\right) \subset R\left(T_{i}^{*}\right)$ for $i=1,2$.

Indeed,
(i) We have

$$
\begin{array}{r}
\left\|S_{1}\left(f_{1}, f_{2}\right)+S_{2}\left(g_{1}, g_{2}\right)\right\|=\left\|P f_{1}+Q g_{2}-B g_{1}\right\| \leq\left\|P f_{1}\right\|+\left\|Q g_{2}-B g_{1}\right\| \\
=\left\|\left(Q g_{2}-B g_{1}, P f_{1}\right)\right\|=\left\|\left(0, P f_{1}\right)+\left(Q g_{2}-B g_{1}, 0\right)\right\| \\
=\left\|T_{1}\left(f_{1}, f_{2}\right)+T_{2}\left(g_{1}, g_{2}\right)\right\| .
\end{array}
$$

(ii) Take

$$
\begin{aligned}
& A: F_{b}(\Omega) \times F_{b}(\Omega) \rightarrow F_{b}(\Omega) \\
&\left(f_{1}, f_{2}\right) \mapsto f_{1}+f_{2} \\
& A T_{1}\left(f_{1}, f_{2}\right)=A\left(0, P f_{1}\right)=P f_{1}=S_{1}\left(f_{1}, f_{2}\right) \\
& A T_{2}\left(f_{1}, f_{2}\right)=A\left(Q f_{2}-B f_{1}, 0\right)=Q f_{2}-B f_{1}=S_{2}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

(iii) For each $\phi \in F_{b}(\Omega)^{*}$, consider the linear functional

$$
\begin{aligned}
\psi_{\phi}: F_{b}(\Omega) \times F_{b}(\Omega) & \rightarrow \mathbb{R} \\
\left(f_{1}, f_{2}\right) & \mapsto \phi\left(f_{1}+f_{2}\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
S_{1}^{*}(\phi)\left(f_{1}, f_{2}\right) & =\phi \circ S_{1}\left(f_{1}, f_{2}\right)=\phi\left(P f_{1}\right)=\phi\left(0+P f_{1}\right) \\
& =\psi_{\phi}\left(0, P f_{1}\right)=\psi_{\phi}\left(T_{1}\left(f_{1}, f_{2}\right)\right)=T_{1}^{*}\left(\psi_{\phi}\right)\left(f_{1}, f_{2}\right)
\end{aligned}
$$

for any $\left(f_{1}, f_{2}\right) \in F_{b}(\Omega) \times F_{b}(\Omega)$. Hence $R\left(S_{1}^{*}\right) \subset R\left(T_{1}^{*}\right)$. Similarly, we can show that $R\left(S_{2}^{*}\right) \subset R\left(T_{2}^{*}\right)$.
Motivated by Example 1 and Theorem 2.8 in Jo et al [1], we state our result.
Theorem 1. Let U and V be normed spaces and W be an \mathcal{M}-type space. Let $S_{1}, \ldots, S_{n} \in L(U, W)$ and $T_{1}, \ldots, T_{n} \in L(U, V)$. If

$$
\left\|T_{k} f_{k}\right\| \leq\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\| \quad \text { for each } f_{k} \in U
$$

$k=1, \ldots, n$, then the following statements are equivalent:
(a) There exists a constant $C>0$ such that

$$
\left\|\sum_{i=1}^{n} S_{i} f_{i}\right\| \leq C\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|
$$

for all finite collections of vectors $\left\{f_{1}, \ldots, f_{n}\right\}$ in U.
(b) There exists $A \in L(V, W)$ such that $A T_{i}=S_{i}$ for $i=1, \ldots, n$.
(c) $\mathcal{R}\left(S_{i}^{*}\right) \subset \mathcal{R}\left(T_{i}^{*}\right)$ for $i=1, \ldots, n$.

