A NOTE ON FACTORIZATION OF BOUNDED LINEAR OPERATORS

M.S. Kashimoto¹ and M.Z. Nashed²

¹Departamento de Matemática e Computação
Universidade Federal de Itajubá
Caixa postal 50, Itajubá - MG, 37500-903, Brazil

²Department of Mathematics
University of Central Florida
Orlando, FL 32816, USA

Communicated by D.D. Bainov

ABSTRACT: We give some conditions for simultaneous factorization of a finite family of bounded linear operators with values in a normed space such that the collection of its closed balls has the binary intersection property.

AMS (MOS) Subject Classification: 47A68, 47A05

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume that all normed spaces are real.

A family of sets is said to be *chained* if every pair of sets of the family has a nonempty intersection. We shall describe a normed space W as an \mathcal{M} -type space if the collection of its closed balls has the *binary intersection property*, that is, every chained family of closed balls of W has a nonempty intersection. An example of an \mathcal{M} -type space is given by the space of all real bounded functions on a set Ω , endowed with the norm $||f|| = \sup\{|f(x)| : x \in \Omega\}$. In particular, the real line is an \mathcal{M} -type space. For further information see Nachbin [3] and Kantorovich and Akilov [2].

Let U and V be normed spaces. We shall denote by L(U, V) the space of all bounded linear operators on U into V and by L(U) when U = V. The null space and the range of a linear operator $T \in L(U, V)$ will be denoted by $\mathcal{N}(T)$ and $\mathcal{R}(T)$, respectively. For $T \in L(U, V)$, we associate the usual adjoint $T^* \in L(V^*, U^*)$, where U^* and V^* are the dual spaces of U and V, respectively.

Example 1. Let $F_b(\Omega)$ be the space of all real bounded functions on the nonempty set Ω , endowed with the supremum norm. Consider the space $F_b(\Omega) \times F_b(\Omega)$ with

98 Kashimoto and Nashed

the norm $||(f_1, f_2)|| = ||f_1|| + ||f_2||$. Given $P, Q, B \in L(F_b(\Omega))$, consider the linear operators:

$$T_{1}: F_{b}(\Omega) \times F_{b}(\Omega) \rightarrow F_{b}(\Omega) \times F_{b}(\Omega),$$

$$(f_{1}, f_{2}) \mapsto (0, Pf_{1}),$$

$$T_{2}: F_{b}(\Omega) \times F_{b}(\Omega) \rightarrow F_{b}(\Omega) \times F_{b}(\Omega),$$

$$(f_{1}, f_{2}) \mapsto (Qf_{2} - Bf_{1}, 0),$$

$$S_{1}: F_{b}(\Omega) \times F_{b}(\Omega) \rightarrow F_{b}(\Omega),$$

$$(f_{1}, f_{2}) \mapsto Pf_{1},$$

$$S_{2}: F_{b}(\Omega) \times F_{b}(\Omega) \rightarrow F_{b}(\Omega),$$

$$(f_{1}, f_{2}) \mapsto Qf_{2} - Bf_{1}.$$

These operators satisfy the following conditions:

(i)
$$||S_1(f_1, f_2) + S_2(g_1, g_2)|| \le ||T_1(f_1, f_2) + T_2(g_1, g_2)||$$
 for all $(f_1, f_2), (g_1, g_2) \in F_b(\Omega) \times F_b(\Omega)$.

- (ii) There exists $A \in L(F_b(\Omega) \times F_b(\Omega), F_b(\Omega))$ such that $AT_i = S_i$ for i = 1, 2.
- (iii) $R(S_i^*) \subset R(T_i^*)$ for i = 1, 2.

Indeed,

(i) We have

$$||S_1(f_1, f_2) + S_2(g_1, g_2)|| = ||Pf_1 + Qg_2 - Bg_1|| \le ||Pf_1|| + ||Qg_2 - Bg_1||$$

