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ABSTRACT. In this paper, an existence theorem for a first order functional integro-differential

inclusion in Banach algebras with the periodic boundary conditions is proved via a new fixed point

principle of Leray-Schauder type under generalized Lipschitz and Carathéodory conditions. An

existence theorem for the extremal solutions is also obtained under certain monotonicity conditions.
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1. INTRODUCTION

The origin of the nonlinear integral equations in Banach algebras or quadratic

integral equations lies in the works of a famous physicist Chandrasekher [4] in his

studies on radiative transfer in thermodynamics which gave birth to the well-known

Chandrasekher’s H-equation in thermodynamics. The method developed for study-

ing the existence of the solutions for above quadratic H-equation is very cumbersome

and involve many technicalities. Therefore, there was a need to establish a general

tool for studying such type of quadratic integral equations involving the product of

two nonlinearities. The present author in [6] proved a fixed point theorem in Banach

algebras which is further applied to a certain nonlinear integral equation involving

the product of two nonlinearities for proving the existence of solutions. The existence

of the solutions to Chandrasekher’s H-equation is also proved as a easy application

of such fixed point theorems with a different method than previous ones (see Dhage

[11] and the references therein). Similar results for quadratic integral equations may

be found in the works of Banach and Lecho [3] and others. Furthermore, Dhage and

O’Regan [15] established existence theorems for differential equations in Banach alge-

bras via a new fixed point technique developed there. Since then, various differential

and integral equations and inclusions in Banach algebras have been studied in the

literature by several authors for different aspects of the solutions. See, for example,

Dhage [10] and the references therein. Some of these quadratic equations are the

generalizations of the integral equations that occur in queuing theory and biological
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processes etc. Quadratic differential equations and inclusions are gathered under the

title differential equations and inclusions in Banach algebras even for the scalar case,

and the terminology is patterned on the use of multiplicative structure of Banach

algebras in the study of such equations and inclusions. Initial value problems of qua-

dratic differential equations and inclusions have been studied much in the literature,

but the study of periodic boundary value problems is relatively rare. In the present

work, we deal with periodic boundary value problems of first order functional integro-

differential inclusions and prove the existences results as well as as existence results

for extremal solutions under suitable conditions.

2. FUNCTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS

Let R be the real line and let Pp(R) denote the class of all non-empty subsets of

R with property p. Given a closed and bounded interval J = [0, T ] in R, consider the

first order functional integro-differential inclusion (in short FIGDI) with the periodic

boundary condition

d

dt

[

x(t)

f(t, x(t), x(θ(t)))

]

∈ G
(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

a.e. t ∈ J,

x(0) = x(T ),











(2.1)

where f : J × R × R → R − {0} is continuous, k : J × R × R → R, G : J × R × R →

Pcp,cv(R), and the functions θ, µ, σ, η : J → J are continuous with θ(0) = 0 and

θ(T ) = T .

By a solution of the FIGDI (2.1) we mean a function x ∈ AC(J,R) satisfying

(i) the function t 7→

(

x(t)

f(t, x(t), x(θ(t)))

)

is absolutely continuous, and

(ii) there exists a function v ∈ L1(J,R) such that

v(t) ∈ G
(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

a.e. t ∈ J

satisfying
d

dt

[

x(t)

f(t, x(t), x(θ(t)))

]

= v(t), x(0) = x(T ),

where AC(J,R) is the space of absolutely continuous real-valued functions on J .

The FIGDI (2.1) is new to the theory of differential inclusions and none of the

special cases in the form of differential inclusion involving the product of two functions

has been discussed in the literature. For example, the special case of FIGDI (2.1) in

the simplest form

d

dt

[

x(t)

f(t, x(t))

]

∈ G(t, x(t)) a.e. t ∈ J,

x(0) = x(T ),











(2.2)
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has also not been studied so far in the existing literature for the existence of solutions.

If f(t, x, y) = 1, then the FIGDI (2.1) reduces to the FIGDI

x′(t) ∈ G
(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

a.e. t ∈ J,

x(0) = x(T ).















(2.3)

There is a considerable work available in the literature for some special cases of FIGDI

(2.3). See Andres and Gorniewicz [2], Deimling [5], and Hu and Papageorgiou [19] etc.

Similarly in the special case when G(t, x, y) = {g(t, x, y)} we obtain the differential

equation

d

dt

[

x(t)

f(t, x(t), x(θ(t))))

]

= g
(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

a.e. t ∈ J,

x(0) = x(T ).















(2.4)

The functional differential equation (2.4) is again new to the literature and a special

case of differential equation (2.4) with f(t, x, y) = f(t, x) and g(t, x, y) = g(t, x) has

been studied recently in Dhage et al. [14] for the existence of solutions. Thus FIGDI

(2.1) is more general, and therefore, it of interest to discuss it for the various aspects

of the solutions under suitable conditions. In this paper, we shall prove the existence

of solutions as well as the existence of the extremal solutions for the FIGDI (2.1)

under suitable conditions. We seek the solutions in the space C(J,R) of continu-

ous real-valued functions on J under mixed generalized Lipschitz and Carathéodory

conditions.

3. AUXILIARY RESULTS

In this section, we develop a multi-valued fixed point theorem that is used as a

basic tool for proving the main existence result for FIGDI (2.1). Before stating the

main fixed point theorem, we give some useful definitions and preliminaries that will

be used in the sequel. Let X be a Banach space and let P(X) denote the class of all

subsets of X. Denote

Pp(X) = {A ⊂ X | A is non-empty and has a property p}.

Thus Pbd(X), Pcl(X), Pcv(X), Pcp(X), Pcl,bd(X), Pcp,cv(X) denote the classes of all

bounded, closed, convex, compact, closed-bounded and compact-convex subsets of X,

respectively. Similarly, Pcl,cv,bd(X) denotes the class of closed, convex and bounded

subsets of X. A correspondence Q : X → Pp(X) is called a multi-valued operator or

multi-valued mapping on X. A point u ∈ X is called a fixed point of Q if u ∈ Qu.

