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ABSTRACT. This paper investigates the existence of a positive solution to a general scalar delayed

population model of fractional order that is a nonlinear fractional functional differential equation

by applying a nonlinear alternative of Leray-Schauder type in a cone and the generalization of

Gronwall’s lemma for singular kernels, improving previously known results. Further, we show the

continuous dependence of the solution on the order and the initial condition of nonlinear fractional

functional differential equations and obtain an Mittag-Leffler functional estimate of the solution by

virtue of the generalized Gronwall inequality.
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1. Introduction

In 2006 Ye et al. [3] have addressed the question of the existence of positive

solutions for a general scalar delayed population model of fractional order
{

Dα[x(t) − x(0)] = x(t)f(t, xt) , t ∈ I,

x(t) = φ(t) ≥ 0 , t ∈ [−r, 0],
(1.1)

where I = [0, T ], 0 < α < 1, Dα is the standard Riemann-Liouville fractional deriva-

tive, φ ∈ C and f : I × C → R+ is continuous. As usual, C = C([−r, 0];R+) is the

space of continuous function from [−r, 0] to R+, r > 0, equipped with the sup norm

‖φ‖ = max−r≤θ≤0 |φ(θ)|, R+ = [0,+∞) and xt denotes the function in C defined by

xt(θ) = x(t + θ), −r ≤ θ ≤ 0. By using the sub- and super-solution method, they

obtained some sufficient conditions for its existence of positive solutions. However, it

is an essential condition that f(t, ·) be nondecreasing in [3] (also in [8,10,11])

Therefore, the first aim in this paper is concerned with the existence of a positive

solution to Eq (1.1). By applying a nonlinear alternative of Leray-Schauder type in

a cone and the generalization of Gronwall’s lemma for singular kernels [9], we obtain
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the the existence of its positive solution, removing the condition that the function

f(t, ·) be nondecreasing, which improves the previously known results [3].

Then, this paper investigates the dependence of the solution on the order and the

initial condition for fractional functional differential equations and an Mittag-Leffler

functional estimate of the solution by virtue of the generalized Gronwall inequality

[6].

2. Integral inequalities and definitions

In this section, we introduce integral inequalities which can be used in nonlin-

ear fractional functional differential equations, theorems and definitions of fractional

integral and derivative [1,4].

Let us recall the standard Gronwall inequality which can be found in [5, p. 14].

Theorem 2.1. If

x(t) ≤ h(t) +

∫ t

t0

k(s)x(s)ds, t ∈ [t0, T )

where all the functions involved are continuous on [t0, T ), T ≤ +∞, and k(t) ≥ 0,

then x(t) satisfies

x(t) ≤ h(t) +

∫ t

t0

h(s)k(s) exp[

∫ t

s

k(u)du]ds, t ∈ [t0, T ).

If, in addition, h(t) is nondecreasing, then

x(t) ≤ h(t) exp(

∫ t

t0

k(s)ds), t ∈ [t0, T ).

Theorem 2.2 ([6, p. 188]). Suppose b ≥ 0, α > 0 and a(t) is a nonnegative function

locally integrable on 0 ≤ t < T (some T ≤ +∞), and suppose u(t) is nonnegative and

locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0

(t− s)α−1u(s)ds

on this interval; then

u(t) ≤ a(t) +

∫ t

0

[

∞
∑

n=1

(bΓ(α))n

Γ(nα)
(t− s)nα−1a(s)

]

ds, 0 ≤ t < T.

Corollary 2.3. Under the hypothesis of Theorem 2.2, let a(t) ≡ a on [0, T ) and

b ≡ 1
Γ(α)

, then

u(t) ≤ aEα(tα),

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑∞

n=0
zn

Γ(nα+1)
.
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Proof. The hypotheses imply

u(t) ≤ a[1 +

∫ t

0

∞
∑

n=1

1

Γ(nα)
(t− s)nα−1ds]

= a

∞
∑

n=0

tnα

Γ(nα + 1)

= aEα(tα).

The proof is complete.

