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ABSTRACT. We study the stochastic Cauchy problem

dX(t) = AX(t)dt + BdW (t), t ∈ [0, T ], X(0) = ξ,

where A is the generator of a regularized semigroup in a separable Hilbert space H , B is a bounded

linear operator and W is an H-valued Wiener process on a probability space (Ω,F , P ). We construct

regularized solutions to this problem in L2(Ω; H) and in spaces of abstract stochastic distributions.

We also study the semi-linear problem

dX(t) =
[
AX(t) + F (t, X)

]
dt + B(t, X)dW (t), X(0) = ξ,

where F and B satisfy some appropriate growth and Lipschitz conditions.

AMS (MOS) Subject Classification. 60H10, 34F05, 34G10, 46F10, 47D62

1. INTRODUCTION

Let (Ω,F , P ) be a probability space with filtration {Ft, t ≥ 0} and H be a

separable Hilbert space. Let Q be a linear symmetric nonnegative trace-class operator

on H , then there is an orthonormal basis {ej} in H such that Qej = λjej .

We consider the stochastic Cauchy problem

dX(t) = AX(t)dt + BdW (t), t ∈ [0, T ], X(0) = ξ, (1.1)

where A is the generator of a regularized semigroup {S(t), t ∈ [0, τ)}, T < τ ≤ ∞,

in H , B is a bounded linear operator in H , and W = {W (t), t ≥ 0} is an H-valued

Wiener process.

Problem (1.1) with the generator of a C0-semigroup was studied by semigroup

methods by many authors, see [4, 13] and references therein. In this paper we consider

a much wider class of operators A that do not necessarily generate C0-semigroups

(that is semigroups of class C0). Typical examples of regularized semigroups include

integrated semigroups, convoluted semigroups and R-semigroups (see, for example,
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[2, 5, 17, 12, 16]). Problem (1.1) with the generator of an integrated semigroup was

also studied in [6, 7, 13, 14].

Section 2 of this paper is devoted to the basic facts related to the deterministic

Cauchy problem

u′(t) = Au(t), t ∈ [0, T ], u(0) = ξ, (1.2)

with the generator of a regularized semigroup. In Section 2.1 we give definitions

and discuss properties of regularized semigroups, k-convoluted semigroups and R-

semigroups. The main result of this section is devoted to adjoint regularized semi-

groups. This result is used in Section 3 for studying the stochastic problem (1.1).

In Section 2.2 we give some examples of k-convoluted semigroups and R-semigroups

and their generators, in particular, semigroups generated by differential operators.

In Section 3 we construct regularized solutions to problem (1.1) both in L2(Ω; H)

and in spaces of abstract stochastic distributions. Firstly, we introduce the notion of

a weak regularized solution to problem (1.1), where A is the generator of a regularized

semigroup {S(t), t ∈ [0, τ)} in H , {W (t), t ≥ 0} is an H-valued Q-Wiener process,

B is a bounded linear operator in H and ξ is a F0-measurable H-valued random

variable. The main result of Section 3.1 is devoted to the existence and uniqueness of

such solutions in L2(Ω; H). We use the stochastic version of the variation of constants

formula and the notion of a stochastic convolution to construct these solutions.

In Section 3.2 we extend our discussion to the case of a cylindrical H-valued

Wiener process. We discuss the existence and uniqueness of regularized solutions

to problem (1.1) in L2(Ω; H) and in spaces of abstract stochastic distributions. For

basic facts about white noise analysis and H-valued stochastic distributions we refer

readers to [9, 10, 11, 7, 14].