The multi-valued operator Q is called lower semi-continuous (in short l.s.c.) if G is
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any open subset of X, then

Q−(G) = {x ∈ X | Qx
⋂

G 6= ∅}

is an open subset of X. Similarly, the multi-valued operator Q is called upper semi-

continuous (in short u.s.c.) if the set

Q+(G) = {x ∈ X | Qx ⊂ G}

is open in X for every open set G in X. Finally, Q is called continuous if it is lower as

well as upper semi-continuous on X. A multi-valued map Q : X → Pcp(X) is called

compact if Q(X) is a compact subset of X. Q is called totally bounded if for any

bounded subset S of X, Q(S) =
⋃

x∈S Qx is a totally bounded subset of X. It is

clear that every compact multi-valued operator is totally bounded, but the converse

may not be true. However, these two notions are equivalent on a bounded subset of

X. Finally, Q is called completely continuous if it is upper semi-continuous and

totally bounded on X.

Let X be a Banach algebra. For any A,B ∈ Pp(X), let us denote

A±B = {a± b | a ∈ A, b ∈ B},

A ·B = {ab | a ∈ A, b ∈ B},

λA = {λa | a ∈ A}

for λ ∈ R. Similarly, denote

|A| = {|a| | a ∈ A}

and

‖A‖P = sup{|a| | a ∈ A}.

Let A,B ∈ Pcl,bd(X) and let a ∈ A. Then, denote

D(a,B) = inf{‖a− b‖ | b ∈ B}

and

ρ(A,B) = sup{D(a,B) | a ∈ A}.

The function dH : Pcl,bd(X) ×Pcl,bd(X) → R
+ defined by

dH(A,B) = max{ρ(A,B), ρ(B,A)} (3.1)

is metric and is called the Hausdorff metric on X. It is clear that

dH(0, C) = ‖C‖P = sup{‖c‖ | c ∈ C}

for any C ∈ Pcl,bd(X).

Lemma 3.1. Let X be a Banach algebra. If A,B ∈ Pbd,cl(X), then dH(AC,BC) ≤

dH(0, C) dH(A,B).

Proof. The proof appears in Dhage [7].
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We need the following definition in sequel.

Definition 3.2. A function ψ : R
+ → R

+ is called a D-function if it satisfies

(i) ψ is continuous,

(ii) ψ is nondecreasing, and

(iii) ψ is scalarly submultiplicative, that is, ψ(λr) ≤ λψ(r) for all λ > 0 and r ∈ R
+.

The class of all D-functions on R
+ is denoted by Ψ. There do exist D-functions

on R. Indeed, the function ψ : R
+ → R

+ defined by ψ(r) = ℓr, ℓ > 0 satisfies the

conditions (i)–(iii) mentioned above and hence is a D-function on R
+. Note that if

ψ ∈ Ψ, then ψ(0) = 0.

Definition 3.3. Let Q : X → Pcl,bd(X) be a multi-valued operator. Then Q is called

a multi-valued D-Lipschitz if there exists a D-function ψ ∈ Ψ such that

dH(Qx,Qy) ≤ ψ(‖x− y‖)

for all x, y ∈ X. If ψ(r) = qr, then Q is called multi-valued Lipschitz operator on X

and the constant q is called the Lipschitz constant of Q. Similarly, a single-valued

mapping Q : X → X is called D-Lipschitz if there exists a D-function ψ ∈ Ψ such

that

‖Qx−Qy‖ ≤ ψ(‖x− y‖)

for all x, y ∈ X. If ψ(r) = qr, then Q is called a single-valued Lipschitz operator on

X and the constant q is called the Lipschitz constant of Q on X.

The Kuratowskii measure α(S) and the Hausdorff measure β(S) of noncompact-

ness of a bounded set S in a Banach space X are the nonnegative real numbers defined

by

α(S) = inf
{

r > 0 : S ⊂
n
⋃

i=1

Si, and diam(Si) ≤ r, ∀ i
}

(3.2)

and

β(S) = inf
{

r > 0 : S ⊂
n
⋃

i=1

Bi(xi, r), for some xi ∈ X
}

, (3.3)

where Bi(xi, r) = {x ∈ X | d(x, xi) < r}.

The details on the Kuratowskii and Hausdorff measures of noncompactness and

their properties appear in Akhmerov et al. [1] and the references therein. The follow-

ing results appear in Akhmerov et al. [1].

Lemma 3.4. Let α and β be respectively the Kuratowskii and Hausdorff measure of

noncompactness in a Banach space X. Then for any bounded set S in X, we have

α(S) ≤ 2 β(S).
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Lemma 3.5. If A : X → X is a single-valued D-Lipschitz map with the D-function

ψ, then we have α(A(S)) ≤ ψ(α(S)) for any bounded subset S of X.

Lemma 3.6 (Banas and Lecko [3]). Let X be a Banach algebra. If S1, S2 ∈ Pbd(X),

then

β(S1 S2) ≤ ‖S1‖P β(S2) + ‖S2‖P β(S1).

Definition 3.7. A multi-valued mapping Q : X → Pbd(X) is called β-condensing

if for any S ∈ Pbd(X), we have that β(Q(S)) < β(S) for β(S) > 0.

The following extension of the Leray-Schauder principle is well-known in the

literature (see Granas and Dugundji [16]).

Theorem 3.8. Let U and U be respectively open and closed subsets of the Banach

space X such that 0 ∈ U . Let Q : U → Pcp,cv(X) be an upper semi-continuous and

β-condensing multi-valued operator with
⋃

Q(U) bounded. Then either

(i) the operator inclusion x ∈ Qx has a solution in U , or

(ii) there is an element u ∈ ∂U such that µu ∈ Qu for some µ > 1, where ∂U is is

the boundary of U .

Very recently, the present author [13] proved the following improvement of The-

orem 3.8 above; it has several nice applications in nonlinear analysis.

