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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume that all normed spaces are real.

A family of sets is said to be chained if every pair of sets of the family has a

nonempty intersection. We shall describe a normed space W as an M-type space if

the collection of its closed balls has the binary intersection property, that is, every

chained family of closed balls of W has a nonempty intersection. An example of an

M-type space is given by the space of all real bounded functions on a set Ω, endowed

with the norm ‖f‖ = sup{|f(x)| : x ∈ Ω}. In particular, the real line is an M-type

space. For further information see Nachbin [3] and Kantorovich and Akilov [2].

Let U and V be normed spaces. We shall denote by L(U, V ) the space of all

bounded linear operators on U into V and by L(U) when U = V. The null space

and the range of a linear operator T ∈ L(U, V ) will be denoted by N (T ) and R(T ),

respectively. For T ∈ L(U, V ), we associate the usual adjoint T ∗ ∈ L(V ∗, U∗), where

U∗ and V ∗ are the dual spaces of U and V, respectively.

Example 1. Let Fb(Ω) be the space of all real bounded functions on the nonempty

set Ω, endowed with the supremum norm. Consider the space Fb(Ω) × Fb(Ω) with
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the norm ‖(f1, f2)‖ = ‖f1‖ + ‖f2‖. Given P,Q,B ∈ L(Fb(Ω)), consider the linear

operators:

T1 : Fb(Ω) × Fb(Ω) → Fb(Ω) × Fb(Ω) ,

(f1, f2) 7→ (0, P f1) ,

T2 : Fb(Ω) × Fb(Ω) → Fb(Ω) × Fb(Ω) ,

(f1, f2) 7→ (Qf2 − Bf1, 0) ,

S1 : Fb(Ω) × Fb(Ω) → Fb(Ω) , ,

(f1, f2) 7→ Pf1 ,

S2 : Fb(Ω) × Fb(Ω) → Fb(Ω) ,

(f1, f2) 7→ Qf2 − Bf1 .

These operators satisfy the following conditions:

(i) ‖S1(f1, f2) + S2(g1, g2)‖ ≤ ‖T1(f1, f2) + T2(g1, g2)‖ for all

(f1, f2), (g1, g2) ∈ Fb(Ω) × Fb(Ω).

(ii) There exists A ∈ L(Fb(Ω) × Fb(Ω), Fb(Ω)) such that ATi = Si for i = 1, 2.

(iii) R(S∗

i ) ⊂ R(T ∗

i ) for i = 1, 2.

Indeed,

(i) We have

‖S1(f1, f2) + S2(g1, g2)‖ = ‖Pf1 +Qg2 −Bg1‖ ≤ ‖Pf1‖ + ‖Qg2 − Bg1‖

= ‖(Qg2 − Bg1, P f1)‖ = ‖(0, P f1) + (Qg2 − Bg1, 0)‖

= ‖T1(f1, f2) + T2(g1, g2)‖.

(ii) Take

A : Fb(Ω) × Fb(Ω) → Fb(Ω) ,

(f1, f2) 7→ f1 + f2.

AT1(f1, f2) = A(0, P f1) = Pf1 = S1(f1, f2).

AT2(f1, f2) = A(Qf2 − Bf1, 0) = Qf2 − Bf1 = S2(f1, f2).

(iii) For each φ ∈ Fb(Ω)∗, consider the linear functional

ψφ : Fb(Ω) × Fb(Ω) → R ,

(f1, f2) 7→ φ(f1 + f2).
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We have

S∗

1
(φ)(f1, f2) = φ ◦ S1(f1, f2) = φ(Pf1) = φ(0 + Pf1)

= ψφ(0, P f1) = ψφ(T1(f1, f2)) = T ∗

1
(ψφ)(f1, f2)

for any (f1, f2) ∈ Fb(Ω) × Fb(Ω). Hence R(S∗

1
) ⊂ R(T ∗

1
). Similarly, we can

show that R(S∗

2
) ⊂ R(T ∗

2
).

Motivated by Example 1 and Theorem 2.8 in Jo et al [1], we state our result.

Theorem 1. Let U and V be normed spaces and W be an M-type space. Let

S1, ..., Sn ∈ L(U,W ) and T1, ..., Tn ∈ L(U, V ). If

‖Tkfk‖ ≤ ‖
n∑

i=1

Tifi‖ for each fk ∈ U,

k = 1, ..., n, then the following statements are equivalent:

(a) There exists a constant C > 0 such that

‖
n∑

i=1

Sifi‖ ≤ C‖
n∑

i=1

Tifi‖

for all finite collections of vectors {f1, ..., fn} in U.

(b) There exists A ∈ L(V,W ) such that ATi = Si for i = 1, ..., n.

(c) R(S∗

i ) ⊂ R(T ∗

i ) for i = 1, ..., n.

2. PROOF OF THE THEOREM

We need the following linear extension result showed by Nachbin Nachbin [3].