Section 3.3 is devoted to the semi-linear problem

dX(t) =
[
AX(t) + F (t, X)

]
dt + B(t, X)dW (t), X(0) = ξ,

where A is the generator of a regularized semigroup {S(t), t ∈ [0, τ)} in H and W is an

H-valued Q-Wiener process. We suppose that F : [0, T ]×Ω×H → H and B : [0, T ]×
Ω×H → L2 are measurable mappings from ([0, T ]×Ω×H, PT ×B(H)) to (H, B(H))

and (L2, B(L2)) respectively, and that they satisfy the Lipschitz conditions:

‖F (t, ω; x) − F (t, ω; y)‖+ ‖B(t, ω; x) − B(t, ω; y)‖L2 ≤ C |x − y|

for x, y ∈ H, t ∈ [0, T ], ω ∈ Ω, and the growth conditions:

‖F (t, ω; x)‖2 + ‖B(t, ω; x)‖2
L2

≤ C(1 + |x|2)

for x ∈ H, t ∈ [0, T ], ω ∈ Ω. Here PT is a predictable σ-field on [0, T ] × Ω and

L2 = L2(H1, H) is the space of all Hilbert-Schmidt operators from H1 = Q
1
2 H into

H , where inner product in H1 is defined by 〈Q 1
2 u, Q

1
2 v〉H1 = 〈u, v〉H.
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We introduce the notion of a mild regularized solution to the semi-linear problem

and investigate the existence and uniqueness of such solutions.

2. REGULARIZED SEMIGROUPS

2.1. Definitions and properties of regularized semigroups, k-convoluted

semigroups and R-semigroups.

Definition 2.1. Let A be a closed linear operator and R(t), t ≥ 0, be bounded linear

operators on a Banach space H .

A strongly continuous family of bounded linear operators S :=
{
S(t), t ∈ [0, τ)

}
,

τ ≤ ∞, is called a regularized (R-regularized) semigroup with generator A if

S(t)Aξ = AS(t)ξ for ξ ∈ dom A

and

S(t)ξ = A

∫ t

0

S(s)ξds + R(t)ξ for ξ ∈ H . (2.1)

Semigroup S is called exponentially bounded if ‖S(t)‖ ≤ Meωt, t ≥ 0, for some M > 0

and ω ∈ R. We say that S is local if τ < ∞.

Let k be a continuous real valued function. If R(t) = I
∫ t

0
k(s)ds, then S is called

a k-convoluted semigroup (see, for example, [2, 3]).

If operator A is densely defined and R(t) ≡ R, where R is an invertible bounded

linear operator with dense range, then S is called an R-semigroup.

Note that if k(t) = tn−1/(n − 1)! , then k-convoluted semigroup is an n-times

integrated semigroup. If R = I, then R-semigroup is a semigroup of class C0.

Usually (see [5, 17]) R-semigroups are introduced as a strongly continuous family

of bounded operators satisfying the R-semigroup relation:

(R1) S(t + s)R = S(t)S(s), s, t, s + t ∈ [0, τ), S(0) = R,

with infinitesimal generators:

Gf := lim
t→0

S(t)R−1 − I

t
f , dom G =

{
f ∈ ran R : ∃ lim

t→0

S(t)R−1 − I

t
f

}
,

Zf := R−1 lim
t→0

S(t) − R

t
f , dom Z =

{
f ∈ H : lim

t→0

S(t) − R

t
f ∈ ranR

}
.

(In [5, 17] such semigroups are called C-semigroups. In order to avoid confusion with

C0-semigroups we use the term R-semigroups.)

The following result is due to the connection between the R-semigroup relation

(R1) and the homogeneous Cauchy problem (1.2).
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Proposition 2.2. Let A be a densely defined closed linear operator on a Banach

space H. Then a strongly continuous operator-family {S(t) ∈ L(H), t ∈ [0, τ)} is an

R-semigroup with generator A if and only if it satisfies relation (R1). In this case

A = G.

This proposition clearly gives us an equivalent definition of an R-semigroup. The

corresponding semigroup relation for k-convoluted semigroups [3]:

(k1) S(t)S(s) =
∫ t+s

s
k(t + s− r)S(r) dr−

∫ t

0
k(t + s− r)S(r) dr, t, s, t + s ∈ [0; τ),

generally is not used as their definition.

We note that defining semigroups via relations (R1), (k1) emphasizes the struc-

tural properties of semigroups. On the other hand, Definition 2.1 shows the con-

nection between a regularized semigroup and a Cauchy problem with operator A

being the generator of this semigroup. For example, if S is an R-semigroup, then

u(·) = S(·)ξ, ξ ∈ dom A, is a solution to (1.2) with the initial value u(0) = Rξ.