2. PROOF OF THE THEOREM

We need the following linear extension result showed by Nachbin Nachbin [3].
Lemma 1. Let V be a normed space and W be an \mathcal{M}-type space. Further, let E be a vector subspace of V and $A_{o}: E \rightarrow W$ be a bounded linear operator. Then there exists a bounded linear operator $A: V \rightarrow W$ such that $A x=A_{o} x$ for all $x \in E$ and $\|A\|=\left\|A_{o}\right\|$.

Proof of Theorem 1. Assume that (a) holds. Note that

$$
E:=\left\{\sum_{i=1}^{n} T_{i} f_{i}: f_{1}, \ldots, f_{n} \in U\right\}
$$

is a vector subspace of V. Let $A_{0}: E \rightarrow W$ be defined by

$$
A_{0}\left(\sum_{i=1}^{n} T_{i} f_{i}\right)=\sum_{i=1}^{n} S_{i} f_{i}
$$

for every $f_{1}, \ldots, f_{n} \in U$. Let us verify that A_{0} is well defined. If $\sum_{i=1}^{n} T_{i} f_{i}=\sum_{i=1}^{n} T_{i} g_{i}$ for $f_{i}, g_{i} \in U, i=1, \ldots, n$, then

$$
\begin{equation*}
0=\left\|\sum_{i=1}^{n} T_{i} f_{i}-\sum_{i=1}^{n} T_{i} g_{i}\right\|=\left\|\sum_{i=1}^{n} T_{i}\left(f_{i}-g_{i}\right)\right\| \tag{1}
\end{equation*}
$$

It follows from (a) that there exists a constant $C>0$ such that

$$
\left\|\sum_{i=1}^{n} S_{i}\left(f_{i}-g_{i}\right)\right\| \leq C\left\|\sum_{i=1}^{n} T_{i}\left(f_{i}-g_{i}\right)\right\| .
$$

Hence, by (1)

$$
\sum_{i=1}^{n} S_{i} f_{i}=\sum_{i=1}^{n} S_{i} g_{i}
$$

Note that A_{0} is a bounded linear operator since (a) holds. Thus, by Lemma 1, there exists a bounded linear extension $A: V \rightarrow W$ of A_{0} and we conclude that $A T_{i}=S_{i}$ for $i=1, \ldots, n$.

The statement (c) follows from (b) since $S_{i}^{*}=T_{i}^{*} A^{*}$ for $i=1, \ldots, n$.
To prove that (c) implies (a), let us assume that $\mathcal{R}\left(S_{i}^{*}\right) \subset \mathcal{R}\left(T_{i}^{*}\right)$ for $i=1, \ldots, n$. Then for every $\phi \in W^{*}$, there exist $\psi_{i} \in V^{*}$ such that $S_{i}^{*} \phi=T_{i}^{*} \psi_{i}$, for $i=1, \ldots, n$. Let f_{1}, \ldots, f_{n} be arbitrary vectors in U such that $\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\| \neq 0$. We have

$$
\begin{aligned}
\left|\phi\left(\sum_{i=1}^{n} S_{i} f_{i}\right)\right| & =\left|\sum_{i=1}^{n} \phi\left(S_{i} f_{i}\right)\right|=\left|\sum_{i=1}^{n}\left(S_{i}^{*} \phi\right) f_{i}\right|=\left|\sum_{i=1}^{n}\left(T_{i}^{*} \psi_{i}\right) f_{i}\right| \\
& =\left|\sum_{i=1}^{n} \psi_{i}\left(T_{i} f_{i}\right)\right| \leq \sum_{i=1}^{n}\left|\psi_{i}\left(T_{i} f_{i}\right)\right| \leq \sum_{i=1}^{n}\left\|\psi_{i}\right\|\left\|T_{i} f_{i}\right\| \\
& \leq K \sum_{i=1}^{n}\left\|T_{i} f_{i}\right\|
\end{aligned}
$$

where $K=\max \left\{\left\|\psi_{i}\right\|: i=1, \ldots, n\right\}$. Hence

$$
\left|\phi\left(\sum_{i=1}^{n} S_{i} f_{i} /\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|\right)\right| \leq K \sum_{i=1}^{n}\left(\left\|T_{i} f_{i}\right\| /\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|\right) \leq K n .
$$