Theorem 3.9. Let U and U be respectively open and closed subsets of the Banach

space X such that 0 ∈ U . Let Q : U → Pcp,cv(X) be a closed graph and β-condensing

multi-valued operator with
⋃

Q(U) bounded. Then either

(i) the operator inclusion x ∈ Qx has a solution in U , or

(ii) there is an element u ∈ ∂U such that µu ∈ Qu for some µ > 1, where ∂U is is

the boundary of U .

The following multi-valued hybrid fixed point theorem is an improvement of the

multi-valued fixed point theorem of Dhage [9].

Theorem 3.10. Let U and U be respectively open-bounded and closed-bounded subsets

of the Banach space X such that 0 ∈ U and let A : X → X, and B : U → Pcp,cv(X)

be two multi-valued operators satisfying

(a) A is single-valued D-Lipschitz with the D-function ψ,

(b) B is completely continuous, and

(c) 2Mψ(r) < r for r > 0, where M = ‖
⋃

B(U)‖P .

Then either

(i) the operator inclusion x ∈ AxBx has a solution in U , or
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(ii) there is an element u ∈ ∂U such that µu ∈ AuBu for some µ > 1, where ∂U is

is the boundary of U .

Proof. Define a multi-valued mapping Q : U → Pp(X) by

Qx = AxBx, x ∈ U.

We show that Q satisfies all the conditions of Theorem 3.10. First, we show that Q

has convex and compact values on U . Let z1, z2 ∈ AxBx be any two elements. Then

there are points u1, u2 ∈ Bx such that z1 = (Ax) u1 and z2 = (Ax) u2. Now for any

λ ∈ [0, 1], one has

λz1 + (1 − λ)z2 = λ(Axu1) + (1 − λ)(Axu2)

= (Ax) (λu1) + Ax
[

(1 − λ) u2

]

= (Ax)
[

(λu1) + (1 − λ)u2

]

= (Ax) z.

Since Bx is a convex set, one has z = λu1 + (1− λ)u2 ∈ Bx, and hence Q has convex

values on U . Again, in view of Lemma 3.5, we obtain

β(Qx) = β(AxBx) ≤ ‖Ax‖β(Bx) + ‖Bx‖Pβ(Ax) = 0,

and therefore, Q has compact values on U . As a result, Q defines a multi-valued

mapping Q : U → Pcp,cv(X).

Now we shall show that the mapping Q has a closed graph on U . Let {xn} be

a sequence in U converging to the point x∗ ∈ U and let {yn} be sequence defined by

yn ∈ Qxn converging to the point y∗. It is enough to prove that y∗ ∈ Qx∗. Now for

any x, y ∈ U we have

dH(Qx,Qy) = dH(AxBx,AyBy)

≤ dH(AxBx,AyBx) + dH(AyBx,AyBy)

≤ d(Ax,Ay) dH(0, Bx) + d(0, Ay) dH(Bx,By)

≤ ψ(‖x− y‖) ‖B(U)‖ + ‖Ay‖ dH(Bx,By)

≤Mψ(‖x− y‖) + ‖Ay‖ dH(Bx,By). (3.4)

Since B is u.s.c., it is dH-upper semi-continuous and consequently

dH(Bxn, Bx
∗) → 0 whenever xn → x∗.

Therefore,

D(y∗, Qx∗) ≤ lim
n→∞

D(yn, Qx
∗) ≤ dH(Qxn, Qx

∗)

≤Mψ(‖xn − x∗‖) + ‖Ay∗‖ dH(Bxn, Bx
∗)

−→ 0 as n→ ∞.
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This shows that the multi-valued Q is a closed graph operator on U .

Next we show that Q is β-condensing on U . Let S be any subset of U . Then

Q(S) ⊂ A(S)B(S) ⊂ A(U)B(U). First we show that A(U)B(U) is bounded. To

finish, it enough to prove that A(U) is bounded. Since U is bounded, there is a real

number r > 0 such that ‖x‖ ≤ r for all x ∈ U . Now for any x ∈ U , one has

‖Ax‖ ≤ ‖Ax− A0‖ + ‖A0‖ ≤ ψ(‖x‖) + ‖A0‖ ≤ ψ(r) + ‖A0‖.

Hence, we have ‖A(U)‖P ≤ c, where c = ψ(r) + ‖A0‖, and so A(U) is bounded

subset of X. Consequently, A(U)B(U) is bounded since B(U) is totally bounded. As

a result, Q(U) is a bounded set in X. Now by Lemma 3.5 and 3.6,

β(Q(S)) ≤ ‖A(S)‖P β(B(S)) + ‖B(S)‖P β(A(S)) ≤Mψ(α(S)) ≤ 2Mψ(β(S))

and so, β(Q(S)) < β(S) for all β(S) > 0 since 2Mψ(r) < r for r > 0. This shows

that Q is β-condensing on U . Now an application of Theorem 3.9 yields that either

(i) the operator inclusion x ∈ AxBx has a solution in U , or

(ii) there is an element u ∈ ∂U such that µu ∈ AuBu for some µ > 1, where ∂U is

is the boundary of U .

This completes the proof.

Corollary 3.11. Let Br(0) and Br(0) denote respectively open and closed balls cen-

tered at origin of radius r in the Banach space X and let A : X → X and B : Br(0) →

Pcp,cv(X) be two operators satisfying

(a) A is single-valued Lipschitz with the Lipschitz constant q,

(b) B is completely continuous, and

(c) 2Mq < 1, where M = ‖
⋃

B(Br(0))‖P.

Then either

(i) the operator inclusion x ∈ AxBx has a solution in Br(0), or

(ii) there is an element u ∈ X such that ‖u‖ = r satisfying µu ∈ AuBu for some

µ > 1.

In the following section we prove our main existence theorem for the FIGDI (2.1)

under suitable conditions.