The following result on adjoint regularized semigroups will be useful for studying

stochastic Cauchy problems.

Theorem 2.3. Let A be the generator of an R-regularized semigroup {S(t), t ∈ [0, τ)}
on a Hilbert space H. Suppose that family {R(t)} is strongly differentiable and

dom A = H. Then the {S∗(t), t ∈ [0, τ)} is an R∗-regularized semigroup on H with

generator A∗. If operators R(t) are invertible and with dense ranges, then adjoint

operators R∗(t) have the same properties.

Proof. Firstly, we note that since operators R(t) and S(t) are bounded for each t, then

their adjoint operators R∗(t) and S∗(t) are bounded too. Secondly, since A a closed

densely defined operator, then it is well-known (see [1], for example) that operator

A∗ is closed and domA∗ = H .

Next we show that the family {S∗(t), t ∈ [0, τ)} forms an R∗-regularized semi-

group with the generator A∗. The commutativity of operators S∗(t) with A∗ on

dom A∗ follows from the commutativity of S(t) with A.

We need to prove that family {S∗(t), t ∈ [0, τ)} is strongly continuous in t and

the following equality

S(t)∗y − R∗(t)y =

∫ t

0

S∗(s)A∗y ds, y ∈ dom A∗ . (2.2)

Due to continuity of the scalar product, equation (2.1) implies

〈S(t)f − R(t)f, y〉 = 〈f, S(t)∗y − R∗(t)y〉 = 〈
∫ t

0

S(s)Af ds, y〉 (2.3)

=

∫ t

0

〈AS(s)f, y〉ds =

∫ t

0

〈S(s)f, A∗y〉ds
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for each y ∈ dom A∗ and f ∈ H = dom A. Then we have

d

dt
〈f, S∗(t)y〉 = lim

∆t→0

〈
f,

S∗(t + ∆t) − S∗(t)

∆t
y

〉
(2.4)

= 〈f, S∗(t)A∗y〉 + 〈R′(t)f, y〉
= 〈S(t)f, A∗y〉 + 〈R′(t)f, y〉, f ∈ H, y ∈ dom A∗,

which implies weak convergence of

S∗(t + ∆t) − S∗(t)

∆t
y

as ∆t → 0. Hence for any t ∈ [0, τ) and y ∈ domA∗

∥∥∥∥
S∗(t + ∆t) − S∗(t)

∆t
y

∥∥∥∥

is uniformly bounded for all ∆t such that t + ∆t ∈ [0, τ1], τ1 < τ . Therefore

‖S∗(t + ∆t)y − S∗(t)y‖ → 0 for y ∈ dom A∗ as ∆t → 0 .

Since norms ‖S∗(t + ∆t)‖ = ‖S(t + ∆t)‖ are uniformly bounded for t + ∆t ∈ [0, τ1],

τ1 < τ , then by the Banach-Steinhaus theorem, S∗(t)y is continuous in t for any

y ∈ H = dom A∗.

Now strong continuity of S∗(s), s ∈ [0, τ), and equality (2.3) imply

〈f, S(t)∗y − R∗(t)y〉 =

∫ t

0

〈f, A∗S∗(s)y〉 (2.5)

=

〈
f,

∫ t

0

S∗(s)A∗y

〉
, f ∈ H, y ∈ dom A∗ ,

which proves (2.2).

Finally, we show that operators R∗(t), t ∈ [0, τ), are invertible and have dense

ranges if the operators R(t) are invertible with dense ranges. For any bounded

operator R we have the equality (ker R)⊥ = ran R∗. If R(t) is invertible, then

ker R(t) = {0}, and therefore ranR∗(t) = H . In addition,

(ker R∗(t))⊥ = ran R∗∗(t) = H ,

and hence R∗(t) is invertible.