Lemma 1. Let V be a normed space and W be an M-type space. Further, let E be

a vector subspace of V and Ao : E → W be a bounded linear operator. Then there

exists a bounded linear operator A : V → W such that Ax = Aox for all x ∈ E and

‖A‖ = ‖Ao‖.

Proof of Theorem 1. Assume that (a) holds. Note that

E := {
n∑

i=1

Tifi : f1, ..., fn ∈ U}

is a vector subspace of V. Let A0 : E →W be defined by

A0(

n∑

i=1

Tifi) =

n∑

i=1

Sifi

for every f1, ..., fn ∈ U. Let us verify that A0 is well defined. If
∑n

i=1
Tifi =

∑n

i=1
Tigi

for fi, gi ∈ U, i = 1, ..., n, then

0 = ‖
n∑

i=1

Tifi −
n∑

i=1

Tigi‖ = ‖
n∑

i=1

Ti(fi − gi)‖ . (1)
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It follows from (a) that there exists a constant C > 0 such that

‖
n∑

i=1

Si(fi − gi)‖ ≤ C‖
n∑

i=1

Ti(fi − gi)‖.

Hence, by (1)
n∑

i=1

Sifi =
n∑

i=1

Sigi.

Note that A0 is a bounded linear operator since (a) holds. Thus, by Lemma 1, there

exists a bounded linear extension A : V → W of A0 and we conclude that ATi = Si

for i = 1, ..., n.

The statement (c) follows from (b) since S∗

i = T ∗

i A
∗ for i = 1, ..., n.

To prove that (c) implies (a), let us assume that R(S∗

i ) ⊂ R(T ∗

i ) for i = 1, ..., n.

Then for every φ ∈ W ∗, there exist ψi ∈ V ∗ such that S∗

i φ = T ∗

i ψi, for i = 1, ..., n.

Let f1, ..., fn be arbitrary vectors in U such that ‖
∑n

i=1
Tifi‖ 6= 0. We have

|φ(

n∑

i=1

Sifi)| = |
n∑

i=1

φ(Sifi)| = |
n∑

i=1

(S∗

i φ)fi| = |
n∑

i=1

(T ∗

i ψi)fi|

= |
n∑

i=1

ψi(Tifi)| ≤
n∑

i=1

|ψi(Tifi)| ≤
n∑

i=1

‖ψi‖‖Tifi‖

≤ K

n∑

i=1

‖Tifi‖ ,

where K = max{‖ψi‖ : i = 1, ..., n}. Hence

|φ(
n∑

i=1

Sifi/‖
n∑

i=1

Tifi‖)| ≤ K
n∑

i=1

(‖Tifi‖/‖
n∑

i=1

Tifi‖) ≤ Kn.

Therefore, it follows from the Principle of Uniform Boundedness that the set

{
n∑

i=1

Sifi/‖
n∑

i=1

Tifi‖ : ‖
n∑

i=1

Tifi‖ 6= 0; f1, ..., fn ∈ U}

is bounded. Hence there exists C > 0 such that

‖
n∑

i=1

Sifi‖ ≤ C‖
n∑

i=1

Tifi‖

for all f1, ..., fn ∈ U such that ‖
∑n

i=1
Tifi‖ 6= 0.

On the other hand, if ‖
∑n

i=1
Tifi‖ = 0 for some collection of vectors {f1, ..., fn}

in U then by hypothesis ‖Tifi‖ = 0 for i = 1, ..., n. We claim that
∑n

i=1
Sifi = 0.

Indeed, if
∑n

i=1
Sifi 6= 0, by the Hahn-Banach Theorem there exists ψ ∈ W ∗ such

that ψ(
∑n

i=1
Sifi) = ‖

∑n

i=1
Sifi‖. Since R(S∗

i ) ⊂ R(T ∗

i ) there exists ϕi ∈ V ∗ such
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that (S∗

i ψ)fi = (T ∗

i ϕi)fi for i = 1, ..., n. Thus,

‖
n∑

i=1

Sifi‖ = ψ(

n∑

i=1

Sifi) =

n∑

i=1

ψ(Sifi) =

n∑

i=1

(S∗

i ψ)fi

=

n∑

i=1

(T ∗

i ϕi)fi =

n∑

i=1

ϕi(Tifi) ≤
n∑

i=1

|ϕi(Tifi)|

≤
n∑

i=1

‖ϕi‖‖(Tifi)‖ ≤ M

n∑

i=1

‖(Tifi)‖ = 0,

where M = max{‖ϕi‖ : i = 1, ..., n}. Hence we obtain a contradiction.

Since ‖
∑n

i=1
Tifi‖ = 0 and

∑n

i=1
Sifi = 0, it follows that

‖
n∑

i=1

Sifi‖ = C‖
n∑

i=1

Tifi‖.

Therefore, we have proved that there exists a constant C > 0 such that

‖
n∑

i=1

Sifi‖ ≤ C‖
n∑

i=1

Tifi‖

for all finite collections of vectors {f1, ..., fn} in U. �
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