4. EXISTENCE RESULTS

In this section we prove an existence theorem for the differential inclusion (2.1)

in Banach algebras by an application of the abstract results of the previous section

under generalized Lipschitz and Carathéodory conditions.
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Let B(J,R) denote the space of bounded real-valued functions on J and let

C(J,R), denote the space of all continuous real-valued functions on J. Define a norm

‖ · ‖ and a multiplication “ · ” in C(J,R) by

‖x‖ = sup
t∈J

|x(t)| and (x · y)(t) = x(t)y(t) for t ∈ J.

Clearly C(J,R) becomes a Banach algebra with respect to above norm and multipli-

cation. By L1(J,R) we denote the set of Lebesgue integrable functions on J and the

norm ‖ · ‖L1 in L1(J,R) is defined by

‖x‖L1 =

∫ T

0

|x(t)| ds.

The following useful lemma is obvious and the details may be found in Nieto [20, 21].

Lemma 4.1. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the differ-

ential equation

x′ + h(t)x(t) = σ(t) a. e. t ∈ J,

x(0) = x(T ),

}

(4.1)

if and only if it is a solution of the integral equation

x(t) =

∫ T

0

gh(t, s)σ(s) ds (4.2)

where

gh(t, s) =























eH(s)−H(t)

1 − e−H(T )
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)−H(T )

1 − e−H(T )
, 0 ≤ t < s ≤ T,

(4.3)

where H(t) =

∫ t

0

h(s) ds.

Notice that the Green’s function gh is nonnegative on J × J and the number

Mh := max { |gh(t, s)| : t, s ∈ [0, T ] }

exists for all h ∈ L1(J,R+). Note also that H(t) > 0 for all t > 0 provided that h is

not the identically zero function.

We need the following definition in the sequel.

Definition 4.2. A multi-valued mapping β : J × R × R → Pcp(R) is said to be

Carathéodory if

(i) t 7→ β(t, x, y) is measurable for all x, y ∈ R, and

(ii) (x, y) 7→ β(t, x, y) is upper semi-continuous almost everywhere for t ∈ J.

A Carathéodory mapping β(t, x, y) is called L1-Carathéodory if
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(iii) for each real number r > 0 there exists a function mr ∈ L1(J,R) such that

|β(t, x, y)| ≤ mr(t), a.e. t ∈ J

for all x, y ∈ R with |x| ≤ r and |y| ≤ r.

Let β : J × R × R → P(R) be a multi-valued mapping with nonempty compact

values. Assign to β, the multi-valued operator S1
β : C(J,R) → P(L1(J,R)) defined

by

S1
β(x) =

{

v ∈ L1(J,R) : v(t) ∈ β
(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

a.e. t ∈ J
}

.

The operator S1
β is called the Niemytsky operator associated with the multi-valued

mapping β and S1
β(x) is called the selection set of functions of the multi-valued map-

ping β at x ∈ C(J,R).

Then we have the following lemmas due to Lasota and Opial [18].

Lemma 4.3. Let E be a Banach space. If dim(E) <∞ and β : J×E×E → Pcp(E)

L1-Carathéodory, then S1
β(x) 6= ∅ for each x ∈ E.

Lemma 4.4. Let E be a Banach space. Let β : J × E × E → Pcp(E) be an L1-

Carathéodory multi-valued map with S1
β 6= ∅, and let L be a linear continuous mapping

from L1(J,E) into C(J,E). Then the multi-valued composition mapping L ◦ S1
β :

C(J,E) → Pcp,cv(C(J,E)) defined by u 7→ (L ◦ Sβ)(u) := L(Sβ(u)) is a closed graph

operator in C(J,E) × C(J,E).

We will use the following hypotheses in the sequel.

(A0) The mapping t 7→ f(t, x, y) is periodic of period T for all x, y ∈ R.

(A1) The mapping x 7→
x

f(0, x, x)
is injective in R.

(A2) The mapping f : J ×R×R → R \ {0} is continuous and there exists a bounded

function ℓ : J → R with bound ‖ℓ‖ satisfying

|f(t, x1, x2) − f(t, y1, y2)| ≤ ℓ(t) max{|x1 − y1|, |x2 − y2|} a.e. t ∈ J

for all x, y ∈ R.

(B1) G is Carathéodory.

Note that hypotheses (A0) through (A2) are common in the literature on the theory

of nonlinear differential equations. Actually, the mapping f : J × R → R defined by

f(t, x, y) = α+ β(x+ y) for some α, β ∈ R, α+ β(x+ y) 6= 0 satisfies the hypotheses

(A0)-(A2).
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Now consider the FIGDI with periodic boundary condition

( x(t)

f(t, x(t), x(θ(t)))

)′

+h(t)
( x(t)

f(t, x(t), x(θ(t)))

)

∈ Gh

(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

a.e. t ∈ J,

x(0) = x(T ),































(4.4)

where h ∈ L1(J,R+) is bounded and the mapping Gh : J×R×R → Pcp(R) is defined

by

Gh(t, x, y) = G(t, x, y) + h(t)
( x

f(t, x, y)

)

. (4.5)

Remark 4.5. Note that the FIGDI (2.1) is equivalent to the FIGDI (4.4) and a

solution of the FIGDI (2.1) is the solution for the FIGDI (4.4) on J and vice versa.

Remark 4.6. If the mapping f is continuous on J ×R×R and the hypothesis (B1)

holds, then the mapping Gh defined by (4.5) is Carathéodory on J × R × R.

Lemma 4.7. Assume that hypotheses (A0) and (A1) hold. Then for any bounded

h ∈ L1(J,R+), x is a solution to the differential inclusion (4.4) if and only if it is a

solution of the integral inclusion

x(t) ∈
[

f(t, x(t), x(θ(t)))
]

(

∫ T

0

gh(t, s)Gh

(

s, x(µ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ)) dτ
)

ds

)

,

(4.6)

where the Green’s function gh(t, s) is defined by (4.3).

Proof. Let y(t) =
x(t)

f(t, x(t), x(θ(t)))
. Since f(t, x, x) is periodic in t of period T for

all x ∈ R, we have

y(0) =
x(0)

f(0, x(0), x(0))
=

x(T )

f(T, x(T ), x(T ))
= y(T ).