We finish this section with a remark that although k-convoluted semigroups and

R-semigroups share a lot of common properties as special cases of R-regularized

semigroups, they have different spectral properties. The generator of a k-convoluted

semigroup has a resolvent R(λ), λ ∈ Λ. In the local case the resolvent exists in the

region Λ = ΛM
α, γ, β = {λ ∈ C : ℜλ > αM(γ|λ|) + β} and satisfies the estimate:

‖R(λ)‖ ≤ CeβM(γ|λ|), λ ∈ ΛM
α, γ, β, (2.6)
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where function M and parameters α, γ, β depend on k and τ . The inverse result

is also true: this resolvent estimate implies the existence of a local k-convoluted

semigroup {S(t), t ∈ [0, τ)} with k and τ depending on the estimate parameters.

Theorem 2.4. [3, 12] Let M(s), s ≥ 0, be a positive function increasing as s → ∞
and its growth doesn’t exceed sp, p < 1. Let the resolvent of A satisfies (2.6) with

some parameters γ, α, β. Then A generates a local k–convoluted semigroup {S(t), t ∈
[0, δ−β

α
)} with k whose Laplace transform satisfies the condition

|k̃(λ)| = O|λ|→∞
(
e−δM(γ|λ|)) , δ > β. (2.7)

In contrast to k-convoluted semigroups, the generator of an R-semigroup gener-

ally has no resolvent. The notion of a regularized resolvent is usually used in this

case.

2.2. Examples of regularized semigroups and their generators. We now give

some examples of k-convoluted semigroups and R-semigroups and their generators,

in particular, semigroups generated by differential operators. More examples can be

found in [1, 12, 16].

Example 2.5. (A differential operator-matrix that can generate a semigroup of class

C0, a convoluted (integrated) semigroup or an R-semigroup)

Let m ∈ N0 = N ∪ {0}. Consider the following system of differential equations





∂u1(x; t)

∂t
=

∂2u1(x; t)

∂x2

∂u2(x; t)

∂t
= im

∂mu1(x; t)

∂xm
+

∂2u2(x; t)

∂x2

x ∈ R, t ≥ 0 , (2.8)

with the initial conditions u1(x; 0) = ξ1(x), u2(x; 0) = ξ2(x), x ∈ R. The problem

can be written in the abstract form (1.2):

u′(t) = Au(t), t ≥ 0, u(0) = ξ,

in the Hilbert space H = L2(R) × L2(R), where

u =

(
u1

u2

)
, A =




d2

dx2
0

im
dm

dxm

d2

dx2


 , ξ =

(
ξ1

ξ2

)
.



ABSTRACT STOCHASTIC PROBLEMS 201

Applying Fourier transform to the equation and initial data we obtain the Cauchy

problem





dũ1(s; t)

dt
= −s2 ũ1(s; t)

dũ2(s; t)

dt
= sm ũ1(s; t) − s2 ũ2(s; t)

, s ∈ C, t ≥ 0,

{
ũ1(s; 0) = ξ̃1(s)

ũ2(s; 0) = ξ̃2(s)
.

(2.9)

We are looking for a solution of (2.9) of the form ũ(s; t) = etA(s)ξ̃(s), where

etA(s) =

∞∑

k=1

tkAk(s)

k!
and A(s) :=

(
−s2 0

sm −s2

)
.

We obtain

ũ(s; t) = etA(s) ξ̃(s) =

(
e−ts2

0

tsm e−ts2
e−ts2

)(
ξ̃1(s)

ξ̃2(s)

)
= e−ts2

(
1 0

tsm 1

)(
ξ̃1(s)

ξ̃2(s)

)
.

The solution of the original problem (2.8) is given by the following convolution:

u(x; t) = G(x; t) ∗ ξ(x) =: U(t)ξ, x ∈ R, t ≥ 0 , (2.10)

where

G(x; t) =




1

2
√

πt
e−

x2

4t 0

im

2

√
t

π

∂m

∂xm

(
e−

x2

4t

)
1

2
√

πt
e−

x2

4t




is the inverse Fourier transform of eA(s)t and operators U(t) act from dom U(t) ⊂ H

to H .