Theorem 2.4. [7] Let E be a Banach space with C ⊆ E closed and convex. Assume

U is a relatively open subset of C with 0 ∈ U and F : U → C is a continuous, compact

map. Then either

(1) F has a fixed point in U ; or

(2) there exists u ∈ ∂U and λ ∈ (0, 1) with u = λFu.

Lemma 2.5 (The generalization of Gronwall’s lemma for singular kernels [9]). Let

ν : [0, T ] → [0,∞) be a real functional and ω(t) be a nonnegetive, locally integrable

function on [0, T ], and there are constants a > 0 and 0 < α < 1 such that

ν(t) ≤ ω(t) + a

∫ t

0

ν(s)

(t− s)α
ds, t ∈ [0, T ]

Then there ∃K = K(α), such that

ν(t) ≤ ω(t) +Ka

∫ t

0

ω(s)

(t− s)α
ds, t ∈ [0, T ]

for every t ∈ [0, T ].

Definition 2.6. Let f : [a, b] → R, and f ∈ L1[a, b]. The left-sided Riemann-Liouville

fractional integral [1,4] of f of order α is defined as

Iα
a f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,

where α > 0, a < x < b.

Definition 2.7. The left-sided Riemann-Liouville fractional derivative [1,4] of a func-

tion f : [a, b] → R is defined as

Dα
a f(x) = DmIm−α

a f(x),

where m = [α] + 1, Dm = dm

dtm
, a < x < b.

We denote Dα
0 by Dα and Iα

0 by Iα. If the fractional derivative Dα
a f(x) is inte-

grable, then [1, p. 71]

Iα
a (Dβ

af(x)) = Iα−β
a f(x) − [I1−β

a f(x)]x=a

xα−1

Γ(α)
, 0 < β ≤ α < 1. (2.1)
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If f is continuous on [a, b], then [I1−β
a f(x)]x=a = 0 and Eq (3) reduces to

Iα
a (Dβ

af(x)) = Iα−β
a f(x), 0 < β ≤ α < 1. (2.2)

3. Existence of a positive solution

In this section, we discuss the existence of a positive solution to Eq (1.1)
{

Dα[x(t) − x(0)] = x(t)f(t, xt) , t ∈ I,

x(t) = φ(t) ≥ 0 , t ∈ [−r, 0],

where I = [0, T ], 0 < α < 1, Dα is the standard Riemann-Liouville fractional deriva-

tive, φ ∈ C and f : I × C → R+ is continuous. As usual, C = C([−r, 0];R+) is the

space of continuous function from [−r, 0] to R+, r > 0, equipped with the sup norm

‖φ‖ = max−r≤θ≤0 |φ(θ)|, R+ = [0,+∞) and xt denotes the function in C defined by

xt(θ) = x(t+ θ), −r ≤ θ ≤ 0.

Using Eq (2.1) and Eq (2.2), Eq (1.1) is equivalent to the integral equation

x(t) =

{

x(0) + 1
Γ(α)

∫ t

0
(t− s)α−1x(s)f(s, xs)ds , t ∈ I,

φ(t) ≥ 0 , t ∈ [−r, 0].
(3.1)

Let y(·) : [−r, T ] → [0,+∞) be the function defined by

y(t) =

{

φ(0) , t ∈ I,

φ(t) ≥ 0 , t ∈ [−r, 0],

Then y0 = φ. For each z ∈ C(I, R) with z(0) = 0, we denote by z̄ the function define

by

z̄(t) =

{

z(t) , t ∈ I,

0 , t ∈ [−r, 0].

We can decompose x(·) as x(t) = z̄(t) + y(t), t ∈ [−r, T ], which implies xt = z̄t + yt,

for t ∈ I. Therefore, Eq (3.1) is equivalent to the integral equation

z(t) = Iα[z(t) + φ(0)]f(t, z̄t + yt), t ∈ I. (3.2)

Let set

A0 = {z ∈ C(I, R) : z0 = 0},

and let ‖z‖C be the seminorm in A0 defined by

‖z‖C = ‖z0‖ + ‖z‖ = ‖z‖ =: sup{|z(t)| : t ∈ I}, z ∈ A0.