Now an application of Lemma 4.1 yields that the solution to differential inclusion

(4.4) is the solution to integral inclusion (4.6). Conversely, suppose that x is any

solution to the integral inclusion (4.6), then

y(0) =
x(0)

f(0, x(0), x(0))
=

x(T )

f(0, x(T ), x(T ))
= y(T ).

Since the function x 7→
x

f(0, x, x)
is injective in R, one has x(0) = x(T ) and so, x is a

solution to FIGDI (2.1). The proof of the lemma is complete.

We make use of the following hypotheses in the sequel.
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(B2) The function k : J × J × R → R is continuous and there exists a function

α ∈ L1(J,R+), such that

|k(t, s, y)| ≤ α(t)|y| a.e. t, s ∈ J and y ∈ R.

(B3) There exists a function γ ∈ L1(J,R+) and a D-function ψ ∈ Ψ such that

‖Gh(t, x, y)‖P ≤ γ(t)ψ(|x| + |y|) a.e. t ∈ J

for each x, y ∈ R.

We frequently make use of the following estimate concerning the multi-valued

function G(t, x, y) in the sequel. If the hypotheses (B2)–(B3) hold, then for any

x ∈ C(J,R) with ‖x‖ ≤ r, one has

∥

∥

∥
Gh

(

t,x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)
∥

∥

∥

P

≤ γ(t)ψ
(

|x(µ(t))| +

∫ σ(t)

0

|k(t, s, x(η(s)))| ds
)

≤ γ(t)ψ
(

‖x‖ +

∫ σ(t)

0

α(s)|x(η(s))| ds
)

≤ γ(t)ψ
(

‖x‖ +

∫ T

0

α(s)‖x‖ ds
)

≤ γ(t)ψ
(

[1 + ‖α‖L1] ‖x‖
)

≤ γ(t)(1 + ‖α‖L1)ψ(r) (4.7)

for all t ∈ J .

Theorem 4.8. Assume that the hypotheses (A0)–(A2)and (B1)–(B3) hold. If there

exists a real number r > 0 such that

r >
FMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

1 − ‖ℓ‖ [Mh‖γ‖L1(1 + ‖α‖L1)ψ(r)]
(4.8)

where, ‖ℓ‖ [Mh‖γ‖L1(1 + ‖α‖L1)ψ(r)] < 1/2 and F = supt∈J |f(t, 0, 0)|, then the

FIGDI (2.1) has a solution on J .

Proof. Let X = C(J,R) and define an open ball Br(0) in X, where the real number

r satisfies the inequality (4.8). Now consider two operators A : X → X and B :

Br(0) → Pp(R) defined by

Ax(t) = f(t, x(t), x(θ(t))) (4.9)

and

Bx =

{

u ∈ X
∣

∣

∣
u(t) =

∫ T

0

gh(t, s)v(s) ds, v ∈ S1
Gh

(x)

}

(4.10)

for all t ∈ J .
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Then the FIGDI (2.1) is equivalent to the operator inclusion

x(t) ∈ Ax(t)Bx(t), t ∈ J. (4.11)

We shall show that the multi-valued operators A and B satisfy all the conditions

of Corollary 3.11. Clearly the operator B is well defined since S1
Gh

(x) 6= ∅ for each

x ∈ X.

Step I : We first show that the operators A and B define respectively the single-

valued and the multi-valued operators A : X → X and B : Br(0) → Pcp,cv(X). The

case of A is obvious since the function f is continuous on J×R×R. We only prove the

claim for the operator B. It is shown as in the Step III below that the multi-valued

operator B has compact values on Br(0).

Again, let u1, u2 ∈ Ax. Then there are v1, v2 ∈ S1
Gh

(x) such that

u1(t) =

∫ T

0

gh(t, s)v1(s) ds, t ∈ J,

and

u2(t) =

∫ T

0

gh(t, s)v2(s) ds, t ∈ J.

Now for any λ ∈ [0, 1],

λu1(t) + (1 − λ)u2(t) = λ

(
∫ T

0

gh(t, s)v1(s) ds

)

+ (1 − λ)

(
∫ T

0

gh(t, s)v2(s) ds

)

=

∫ T

0

[λgh(t, s)v1(s) + (1 − λ)gh(t, s)v2(s)] ds.

Since S1
Gh

has convex values on X (because G has convex values), we have that

v(t) = λv1(t) + (1 − λ)v2(t) ∈ S1
Gh

(x)(t) for all t ∈ J . Hence, λu1 + (1 − λ)u2 ∈ Bx

and consequently Bx is convex for each x ∈ X. As a result, B defines a multi-valued

operator B : X → Pcp,cv(X).

Step II : To show A a Lipschitz on X, let x, y ∈ X. Then,

‖Ax− Ay‖ = sup
t∈J

|Ax(t) −Ay(t)|

= sup
t∈J

|f(t, x(t), x(θ(t))) − f(t, y(t), y(θ(t)))|

≤ sup
t∈J

ℓ(t) max{|x(t) − y(t)|, |x(θ(t)) − x(θ(t))|}

≤ ‖ℓ‖‖x− y‖,

showing that A is a Lipschitz on X with the Lipschitz constant ‖ℓ‖.