Due to the Plancherel theorem we have ‖f‖ = ‖f̃‖ for all f ∈ H . Hence bound-

edness of operators U(t), t ≥ 0, and (λI − A)−n, λ ∈ Λ ⊂ C, can be expressed in

terms of estimates for eA(·)t and (λI − A(·))−n. In [12, 16] the following estimates

were obtained for the operator-matrix
∥∥∥∥e

−t(1+x2)

(
1 0

−tx2γ 1

)∥∥∥∥ ≤ max{e−t; γγt1−γe−t−γ}

in spaces Lp(R)×Lp(R), p ≥ 1. These imply that for any m ∈ N0 solution operators of

problem (2.8) form a strongly continuous family
{
U(t), t > 0

}
of bounded operators

on H = L2(R) × L2(R).

Further,

(a): if 0 ≤ m ≤ 2, then operators U(t) are bounded for all t ≥ 0 and the following

estimates ∥∥∥∥
1

n!
· dn

dλn
(λI − A)−1f

∥∥∥∥ ≤ 2

λn+1
‖f‖, n ∈ N0, f ∈ H,
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guarantee that {U(t), t ≥ 0} is a semigroup of class C0;

(b): if m > 2, then ‖U(t)‖ ≤ Ct1−m/2, i.e. U is a semigroup of growth order

α = m/2 − 1 and hence is an R-semigroup with R = (λI − A)−n, n = [α] + 1;

in particular:

(c): for m = 3 the singularity of U(t) at t = 0 is integrable, and A generates

an (exponentially bounded) 1-time integrated semigroup or, in other words, a

k-convoluted semigroup with k(t) = t. In this case the operators (λI −A)−1 are

bounded for λ > 0, and, therefore, the resolvent of A is defined;

(d): for m ≥ 4 the operators U(t) may have a non-integrable singularity at t = 0

and operators (λI − A)−n, in general, are not powers of the resolvent.

Example 2.6. (A local R-semigroup)

Let H = L2(O), O =
{
x ∈ RN ; 0 < xk < ak , k = 1, . . . , N

}
. Define

Au = △u, u ∈ dom A := H2(O) ∩ H1
0 (O), (2.11)

where the Laplace operator △ is understood in the sense of distributions. The spec-

trum of A consists of its eigenvalues

Sp(A) =

{
−

N∑

i=1

k2
i π

2

a2
i

; ki ∈ N

}

with eigenfunctions

wk1,k2,...,kN
=

N∏

i=1

(
2

ai

)1/2(
sin

kiπxi

ai

)
.

To simplify notation, we denote by {−µk}∞k=1 and {ek}∞k=1 an ordering of the eigenval-

ues and eigenbasis of A, respectively. Operator A generates a semigroup {U(t), t ≥ 0}
of class C0 on L2(O) given by

U(t)ξ =
∞∑

k=1

〈ξ, ek〉L2(O)e
−µktek. (2.12)

Hence U(·)ξ, ξ ∈ dom A, is a solution of the well-posed Cauchy problem (1.2) for the

heat equation. The ill-posed Cauchy problem with operator −A :

u′(t) = −Au(t), t ∈ [0, T ], u(0) = f,

corresponds to the ill-posed backward Cauchy problem for the heat equation, and −A

is the generator of the following local R-semigroups :

S1(t)f =

∞∑

k=1

〈f, ek〉eµkt−αµn
k
T ek, S2(t)f =

∞∑

k=1

〈f, ek〉eµkt
(
γ + eµkT

)−1
ek, t ≤ T,

(2.13)
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with the corresponding bounded and invertible operators

R1f =
∞∑

k=1

〈f, ek〉e−αµn
k
T ek, and R2f =

∞∑

k=1

〈f, ek〉
(
γ + eµkT

)−1
ek,

n ∈ N, α, γ > 0, f ∈ H . Note that these semigroups are defined on [0, T ]. Typically,

they are used for regularization of ill-posed differential-operator problems (see [12, 16]

for details).