Therefore, it follows from the Principle of Uniform Boundedness that the set

$$
\left\{\sum_{i=1}^{n} S_{i} f_{i} /\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|:\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\| \neq 0 ; f_{1}, \ldots, f_{n} \in U\right\}
$$

is bounded. Hence there exists $C>0$ such that

$$
\left\|\sum_{i=1}^{n} S_{i} f_{i}\right\| \leq C\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|
$$

for all $f_{1}, \ldots, f_{n} \in U$ such that $\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\| \neq 0$.
On the other hand, if $\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|=0$ for some collection of vectors $\left\{f_{1}, \ldots, f_{n}\right\}$ in U then by hypothesis $\left\|T_{i} f_{i}\right\|=0$ for $i=1, \ldots, n$. We claim that $\sum_{i=1}^{n} S_{i} f_{i}=0$. Indeed, if $\sum_{i=1}^{n} S_{i} f_{i} \neq 0$, by the Hahn-Banach Theorem there exists $\psi \in W^{*}$ such that $\psi\left(\sum_{i=1}^{n} S_{i} f_{i}\right)=\left\|\sum_{i=1}^{n} S_{i} f_{i}\right\|$. Since $R\left(S_{i}^{*}\right) \subset R\left(T_{i}^{*}\right)$ there exists $\varphi_{i} \in V^{*}$ such
that $\left(S_{i}^{*} \psi\right) f_{i}=\left(T_{i}^{*} \varphi_{i}\right) f_{i}$ for $i=1, \ldots, n$. Thus,

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} S_{i} f_{i}\right\| & =\psi\left(\sum_{i=1}^{n} S_{i} f_{i}\right)=\sum_{i=1}^{n} \psi\left(S_{i} f_{i}\right)=\sum_{i=1}^{n}\left(S_{i}^{*} \psi\right) f_{i} \\
& =\sum_{i=1}^{n}\left(T_{i}^{*} \varphi_{i}\right) f_{i}=\sum_{i=1}^{n} \varphi_{i}\left(T_{i} f_{i}\right) \leq \sum_{i=1}^{n}\left|\varphi_{i}\left(T_{i} f_{i}\right)\right| \\
& \leq \sum_{i=1}^{n}\left\|\varphi_{i}\right\|\left\|\left(T_{i} f_{i}\right)\right\| \leq M \sum_{i=1}^{n}\left\|\left(T_{i} f_{i}\right)\right\|=0
\end{aligned}
$$

where $M=\max \left\{\left\|\varphi_{i}\right\|: i=1, \ldots, n\right\}$. Hence we obtain a contradiction.
Since $\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|=0$ and $\sum_{i=1}^{n} S_{i} f_{i}=0$, it follows that

$$
\left\|\sum_{i=1}^{n} S_{i} f_{i}\right\|=C\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|
$$

Therefore, we have proved that there exists a constant $C>0$ such that

$$
\left\|\sum_{i=1}^{n} S_{i} f_{i}\right\| \leq C\left\|\sum_{i=1}^{n} T_{i} f_{i}\right\|
$$

for all finite collections of vectors $\left\{f_{1}, \ldots, f_{n}\right\}$ in U.

ACKNOWLEDGEMENTS

The first author acknowledges the support by CAPES Grant BEX \#1533/03-7, Brazil.

References

[1] Y.S. Jo, J.H. Kang, and K.S. Kim, On operator interpolation problems, J. Korean Math. Soc., 41 (2004), 423-433.
[2] L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics, 46, Pergamon Press, Oxford and New York, 1964.
[3] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc., 68 (1950), 28-46.