Step III : Next we show that B is completely continuous on Br(0). First, we

prove that B(Br(0)) is totally bounded subset of X. To do this, it is enough to prove



84 B. C. DHAGE

that B(Br(0)) is a uniformly bounded and equi-continuous set in X. To see this, let

u ∈ B(Br(0)) be arbitrary. Then there is a v ∈ S1
Gh

(x) such that

u(t) =

∫ T

0

gh(t, s)v(s) ds.

for some x ∈ Br(0). Hence,

|u(t)| ≤

∫ T

0

gh(t, s)|v(s)| ds

≤

∫ T

0

gh(t, s)
∥

∥

∥
Gh

(

s, x(µ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ)) dτ
)
∥

∥

∥

P
ds

≤

∫ T

0

gh(t, s)γ(s)(1 + ‖α‖L1)ψ(r) ds

= Mh‖γ‖L1(1 + ‖α‖L1)ψ(r)

for all t ∈ J , and so B(Br(0)) is a uniformly bounded set in X. Next we show that

B(Br(0)) is an equicontinuous set. To finish, it is enough to show that u′ is bounded

on [0, T ]. Now for any t ∈ [0, T ], one has

|u′(t)| =
∣

∣

∣

∫ T

0

∂

∂t
gh(t, s)v(s) ds

∣

∣

∣

=
∣

∣

∣

∫ T

0

(−h(t))gh(t, s)v(s) ds
∣

∣

∣

≤ HMh‖γ‖L1ψ(r)

= c,

where H = maxt∈J h(t). Hence, for any t, τ ∈ [0, T ], one has

|Bx(t) − Bx(τ)| ≤ c |t− τ | → 0 as t→ τ.

This shows thatB(Br(0)) is a equi-continuous set inX.Hence, B(Br(0)) is compact by

the Arzela-Ascoli theorem. Thus, we have B : Br(0) → Pcp,cv(X) is totally bounded.

Next we show that B is an upper semi-continuous multi-valued operator on X.

Let {xn} be a sequence in X such that xn → x∗. Let {yn} be a sequence such that

yn ∈ Bxn and yn → y∗. We shall show that y∗ ∈ Bx∗. Since yn ∈ Bxn, there exists a

vn ∈ S1
Gh

(xn), n = 1, 2, . . . , such that

yn(t) =

∫ T

0

gh(t, s)vn(s) ds, t ∈ J.

We must prove that there is a v∗ ∈ S1
Gh

(x∗) such that

y∗(t) =

∫ T

0

gh(t, s)v∗(s) ds, t ∈ J.
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Consider the continuous linear operator K : L1(J,R) → C(J,R) defined by

Kv(t) =

∫ T

0

gh(t, s)v(s) ds, t ∈ J.

Now we have ‖yn − y∗‖ → 0 as n → 0. From Lemma 4.4, it follows that K ◦ S1
Gh

is

a closed graph operator. Also, from the definition of K, we have yn ∈ (K ◦ S1
Gh

)(xn).

Since yn → y∗, there is a point v∗ ∈ S1
Gh

(x∗) such that

y∗(t) =

∫ T

0

gh(t, s)v∗(s)ds, t ∈ J.

This shows that B is a completely continuous operator on Br(0). Thus, B is an upper

semi-continuous and compact operator on X.

Step IV : Finally, from the condition given in the statement of the theorem, it

follows that

2Mq = 2‖ℓ‖Mh‖γ‖L1(1 + ‖α‖L1)ψ(r) < 1.

Thus all the conditions of Corollary 3.11 are satisfied so, either conclusion (i) or

conclusion (ii) holds. We show that the conclusion (ii) is not possible. Let u ∈ X be

such that ‖u‖ = r. Then, for any µ = 1
λ
> 1, for some λ ∈ (0, 1), one has

µu(t) ∈ Au(t)Bu(t)

= [f(t, u(t), u(θ(t))]

(

∫ T

0

gh(t, s)Gh

(

s, u(µ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

) ds

)

,

for all t ∈ J . Therefore,

µu(t) ∈
[

f(t, u(t), u(θ(t)))
](

∫ T

0

gh(t, s)Gh

(

s, u(µ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds
)

or

u(t) = λ
[

f(t, u(t), u(θ(t)))
](

∫ T

0

gh(t, s)v(s) ds
)

for some v ∈ S1
Gh

(u). Therefore, by (4.7),

|u(t)| =
∣

∣

∣
λ
[

f(t, u(t), u(θ(t)))
]
∣

∣

∣

∫ T

0

gh(t, s)v(s) ds
)
∣

∣

∣

≤
∣

∣

∣

[

f(t, u(t), u(θ(t)))
]
∣

∣

∣

(

∫ T

0

gh(t, s)|v(s)| ds
)

≤
[

|f(t, u(t), u(θ(t)))− f(t, 0, 0)|+ |f(t, 0, 0)|
]

×
(

∫ T

0

gh(t, s)
∥

∥

∥
Gh

(

s, u(µ(s)),

∫ σ(s)

0

k(s, τ, u(η(τ)) dτ
)
∥

∥

∥

P
ds
)

≤ |ℓ(t)|max{|u(t)|, u(θ(t))}

(
∫ T

0

gh(t, s)γ(s)(1 + ‖α‖L1)ψ(r) ds

)

+ F
(

∫ T

0

gh(t, s)γ(s)(1 + ‖α‖L1)ψ(r) ds
)
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≤ ‖ℓ‖max{|u(t)|, u(θ(t))} (Mh‖γ‖L1(1 + ‖α‖L1)ψ(r))

+ F (Mh‖γ‖L1(1 + ‖α‖L1)ψ(r)) . (4.12)

Taking the supremum over t, we obtain

‖u‖ ≤
FMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

1 − ‖ℓ‖ [Mh‖γ‖L1(1 + ‖α‖L1)ψ(r)]

or,

r ≤
FMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

1 − ‖ℓ‖ [Mh‖γ‖L1(1 + ‖α‖L1)ψ(r)]

which is a contradiction to (4.8). Hence, the conclusion (ii) of Corollary 3.11 does

not hold. Therefore, the operator inclusion x ∈ AxBx, and consequently the FIGDI

(2.1), has a solution in Br(0) defined on J . This completes the proof.

5. EXISTENCE OF EXTREMAL SOLUTIONS

A non-empty and closed set K in a Banach algebra X is called a cone if (i)

K +K ⊆ K, (ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and (iii) {−K} ∩K = 0, where 0 is the

zero element of X. A cone K is called positive if (iv) K ◦ K ⊆ K, where “ ◦ ” is a

multiplication composition in X. We introduce an order relation ≤ in K as follows.