So A0 is a Banach space with norm ‖ · ‖C . Let K be a cone of A0

K = {z ∈ A0; z(t) ≥ 0, t ∈ I},

and let

K∗ = {x(t) ∈ C([−r, T ], R+); x(t) = φ(t) ≥ 0, t ∈ [−r, 0]}.
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Define the operator F : K → K by

Fz(t) = Iα[z(t) + φ(0)]f(t, z̄t + yt), t ∈ I.

Theorem 3.1. Let f : I × C → R+ be a given continuous function, and ∃M > 0

such that f(t, xt) ≤M , then Eq (1.1) has at least a positive solution x∗ ∈ K∗.

Proof. Obviously, the operator F : K → K is continuous and completely continuous

by virtue of Lemma 3.1 in [3].

Next, we will show there exists an open set U ⊆ K with z 6= λF (z) for λ ∈ (0, 1)

and z ∈ ∂U .

Let z ∈ K be any solution of

z = λFz, λ ∈ (0, 1). (3.3)

Since F : K → K is continuous and completely continuous, we have

|z(t)| = |λFz(t)| ≤ Iα[z(t) + φ(0)]f(t, z̄t + yt)

≤ MIα[z(t) + φ(0)]

≤
M‖φ‖T α

Γ(α+ 1)
+M

1

Γ(α)

∫ t

0

(t− s)α−1|z(s)|ds.

By virtue of Lemma 2.5, there exists a constant K = K(α), we get

|z(t)| ≤ R+
MK

Γ(α)

∫ t

0

(t− s)α−1Rds

≤ R+
MKRT α

Γ(α+ 1)
=: R, t ∈ I,

where

R =
M‖φ‖T α

Γ(α + 1)
so

‖z‖ ≤ R.

Now, using the above inequality, we know any solution z of Eq (3.3) satisfies ‖z‖ 6= R,

let

U = {z ∈ K; ‖z‖ < R + 1}.

Therefore, Theorem 2.4 guarantees that Eq (3.2) has at least a positive solution

z ∈ U . Hence, Eq (1.1) has at least a positive solution x∗ ∈ K∗, satisfying ‖x∗‖ ≤

max{‖φ‖, R+ 1}, and the proof is complete.

Example 3.2. Consider the fractional functional differential equation
{

Dαx(t) = (t− 1)2x sin2 x(t− r) , t ∈ I,

x(t) = φ(t) ≥ 0 , t ∈ [−r, 0],
(3.4)

where 0 < α < 1, 0 < T ≤ 2.
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Using Theorem 3.1, f(t, xt) ≤ M = 1, Eq (3.4) has at least a positive solution

x∗ ∈ K∗, satisfying ‖x∗‖ ≤ max{‖φ‖, R+ 1}.

4. Dependence of solution on parameters and

Mittag-Leffler functional estimation of solution

In recent years, more authors have attention to the dependence of the solution

on the order and the initial condition of fractional ordinary differential equations

[1,2]. However, no contribution exists, as far as we know, concerning the dependence

of the solution on the order and the initial condition of nonlinear fractional func-

tional differential equations. Therefore, this section is concerned with the continuous

dependence of the solution on the order and the initial condition to nonlinear frac-

tional functional differential equations in terms of the Riemann-Liouville fractional

derivatives. We will consider the solution of initial value problems with neighboring

orders and neighboring initial values and finally obtain a law which also follows in

the solution of a retarded functional differential equation of integer order. Lastly,

We obtain an Mittag-Leffler functional estimate of the solution by the generalized

Gronwall inequality.

Theorem 4.1. Let α, β ∈ (0, 1) and f : I × C → R+ be continuous, Further assume

|uf(t, ut) − vf(t, vt)| ≤ ‖f‖|u− v| + L‖ut − vt‖, ∀ut, vt ∈ C, t ∈ I,

where L is a constant. Let u and v are the continuous solutions of Eq (1.1) and
{

Dβ[y(t) − y(0)] = y(t)f(t, yt) , t ∈ I,

y(t) = ψ(t) , t ∈ [−r, 0].
(4.1)

respectively, then for t ∈ I, the following holds:

‖u(t) − v(t)‖ ≤ A(t) +

∫ t

0

[

∞
∑

n=1

(‖f‖ + L)n (t− s)nα−1

Γ(nα)
A(s)]ds,

where

A(t) = ‖φ− ψ‖ +
‖f‖L1

Γ(α)
|
tα

α
−
tβ

β
| + ‖f‖L1

tβ

β
|

1

Γ(α)
−

1

Γ(β)
|, L1 = max

−r≤t≤T
|y(t)|,

and

‖f‖ = max{f(t, xt)|t ∈ I, xt ∈ C}, ‖u(t) − v(t)‖ = max
−r≤s≤t

|u(s) − v(s)|.