Example 2.7. (An exponentially bounded convoluted (integrated) semigroup)

Consider a Cauchy problem for the second order equation

w′′(t) = Aw(t), t ≥ 0, w(0) = ξ1, w′(0) = ξ2, (2.14)

in a Banach space Y . Suppose that A generates a family of cosine and sine operator-

functions {C(t), S(t), t ∈ R} (see, for example, [12]). The Laplace operator from

Example 2.6 is one of the typical examples of such an operator. In this case problem

(2.14) is well-posed and its solution has the form

w(t) = C(t)ξ1 + S(t)ξ2, ξ1, ξ2 ∈ dom B, t ≥ 0 .

The change of variables

u(t) =

(
w(t)

w′(t)

)
, A =

(
0 I

A 0

)
, ξ =

(
ξ1

ξ2

)
,

reduces problem (2.14) to the first order abstract Cauchy problem (1.2) in the space

X = Y × Y . Its solution has the form

u(t) =

(
C(t)ξ1 + S(t)ξ2

C
′(t)ξ1 + C(t)ξ2

)
=: U(t)ξ, t ≥ 0.

The introduced operators

U(t) =

(
C(t) S(t)

C
′(t) C(t)

)
, t ≥ 0,

are not defined on the whole of X, since function C(·) is not differentiable on the

whole of Y . However, the integrated operators

S(t) =

(
S(t)

∫ t

0
S(τ)dτ

C(t) − I S(t)

)
, t ≥ 0,

are bounded on X. Using properties of C, S-functions, it is not difficult to verify that

family {S(t), t ≥ 0} is a k-convoluted semigroup with k(t) = t and generator A, i.e.

S is an integrated semigroup.

Example 2.8. (A k-convoluted semigroup)
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Consider the differential equation

∂u(x; t)

∂t
= −∂2u(x; t)

∂x2
+ i

∂4u(x; t)

∂x4
, x ∈ R, t ≥ 0,

with the initial condition u(x; 0) = ξ(x). The problem may be written in the abstract

form (1.2) with A = − ∂2

∂x2 + i ∂4

∂x4 in space L2(R). Applying the Fourier transform we

obtain the Cauchy problem

dũ(s; t)

dt
= s2ũ(s; t) + is4 ũ(s; t), s ∈ R, t ≥ 0, ũ(s; 0) = ξ̃(s),

and its solution ũ(s; t) = et(s2+is4)ξ̃(s).

We have Sp(A) = {λ = s2 + is4, s ∈ R}. The resolvent of A exists for λ 6∈ Sp(A)

and satisfies (see [3] for details) the estimate ‖R(λ)‖ = Oλ→∞(|λ|/ℜλ). Hence by

Theorem 2.4, A is the generator of a k-convoluted (but not an integrated!) semigroup

S(t)=U(t)∗k(t), where as in (2.10), U(t)ξ = G(·, t)∗ξ(·). Here G is the inverse Fourier

transform of et(s2+is4), s ∈ R, and k is a continuous function such that its Laplace

transform k̃ satisfies the growth condition (2.7). The convolution G∗ξ and the Fourier

transform are well-defined in an appropriate space of generalized functions (see [8]).

3. REGULARIZED SOLUTIONS OF ABSTRACT STOCHASTIC

CAUCHY PROBLEMS

3.1. Construction of regularized solutions to the linear stochastic Cauchy

problem with Q-Wiener process. Let (Ω,F , P ) be a probability space with filtra-

tion {Ft, t ≥ 0}, and let H be a separable Hilbert space. Let Q be a linear symmetric

nonnegative trace-class operator on H , then there is an orthonormal basis {ej} in H

such that Qej = λjej .

Definition 3.1. [4] An H-valued stochastic process W = {W (t), t ≥ 0} is called a

Q-Wiener process, if

(W1): W (0) = 0;

(W2): W has continuous trajectories;

(W3): W has independent increments;

(W4): the distribution law of [W (t) − W (s)] is N (0, (t− s)Q), 0 ≤ s ≤ t.

For each t, the Q-Wiener process W has the following expansion in H , (see [4]

for details):

W (t) =
∞∑

j=1

√
λjβj(t)ej ,

where βj = 1√
λj
〈W, ej〉 are independent Brownian motions.
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Consider a stochastic Cauchy problem in the setting that extends the Itô approach

to the infinitely-dimensional case:

dX(t) = AX(t)dt + BdW (t), t ∈ [0, T ], X(0) = ξ . (3.1)

Here A is the generator of a regularized semigroup {S(t), t ∈ [0, τ)} in H , {W (t), t ≥
0} is an H-valued Q-Wiener process, B is a bounded linear operator in H , and ξ is

a F0-measurable H-valued random variable.