Let x, y ∈ X. Then x ≤ y if and only if y − x ∈ K. A cone K is called normal if the

norm ‖ · ‖ is monotone increasing on K. It is known that if the cone K is normal in

X, then every order-bounded set in X is norm-bounded. Details on cones and their

properties appear in Guo and Lakshmikantham [17].

We equip the space C(J,R) with the order relation ≤ defined by the cone

K = {x ∈ C(J,R) : x(t) ≥ 0 for all t ∈ J}. (5.1)

It is well known that the cone K is positive and normal in C(J,R). As a result of

positivity of the cone K in C(J,R), we have:

Lemma 5.1 (Dhage [8]). Let u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and u2 ≤ v2.

Then u1u2 ≤ v1v2.

For any a, b ∈ X = C(J,R) with a ≤ b, the order interval [a, b] is a set in X

defined by

[a, b] = {x ∈ X : a ≤ x ≤ b}.

Definition 5.2. A multi-valued operator Q : X → Pp(X) is called strictly monotone

increasing if x, y ∈ X with x < y implies Qx ≤ Qy.

We use the following fixed point theorem of Dhage [8] for proving existence of

the extremal solutions for the FIGDI(2.1) under certain monotonicity conditions.
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Theorem 5.3 (Dhage [8]). Let [a, b] be an order interval in a Banach algebra X.

Suppose that A : [a, b] → K is nondecreasing and B : [a, b] → Pcl(K) is strictly

monotone increasing such that

(a) A is Lipschitz with the Lipschitz constant q,

(b) B is completely continuous, and

(c) AxBx ⊂ [a, b] for each x ∈ [a, b].

If the cone K is positive and normal, then the operator equation x ∈ AxBx has

a least and a greatest positive solution in [a, b], whenever 2Mq < 1, where M =

‖ ∪ B([a, b])‖P := sup{‖Bx‖P : x ∈ [a, b]}.

We need the following definitions in the sequel.

Definition 5.4. A function a ∈ C(J,R) is called a strict lower solution of the FIGDI

(2.1) on J if the function t 7→

(

x(t)

f(t, x(t), x(θ(t)))

)

is absolutely continuous, and for

all v ∈ S1
Gh

(a), we have that

d

dt

[

a(t)

f(t, a(t), a(θ(t)))

]

≤ v(t), a.e t ∈ J, and a(0) ≤ a(T ).

Similarly, a strict upper solution b ∈ C(J,R) for the FIGDI (2.1) on J is defined.

Definition 5.5. A solution xM of the FIGDI (2.1) is said to be maximal if for any

other solution x to FIGDI (2.1) one has x(t) ≤ xM(t), for all t ∈ J. Again a solution

xm of the FIGDI (2.1) is said to be minimal if xm(t) ≤ x(t), for all t ∈ J, where x is

any solution of the FIGDI (2.1) on J.

Remark 5.6. If a is a strict lower solution for the FIGDE (2.1), then it is also a strict

lower solution for the FIGDI (4.4) and vice-versa. The same is true for a strict upper

solution for the FIGDE (2.1) on J . Similarly, a minimal solution for the FIGDE (2.1)

is a minimal solution for the for the FIGDE (4.4) and vice-versa. Again, the same is

true for maximal solution for the FIGDE (2.1) on J .

Definition 5.7. A multi-valued mapping β(t, x, y) is said to be strictly increasing in

x if for all t ∈ J and y ∈ R, we have β(t, x1, y) ≤ β(t, x2, y) for all x1, x2 ∈ R for

which x1 < x2. Similarly, the strict monotonicity of β(t, x, y) in the argument y is

defined.

We consider the following set of assumptions:

(B4) f : J × R
+ × R

+ → R
+ − {0} and G : J × R × R → Pcl(R

+).

(B5) Gh is L1-Carathéodory.

(B6) f(t, x, y) is nondecreasing in x and y and k(t, s, x) is monotone increasing in x

almost everywhere for t ∈ J.

(B7) Gh(t, x, y) is strictly monotone increasing in x and y almost everywhere for t ∈ J.
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(B8) The FIGDI (2.1) has a lower solution a and an upper solution b on J with a ≤ b.

Remark 5.8. Assume that (B5)–(B8) hold. Define a function m : J → R
+ by

m(t) =
∥

∥

∥
Gh

(

t, b(µ(t)),

∫ σ(t)

0

k(t, s, b(η(s))) ds
)
∥

∥

∥

P

for all t ∈ J. Then m is Lebesgue integrable and
∥

∥

∥
Gh

(

t, x(µ(t))),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)
∥

∥

∥

P
≤ m(t), a.e. t ∈ J,

for all x ∈ [a, b].

Theorem 5.9. Suppose that the assumptions (A0)–(A2) and (B4)–(B8) hold. If

‖ℓ‖Mh‖m‖L1 < 1/2, and h is given in Remark 5.8, then FIGDI (2.1) has a mini-

mal and a maximal positive solution in [a, b] defined on J.

Proof. Now FIGDI (2.1) is equivalent to functional integral inclusion (4.6) on J. Let

X = C(J,R) and consider the order interval [a, b] in X. Define two operators A and

B on [a, b] by (4.9) and (4.10) respectively. Then FIGDI (2.1) is transformed into an

operator inclusion x(t) ∈ Ax(t)Bx(t) in a Banach algebra X. Notice that (B4) implies

A : [a, b] → K and B : [a, b] → Pcl(K). Since the cone K in X is normal, [a, b] is a

norm bounded set in X. Now it is shown, as in the proof of Theorem 4.8, that A is

Lipschitz with the Lipschitz constant ‖ℓ‖ and B is completely continuous operator

on [a, b]. Again the hypotheses (B6) and (B7) imply that A is nondecreasing and B is

strictly monotone increasing on [a, b]. To see this, let x, y ∈ [a, b] be such that x ≤ y.