Proof. The solutions of Eq (1.1) and Eq (4.1) are given by

u(t) = u(0) +
1

Γ(α)

∫ t

0

(t− s)α−1u(s)f(s, us)ds, t ∈ I, and u(t) = φ(t), t ∈ [−r, 0].

and

v(t) = v(0) +
1

Γ(β)

∫ t

0

(t− s)β−1v(s)f(s, vs)ds, t ∈ I, and v(t) = ψ(t), t ∈ [−r, 0].
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respectively. It follows that, for t ∈ I,

|u(t) − v(t)|

≤ |u(0) − v(0)| + |
1

Γ(α)

∫ t

0

(t− s)α−1u(s)f(s, us)ds

−
1

Γ(β)

∫ t

0

(t− s)β−1v(s)f(s, vs)ds|

≤ ‖φ− ψ‖ + |
1

Γ(α)

∫ t

0

(t− s)α−1u(s)f(s, us)ds

−
1

Γ(α)

∫ t

0

(t− s)α−1v(s)f(s, vs)ds|

+|
1

Γ(α)

∫ t

0

(t− s)α−1v(s)f(s, vs)ds−
1

Γ(α)

∫ t

0

(t− s)β−1v(s)f(s, vs)ds|

+|
1

Γ(α)

∫ t

0

(t− s)β−1v(s)f(s, vs)ds−
1

Γ(β)

∫ t

0

(t− s)β−1v(s)f(s, vs)ds|

≤ ‖φ− ψ‖ +
‖f‖L1

Γ(α)
|
tα

α
−
tβ

β
| + ‖f‖L1

tβ

β
|

1

Γ(α)
−

1

Γ(β)
|

+
1

Γ(α)

∫ t

0

(t− s)α−1[‖f‖|u(s) − v(s)| + L‖us − vs‖]ds

≤ A(t) +
‖f‖ + L

Γ(α)

∫ t

0

(t− s)α−1‖u(s) − v(s)‖ds.

Therefore, for t ∈ I,

‖u(t) − v(t)‖ ≤ A(t) +
‖f‖ + L

Γ(α)

∫ t

0

(t− s)α−1‖u(s) − v(s)‖ds.

An application of Theorem 2.2 yields:

‖u(t) − v(t)‖ ≤ A(t) +

∫ t

0

[

∞
∑

n=1

(‖f‖ + L)n (t− s)nα−1

Γ(nα)
A(s)]ds.

and Theorem is proved.

Corollary 4.2. Under the hypothesis of Theorem 4.1, if α = β ∈ (0, 1), then for

t ∈ I,

‖u(t) − v(t)‖ ≤ ‖φ− ψ‖Eα((‖f‖ + L)tα).

Proof. If α = β, then for t ∈ I,

A(t) = ‖φ− ψ‖.
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By Theorem 4.1,we obtain

‖u(t) − v(t)‖ ≤ ‖φ− ψ‖ + ‖φ− ψ‖

∫ t

0

[

∞
∑

n=1

(‖f‖ + L)n (t− s)nα−1

Γ(nα)
]ds

≤ ‖φ− ψ‖

∞
∑

n=0

(‖f‖ + L)ntnα

Γ(nα + 1)
≤ ‖φ− ψ‖Eα((‖f‖ + L)tα).

The proof is complete.