$$= ||(Qg_2 - Bg_1, Pf_1)|| = ||(0, Pf_1) + (Qg_2 - Bg_1, 0)||$$

$$= ||T_1(f_1, f_2) + T_2(g_1, g_2)||.$$

(ii) Take

$$A: F_b(\Omega) \times F_b(\Omega) \rightarrow F_b(\Omega),$$

 $(f_1, f_2) \mapsto f_1 + f_2.$

$$AT_1(f_1, f_2) = A(0, Pf_1) = Pf_1 = S_1(f_1, f_2).$$

 $AT_2(f_1, f_2) = A(Qf_2 - Bf_1, 0) = Qf_2 - Bf_1 = S_2(f_1, f_2).$

(iii) For each $\phi \in F_b(\Omega)^*$, consider the linear functional

$$\psi_{\phi}: F_b(\Omega) \times F_b(\Omega) \rightarrow \mathbb{R},$$

 $(f_1, f_2) \mapsto \phi(f_1 + f_2).$

We have

$$S_1^*(\phi)(f_1, f_2) = \phi \circ S_1(f_1, f_2) = \phi(Pf_1) = \phi(0 + Pf_1)$$
$$= \psi_{\phi}(0, Pf_1) = \psi_{\phi}(T_1(f_1, f_2)) = T_1^*(\psi_{\phi})(f_1, f_2)$$

for any $(f_1, f_2) \in F_b(\Omega) \times F_b(\Omega)$. Hence $R(S_1^*) \subset R(T_1^*)$. Similarly, we can show that $R(S_2^*) \subset R(T_2^*)$.

Motivated by Example 1 and Theorem 2.8 in Jo et al [1], we state our result.

Theorem 1. Let U and V be normed spaces and W be an \mathcal{M} -type space. Let $S_1, ..., S_n \in L(U, W)$ and $T_1, ..., T_n \in L(U, V)$. If

$$||T_k f_k|| \le ||\sum_{i=1}^n T_i f_i||$$
 for each $f_k \in U$,

k = 1, ..., n, then the following statements are equivalent:

(a) There exists a constant C > 0 such that

$$\|\sum_{i=1}^{n} S_i f_i\| \le C \|\sum_{i=1}^{n} T_i f_i\|$$

for all finite collections of vectors $\{f_1, ..., f_n\}$ in U.

- (b) There exists $A \in L(V, W)$ such that $AT_i = S_i$ for i = 1, ..., n.
- (c) $\mathcal{R}(S_i^*) \subset \mathcal{R}(T_i^*)$ for i = 1, ..., n.

2. PROOF OF THE THEOREM

We need the following linear extension result showed by Nachbin Nachbin [3].

Lemma 1. Let V be a normed space and W be an \mathcal{M} -type space. Further, let E be a vector subspace of V and $A_o: E \to W$ be a bounded linear operator. Then there exists a bounded linear operator $A: V \to W$ such that $Ax = A_ox$ for all $x \in E$ and $||A|| = ||A_o||$.

Proof of Theorem 1. Assume that (a) holds. Note that

$$E := \{ \sum_{i=1}^{n} T_i f_i : f_1, ..., f_n \in U \}$$

is a vector subspace of V. Let $A_0: E \to W$ be defined by

$$A_0(\sum_{i=1}^n T_i f_i) = \sum_{i=1}^n S_i f_i$$

for every $f_1, ..., f_n \in U$. Let us verify that A_0 is well defined. If $\sum_{i=1}^n T_i f_i = \sum_{i=1}^n T_i g_i$ for $f_i, g_i \in U$, i = 1, ..., n, then

$$0 = \| \sum_{i=1}^{n} T_i f_i - \sum_{i=1}^{n} T_i g_i \| = \| \sum_{i=1}^{n} T_i (f_i - g_i) \|.$$
 (1)

100 Kashimoto and Nashed

It follows from (a) that there exists a constant C > 0 such that

$$\|\sum_{i=1}^{n} S_i(f_i - g_i)\| \le C \|\sum_{i=1}^{n} T_i(f_i - g_i)\|.$$

Hence, by (1)

$$\sum_{i=1}^{n} S_i f_i = \sum_{i=1}^{n} S_i g_i.$$

Note that A_0 is a bounded linear operator since (a) holds. Thus, by Lemma 1, there exists a bounded linear extension $A: V \to W$ of A_0 and we conclude that $AT_i = S_i$ for i = 1, ..., n.

The statement (c) follows from (b) since $S_i^* = T_i^* A^*$ for i = 1, ..., n.