Then by (B6),

Ax(t) = f(t, x(t), x(θ(t))) ≤ f(t, y(t), y(θ(t))) = Ay(t)

for all t ∈ J . Similarly, let x, y ∈ [a, b] be such that x < y; then we have

Bx(t) =

∫ T

0

gh(t, s)Gh

(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

ds

≤

∫ T

0

gh(t, s)Gh

(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

ds

= By(t)

for all t ∈ J. Again, Lemma 4.1 and hypothesis (B7) together imply that

a(t) ≤ [f(t, a(t), a(θ(t)))]
(

∫ T

0

gh(t, s)Gh

(

t, a(µ(t)),

∫ σ(t)

0

k(t, s, a(η(s))) ds
)

ds
)

≤ [f(t, x(t), x(θ(t)))]
(

∫ T

0

gh(t, s)Gh

(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)

ds
)

≤ [f(t, b(t), b(θ(t)))]
(

∫ T

0

gh(t, s)Gh

(

t, b(µ(t)),

∫ σ(t)

0

k(t, s, b(η(s))) ds
)

ds
)

≤ b(t),
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for all t ∈ J and x ∈ [a, b]. As a result, a(t) ≤ Ax(t)Bx(t) ≤ b(t), for all t ∈ J and

x ∈ [a, b]. Hence, AxBx ⊂ [a, b] for all x ∈ [a, b]. Again, we have

M = ‖
⋃

B([a, b])‖P

= sup{‖Bx‖P : x ∈ [a, b]}

≤ sup
x∈[a,b]

{

sup
t∈J

∫ T

0

gh(t, s)
∥

∥

∥
Gh

(

t, x(µ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)
∥

∥

∥

P
ds

}

≤

∫ T

0

gh(t, s)m(s) ds

= Mh‖m‖L1 .

Since 2Mq ≤ 2‖ℓ‖Mh ‖m‖L1 < 1, we apply Theorem 5.3 to the operator inclusion

x ∈ AxBx to yield that the FIGDI (2.1) has a minimal and a maximal positive

solution in [a, b] defined on J.

6. AN EXAMPLE

Given the closed and bounded interval J = [0, π] in R, consider the first order

periodic boundary value problem of FIGDI,

d

dt

[

x(t)

1 + | sin t|
12

(|x(t)| + |x(t2/π)|)

]

∈ −

(

x(t)

1 + | sin t|
12

(|x(t)| + |x(t2/π)|)

)

+G
(

t, x(t/2),

∫ π−t

0

k(t, s, x(s/3)) ds
)

a.e. t ∈ J,

x(0) = x(π),







































(6.1)

where, p ∈ L1(J,R+), and the functions k : J ×R×R → R, G : J ×R×R → Pp(R),

θ, µ, σ, η : J → J are given by

G(t, x, y) =



































[

p(t)x

1 + |x|
, p(t)

]

, if x 6= 0, y = 0,

[

p(t)x

1 + |x|
,
p(t)x

1 + |x|
+ |y|

]

, if x 6= 0, y 6= 0

[0, p(t) + |y|] , if x = 0, y 6= 0,

,

and

k(t, s, x) =
x

4π(1 + |x|)
.

Here,

θ(t) = t2/π, µ(t) = t/2, σ(t) = π − t, and η(t) = t/3

for t ∈ J . Clearly the functions k : J × J × R → R and θ, µ, σ, η : J → J are

continuous with θ(0) = 0 and θ(π) = π.
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Here, the function f : J × R × R → R − {0} is defined by

f(t, x, y) = 1 +
| sin t|

12
(|x| + |y|).

Obviously f : J × R × R → R
+ − {0}. It is easy to verify that f is continuous and

satisfies the hypotheses (A0)–(A2) on J × R × R with ℓ(t) = 1
6

for all t ∈ J . To see

this, let x, y ∈ R; then we have

|f(t, x1, x2) − f(t, y1, y2)| =

∣

∣

∣

∣

[

1 +
| sin t|

12
(|x1| + |x2|)

]

−
[

1 +
| sin t|

12
(|y1| + |y2|)

]

∣

∣

∣

∣

≤
1

12

∣

∣( |x1| − |y1| + |x2| − |y2| )
∣

∣

≤
1

12

(

|x1 − y1| + |x2 − y2|
)

≤
1

6
max{|x1 − y1| , |x2 − y2|}.

Again the function G(t, x, y) is measurable in t for all x, y ∈ R and upper semi-

continuous in x and y almost everywhere for t ∈ J , and so G defines a Carathéodory

multi-valued mapping G : J × R × R → Pcp,cv(R). Further, G1 is also Carathéodory

on J × R × R, and

‖G1(t, x, y)‖P =

∣

∣

∣

∣

p(t) x(t)

1 + |x(t)|
+

∫ π−t

0

x(s/3)

4π(1 + |x(s/2)|)
ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

p(t) x(t)

1 + |x(t)|

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ π−t

0

x(s/3)

4π(1 + |x(s/2)|)
ds

∣

∣

∣

∣

≤ |p(t)| +
1

4

Hence, the function G1 is L1
R
-Carathéodory and satisfies all the hypotheses (B1)

through (B3) on J × R × R with γ(t) = |p(t)| + 1
4

on J and ψ(r) = 1 for all r ∈ R
+.

Therefore, if ‖p‖L1 < 5 and r = 2, then by Theorem 4.8, then the FIGDI (6.1) has a

solution in B2(0) defined on J .

Remark 6.1. While concluding this paper, we mention that our existence results of

this paper can be extended to infinite dimensional Banach algebras with appropriate

modifications. Also, the existence results of this paper include the existence results

for the differential inclusions (2.2), (2.3) and (2.4) as special cases that are again

new to the literature on quadratic differential inclusions. Our results also extend the

existence results proved in Dhage et al. [14] for the periodic boundary value problem

d

dt

[

x(t)

f(t, x(t))

]

= g(t, x(t)) a.e. t ∈ J, x(0) = x(T ), (6.2)

to the corresponding quadratic ordinary differential inclusions with periodic boundary

conditions.
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