When β = 1 in Eq (4.1), Eq (4.1) becomes a general scalar delayed population

model of the form
{

ẏ(t) = y(t)f(t, yt) , t ∈ I,

y(t) = ψ(t) , t ∈ [−r, 0].
(4.2)

where f : I × C → R is a continuous function. Eq (4.2) is usually considered in

population dynamics, where y(t) denotes the density of a single population species

at time t, r stands for the maturation period of the species and f(t, xt) is the growth

function. Therefore, we obtain a theorem:

Theorem 4.3. Under the hypothesis of Theorem 4.1, suppose β = 1, Eq (4.1) becomes

Eq (4.2). Let u and v are the continuous solutions of Eq (1.1) and Eq (4.2) respectively,

then for t ∈ I,

‖u(t) − v(t)‖ ≤ A(t) +

∫ t

0

[
∞

∑

n=1

(‖f‖ + L)n (t− s)nα−1

Γ(nα)
A(s)]ds.

where

A(t) = ‖φ− ψ‖ + ‖f‖L1|
tα

Γ(α + 1)
− t|, L1 = max

−r≤t≤T
|y(t)|,

and

‖f‖ = max{f(t, xt)|t ∈ I, xt ∈ C}, ‖u(t) − v(t)‖ = max
−r≤s≤t

|u(s) − v(s)|.

Proof. The solutions of Eq (1.1) and Eq (4.2) are given by

u(t) = u(0) +
1

Γ(α)

∫ t

0

(t− s)α−1u(s)f(s, us)ds, t ∈ I, and u(t) = φ(t), t ∈ [−r, 0].

and

v(t) = v(0) +

∫ t

0

v(s)f(s, vs)ds, t ∈ I, and v(t) = ψ(t), t ∈ [−r, 0].
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respectively. It follows that for t ∈ I,

|u(t) − v(t)|

≤ |u(0) − v(0)| + |
1

Γ(α)

∫ t

0

(t− s)α−1u(s)f(s, us)ds−

∫ t

0

v(s)f(s, vs)ds|

≤ ‖φ− ψ‖ +
1

Γ(α)

∫ t

0

(t− s)α−1|u(s)f(s, us) − v(s)f(s, vs)|ds

+|
1

Γ(α)

∫ t

0

(t− s)α−1v(s)f(s, vs)ds−

∫ t

0

v(s)f(s, vs)ds|

≤ A(t) +
‖f‖ + L

Γ(α)

∫ t

0

(t− s)α−1‖u(s) − v(s)‖ds.

Therefore, for t ∈ I,

‖u(t) − v(t)‖ ≤ A(t) +
‖f‖ + L

Γ(α)

∫ t

0

(t− s)α−1‖u(s) − v(s)‖ds.

An application of Theorem 2.2 yields:

‖u(t) − v(t)‖ ≤ A(t) +

∫ t

0

[

∞
∑

n=1

(‖f‖ + L)n (t− s)nα−1

Γ(nα)
A(s)]ds.

and Theorem 4.3 is proved.

Remark 4.4. It follows from Corollary 4.2 and Theorem 4.3 that for t ∈ I,

‖u(t) − v(t)‖ ≤ ‖φ− ψ‖ exp((‖f‖ + L)t),

if α = β = 1.

Next we will show the dependence of the solution on the order and the initial

condition to the general nonlinear fractional delay differential equation by the same

method.

Theorem 4.5. Let α, β ∈ (0, 1) and f : I × C → R+ be continuous, Further assume

|f(t, ut) − f(t, vt)| ≤ L‖ut − vt‖, ∀ut, vt ∈ C, t ∈ I,

where L is a constant. Let u and v are the continuous solutions of
{

Dα[x(t) − x(0)] = f(t, xt) , t ∈ I,

x(t) = φ(t) , t ∈ [−r, 0].
(4.3)

and
{

Dβ[y(t) − y(0)] = f(t, yt) , t ∈ I,

y(t) = ψ(t) , t ∈ [−r, 0].
(4.4)

respectively, then for t ∈ I, the following holds:

‖u(t) − v(t)‖ ≤ A(t) +

∫ t

0

[
∞

∑

n=1

Ln (t− s)nα−1

Γ(nα)
A(s)]ds,
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where

A(t) = ‖φ− ψ‖ +
‖f‖

Γ(α)
|
tα

α
−
tβ

β
| + ‖f‖

tβ

β
|

1

Γ(α)
−

1

Γ(β)
|,

and

‖f‖ = max{f(t, xt)|t ∈ I, xt ∈ C}, ‖u(t) − v(t)‖ = max
−r≤s≤t

|u(s) − v(s)|.