Definition 3.2. Let A be the generator of a regularized semigroup and W be a Q-

Wiener process in H . Then predictable H-valued process X = {X(t), t ∈ [0, T ]}, is a

weak solution of (3.1), if

(a):
∫ t

0
‖X(s)‖H ds < ∞ P -a.s.;

(b): for each y ∈ dom (A∗) the following equation holds P -a.s.:

〈X(t), y〉 = 〈ξ, y〉 +

∫ t

0

〈X(s), A∗y〉ds + 〈BW (t), y〉 , t ∈ [0, T ] .

We say that process X is a weak R-regularized solution of (3.1) if

〈X(t), y〉 = 〈R(t)ξ, y〉 +

∫ t

0

〈X(s), A∗y〉ds +

∫ t

0

〈R(t − s)BdW (s), y〉 , (3.2)

t ∈ [0, T ].

Let H1 := Q
1
2 H endowed with the inner product

〈Q 1
2 u, Q

1
2 v〉H1 = 〈u, v〉H ,

and let L2 := L2(H1, H) be the space of all Hilbert-Schmidt operators from H1 into

H . Note that L2 is a separable Hilbert space with the norm

‖Ψ‖2
L2

:= trΨQ
1
2 Q∗ 1

2 Ψ∗ =

∞∑

j=1

‖ΨQ
1
2 ej‖2 .

Consider an L2-valued process Ψ(t), t ∈ [0, T ]. Then its stochastic integral
∫ t

0

Ψ(s) dW (s), t ∈ [0, T ]

is defined under the condition

E

∫ t

0

‖Ψ(r)‖2
L2

dr < ∞ . (3.3)

As in the case of semigroups of class C0 ([4]), we can define a stochastic convo-

lution for a regularized semigroup.

Definition 3.3. Let {S(t), t ∈ [0, τ)} be a regularized semigroup such that
∫ t

0

‖S(r)B‖2
L2

dr < ∞, (3.4)
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then the process WA = {
∫ t

0
S(t− s)B dW (s), t ∈ [0, τ)} is called a stochastic convo-

lution.

Theorem 3.4. Let A be the generator of an R-regularized semigroup {S(t), t ∈ [0, τ)}
and {W (t), t ≥ 0} be a Q-Wiener process. Suppose that operator A is densely defined

and that condition (3.4) is fulfilled. Then for each F0-measurable ξ ∈ H,

X(t) = S(t)ξ + WA(t) , t ∈ [0, T ] ,

is a weak R-regularized solution of (3.1). If S is a k-convoluted or R-semigroup, the

solution is unique.

Proof. Firstly we show that the process Sξ = {S(t)ξ, t ∈ [0, T ]} is a weak R-

regularized solution of the corresponding homogeneous equation. Process Sξ is clearly

Ft-measurable, integrable and predictable. Let y ∈ domA∗, then
∫ t

0

〈S(s)ξ, A∗y〉ds = 〈
∫ t

0

S(s)ξ ds, A∗y〉 = 〈A
∫ t

0

S(s)ξ ds, y〉

= 〈S(t)ξ − R(t)ξ, y〉 , t ∈ [0, T ] .

Now consider the stochastic convolution WA. It is not difficult to show that the

process WA is predictable (see [4] for details). Due to condition (3.4), the function∫ t

0
‖S(t − s)B‖2

L2
ds is continuous in t ∈ [0, T ] and, therefore, integrable

∫ r

0

∫ t

0

‖S(t−s)B‖2
L2

ds dt =

∫ r

0

∫ t

0

‖S(s)B‖2
L2

dsdt =

∫ r

0

E

∫ t

0

‖S(s)B‖2
L2

dsdt < ∞ ,

r ∈ [0, T ]. Thus
∫ T

0
‖WA(t)‖2

H dt < ∞ P -a.s.