To prove that (c) implies (a), let us assume that $\mathcal{R}(S_i^*) \subset \mathcal{R}(T_i^*)$ for i = 1, ..., n. Then for every $\phi \in W^*$, there exist $\psi_i \in V^*$ such that $S_i^* \phi = T_i^* \psi_i$, for i = 1, ..., n. Let $f_1, ..., f_n$ be arbitrary vectors in U such that $\|\sum_{i=1}^n T_i f_i\| \neq 0$. We have

$$|\phi(\sum_{i=1}^{n} S_{i}f_{i})| = |\sum_{i=1}^{n} \phi(S_{i}f_{i})| = |\sum_{i=1}^{n} (S_{i}^{*}\phi)f_{i}| = |\sum_{i=1}^{n} (T_{i}^{*}\psi_{i})f_{i}|$$

$$= |\sum_{i=1}^{n} \psi_{i}(T_{i}f_{i})| \leq \sum_{i=1}^{n} |\psi_{i}(T_{i}f_{i})| \leq \sum_{i=1}^{n} ||\psi_{i}|| ||T_{i}f_{i}||$$

$$\leq K \sum_{i=1}^{n} ||T_{i}f_{i}||,$$

where $K = max\{\|\psi_i\| : i = 1, ..., n\}$. Hence

$$|\phi(\sum_{i=1}^n S_i f_i / \|\sum_{i=1}^n T_i f_i\|)| \le K \sum_{i=1}^n (\|T_i f_i\| / \|\sum_{i=1}^n T_i f_i\|) \le Kn.$$

Therefore, it follows from the Principle of Uniform Boundedness that the set

$$\{\sum_{i=1}^{n} S_i f_i / \|\sum_{i=1}^{n} T_i f_i\| : \|\sum_{i=1}^{n} T_i f_i\| \neq 0; f_1, ..., f_n \in U\}$$

is bounded. Hence there exists C > 0 such that

$$\|\sum_{i=1}^{n} S_i f_i\| \le C \|\sum_{i=1}^{n} T_i f_i\|$$

for all $f_1, ..., f_n \in U$ such that $\|\sum_{i=1}^n T_i f_i\| \neq 0$.

On the other hand, if $\|\sum_{i=1}^n T_i f_i\| = 0$ for some collection of vectors $\{f_1, ..., f_n\}$ in U then by hypothesis $\|T_i f_i\| = 0$ for i = 1, ..., n. We claim that $\sum_{i=1}^n S_i f_i = 0$. Indeed, if $\sum_{i=1}^n S_i f_i \neq 0$, by the Hahn-Banach Theorem there exists $\psi \in W^*$ such that $\psi(\sum_{i=1}^n S_i f_i) = \|\sum_{i=1}^n S_i f_i\|$. Since $R(S_i^*) \subset R(T_i^*)$ there exists $\varphi_i \in V^*$ such

that $(S_i^*\psi)f_i = (T_i^*\varphi_i)f_i$ for i = 1, ..., n. Thus,

$$\|\sum_{i=1}^{n} S_{i} f_{i}\| = \psi(\sum_{i=1}^{n} S_{i} f_{i}) = \sum_{i=1}^{n} \psi(S_{i} f_{i}) = \sum_{i=1}^{n} (S_{i}^{*} \psi) f_{i}$$

$$= \sum_{i=1}^{n} (T_{i}^{*} \varphi_{i}) f_{i} = \sum_{i=1}^{n} \varphi_{i}(T_{i} f_{i}) \leq \sum_{i=1}^{n} |\varphi_{i}(T_{i} f_{i})|$$

$$\leq \sum_{i=1}^{n} \|\varphi_{i}\| \|(T_{i} f_{i})\| \leq M \sum_{i=1}^{n} \|(T_{i} f_{i})\| = 0,$$

where $M = \max\{\|\varphi_i\| : i = 1, ..., n\}$. Hence we obtain a contradiction.

Since $\|\sum_{i=1}^n T_i f_i\| = 0$ and $\sum_{i=1}^n S_i f_i = 0$, it follows that

$$\|\sum_{i=1}^{n} S_i f_i\| = C \|\sum_{i=1}^{n} T_i f_i\|.$$

Therefore, we have proved that there exists a constant C > 0 such that

$$\|\sum_{i=1}^{n} S_i f_i\| \le C \|\sum_{i=1}^{n} T_i f_i\|$$

for all finite collections of vectors $\{f_1, ..., f_n\}$ in U.

ACKNOWLEDGEMENTS

The first author acknowledges the support by CAPES Grant BEX #1533/03-7, Brazil.

REFERENCES

- Y.S. Jo, J.H. Kang, and K.S. Kim, On operator interpolation problems, J. Korean Math. Soc., 41 (2004), 423-433.
- [2] L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics, 46, Pergamon Press, Oxford and New York, 1964.
- [3] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, *Trans. Amer. Math. Soc.*, **68** (1950), 28-46.

102 Kashimoto and Nashed