Corollary 4.6. Under the hypothesis of Theorem 4.5, if α = β ∈ (0, 1), then for

t ∈ I,

‖u(t) − v(t)‖ ≤ ‖φ− ψ‖Eα(Ltα),

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑∞

k=0
zk

Γ(αk+1)
(α > 0).

Theorem 4.7. Under the hypothesis of Theorem 4.5, suppose β = 1, Eq (4.4) becomes
{

ẏ(t) = f(t, yt) , t ∈ I,

y(t) = ψ(t) , t ∈ [−r, 0].
(4.5)

Let u and v are the continuous solutions of Eq (4.3) and Eq (4.5) respectively, then

for t ∈ I,

‖u(t) − v(t)‖ ≤ A(t) +

∫ t

0

[
∞

∑

n=1

Ln (t− s)nα−1

Γ(nα)
A(s)]ds.

where

A(t) = ‖φ− ψ‖ + ‖f‖|
tα

Γ(α+ 1)
− t|,

and

‖f‖ = max{f(t, xt)|t ∈ I, xt ∈ C}, ‖u(t) − v(t)‖ = max
−r≤s≤t

|u(s) − v(s)|.

Remark 4.8. It follows from Corollary 4.6 and Theorem 4.7 that for t ∈ I,

‖u(t) − v(t)‖ ≤ ‖φ− ψ‖ exp(Lt),

if α = β = 1.

Example 4.9.
{

Dα[x(t) − x(0)] = x(t)·x2(t−r)
1+x2(t−r)

, t ∈ I,

x(t) = aet, a ≥ 1 , t ∈ [−r, 0].
(4.6)

and
{

Dα+δ[y(t) − y(0)] = y(t)·y2(t−r)
1+y2(t−r)

, t ∈ I,

y(t) = et , t ∈ [−r, 0].
(4.7)

where α ∈ (0, 1], δ is a small constant, such that 0 < α + δ ≤ 1, we have

x(t) = a+
1

Γ(α)

∫ t

0

(t− s)α−1 ·
x(s) · x2(s− r)

1 + x2(s− r)
ds, t ∈ I,

and

y(t) = 1 +
1

Γ(α + δ)

∫ t

0

(t− s)α+δ−1 ·
y(s) · y2(s− r)

1 + y2(s− r)
ds, t ∈ I,
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When t ∈ I,

|
x(t) · x2(t− r)

1 + x2(t− r)
−
y(t) · y2(t− r)

1 + y2(t− r)
| ≤ |x(t) − y(t)| + (L2

1 + L1L2)‖xt − yt‖

≤ (1 + L2
1 + L1L2)‖x(t) − y(t)‖.

where

L1 = max
−r≤t≤T

|y(t)|, L2 = max
−r≤t≤T

|x(t)|.

Obviously, by virtue of Theorem 4.1, when t ∈ I, we get

‖x(t) − y(t)‖ ≤ A(t) +

∫ t

0

[

∞
∑

n=1

(1 + L2
1 + L1L2)

n (t− s)nα−1

Γ(nα)
A(s)]ds, t ∈ I,

where

A(t) = a− 1 +
L1

Γ(α)
|
tα

α
−
tβ

β
| +

L1t
β

β
|

1

Γ(α)
−

1

Γ(β)
|,

‖x(t) − y(t)‖ = max
−r≤s≤t

|x(s) − y(s)|.

Then for t ∈ I, the following hold:

(i) if δ → 0, a→ 1, then ‖x(t) − y(t)‖ → 0.

(ii) if δ = 0, then ‖x(t) − y(t)‖ ≤ (a− 1)Eα((1 + L2
1 + L1L2)t

α).

(iii) if α + δ = 1, using Theorem 4.3, we obtain

‖x(t) − y(t)‖ ≤ A(t) +

∫ t

0

[

∞
∑

n=1

(1 + L2
1 + L1L2)

n (t− s)nα−1

Γ(nα)
A(s)]ds, t ∈ I,

where

A(t) = a− 1 + L1|
tα

Γ(α+ 1)
− t|.

when α = 1, δ = 0, then ‖x(t) − y(t)‖ ≤ (a− 1)e(1+L2

1
+L1L2)t.

Example 4.10. Consider the equation
{

D1−θ[x(t) − x(0)] = x(t) , 0 < t ≤ T,

x(t) = et, , t ∈ [−r, 0].
(4.8)

where θ ∈ (0, 1) is a small parameter. Next, we discuss its approximate solution.

For this equation, it is very difficult for us to obtain its analytic solution. However,

we can obtain its approximate solution by virtue of Theorem 4.3. In fact, we can

introduce the delay differential equation
{

Dy = y , t ∈ I,

y(t) = et , t ∈ [−r, 0].
(4.9)

Since Eq (4.8) and Eq (4.9) have the same initial condition, we get the corresponding

A(t)

A(t) = L1|
t1−θ

Γ(1 − θ + 1)
− t|, L1 = max

−r≤t≤T
|y(t)|.
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So, using Theorem 4.3, we have

‖x(t) − et‖ ≤ A(t) +

∫ t

0

[

∞
∑

n=1

(t− s)n(1−θ)−1

Γ(n(1 − θ))
A(s)]ds, t ∈ I.

Obviously, when θ → 0, then

‖x(t) − et‖ → 0 ⇒ x(t) → et.

Therefore, when θ is a small parameter, we use the solution (t) = et close to Eq (4.8).

Theorem 4.11 (Mittag-Leffler functional estimate of solution). Suppose x is the

continuous solution of Eq (1.1),then

|x(t)| ≤ ‖φ‖Eα(‖f‖tα).

where ‖f‖ = max{f(t, xt)|t ∈ I, xt ∈ C}.

Proof. Suppose x is the continuous solution of Eq (1.1) ,then

x(t) = x(0) +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)f(s, xs)ds, t ∈ I, and x(t) = φ(t), t ∈ [−r, 0].

therefore , for t ∈ I,

|x(t)| ≤ ‖φ‖ +
‖f‖

Γ(α)

∫ t

0

(t− s)α−1|x(s)|ds.

Applying Corollary 2.3. we get

|x(t)| ≤ ‖φ‖Eα(‖f‖tα).

and Theorem 4.11 is proved.

Remark 4.12. By virtue of Lemma 2.5, ∃K = K(α), we have another estimate of

solution to Eq (1.1):

|x(t)| ≤ ‖φ‖ +
‖f‖

Γ(α)

∫ t

0

(t− s)α−1|x(s)|ds

≤ ‖φ‖ +
K‖f‖

Γ(α)

∫ t

0

(t− s)α−1‖φ‖ds

≤ ‖φ‖ +
K‖f‖‖φ‖tα

Γ(α + 1)
, t ∈ I.

For α =1, Eq (1.1) becomes a retarded functional differential equation
{

Dx(t) = x(t)f(t, xt) , t ∈ I,

x(t) = φ(t) , t ∈ [−r, 0].
(4.10)

It is equivalent to the integral equation

x(t) = x(0) +

∫ t

0

x(s)f(s, xs)ds, t ∈ I, and x(t) = φ(t), t ∈ [−r, 0].
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Corollary 4.13. Suppose x is the continuous solution of Eq (4.10), then

|x(t)| ≤ ‖φ‖ exp(‖f‖t).

Proof. Suppose x is the continuous solution of Eq (4.10), then

x(t) = x(0) +

∫ t

0

x(s)f(s, xs)ds, t ∈ I, and x(t) = φ(t), t ∈ [−r, 0].

therefore , for t ∈ I, applying Theorem 2.1, we get

|x(t)| ≤ ‖φ‖ + ‖f‖ ·

∫ t

0

|x(s)|ds ≤ ‖φ‖ exp(‖f‖t).

Therefore, we also get an exponential estimate [5, p. 16] on how the solution of

Eq (4.10) depends on φ and f .
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