Let y ∈ dom A∗, then taking into account properties of {S∗(t), t ∈ [0, τ)} from

Theorem 2.3 and continuity of the scalar product, we have
∫ t

0

〈
∫ s

0

S(s − r)B dW (r), A∗y〉ds =

∫ t

0

∫ s

0

〈S(s − r)B dW (r), A∗y〉ds

=

∫ t

0

∫ s

0

〈B dW (r), S∗(s − r)A∗y〉ds =

∫ t

0

〈B dW (r),

∫ t

r

S∗(s − r)A∗y ds〉

=

∫ t

0

〈B dW (r),

∫ t−r

0

S∗(σ)A∗y dσ〉 =

∫ t

0

〈B dW (r), S∗(t − r)y − R∗(t − r)y〉

=

∫ t

0

〈S(t − r)B dW (r), y〉 −
∫ t

0

〈B dW (r), R∗(t − r)y〉

= 〈
∫ t

0

S(t − r)B dW (r), y〉 − 〈
∫ t

0

R(t − r)B dW (r), y〉 , t ∈ [0, T ].

So WA(t) satisfies (3.2) with ξ = 0 and hence X(t) = S(t)ξ + WA(t), t ∈ [0, T ], is a

weak R-regularized solution of (3.1).

Similarly to the case of strongly continuous semigroups (see [4, 18]), the proof of

uniqueness is based on an auxiliary equality. Suppose that X is a weak R-regularized
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solution of (3.1) with ξ = 0 and y(·) ∈ C1([0, T ]; dom A∗), then the following equality

holds for X

〈X(t), y(t)〉 =

∫ t

0

〈X(s), y′(s) + A∗y(s)〉ds

+

∫ t

0

〈∫ s

0

R′(s − r) B dW (r), y(s)

〉
ds +

∫ t

0

〈B dW (s), R∗(0)y(s)〉 .

Let y(s) = S∗(t−s)y0, y0 ∈ dom A∗, then due to properties of adjoint regularized

semigroups,

〈X(t), R∗(0)y0〉 =

∫ t

0

〈X(s),−R∗′(t − s)y0〉ds (3.5)

+

∫ t

0

〈S(t − s)

∫ s

0

R′(s − r) B dW (r) ds , y0〉

+

∫ t

0

〈S(t − s) B dW (s), R∗(0)y0〉 .

If semigroup S in (3.5) is an R-semigroup (i.e. R(t) = R and R is invertible), we

obtain

〈RX(t), y0〉 =

〈∫ t

0

RS(t − r)B dW (r), y0

〉
,

and since dom A∗ = H ,

X(t) =

∫ t

0

S(t − r)B dW (r) .

If S is a k-convoluted semigroup (i.e. R′(t) = k(t), R(0) = 0), we have
〈∫ t

0

k(t − s)X(s)ds, y0

〉
=

〈∫ t

0

S(t − s)

∫ s

0

k(s − r) B dW (r) ds , y0

〉

for any solution of (3.2) with ξ = 0. In particular, for X = WA, taking into consider-

ation dom A∗ = H , we obtain the equality
∫ t

0

k(t − s)

∫ s

0

S(s − r) B dW (r) ds =

∫ t

0

S(t − s)

∫ s

0

k(s − r) B dW (r) ds .

Hence ∫ t

0

k(t − s)X(s)ds =

∫ t

0

k(t − s)

∫ s

0

S(s − r) B dW (r) ds

and therefore

X(t) =

∫ t

0

S(t − r)B dW (r) + η(t) ,

where η is a solution of k ∗ η = 0. Since k̃ 6= 0, we have η = 0.

Remark 3.5. We also have the following equalities for the mathematical expectation

and the covariation operator

E[X(t)] = R(t)ξ, Cov[X(t)] = S(t)Cov[ξ]S∗(t) +

∫ t

0

[S(t − s)B]Q[S(t − s)B]∗ds ,

t ∈ [0, T ].
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Remark 3.6. If the regularized semigroup in Theorem 3.4 is an R-semigroup and

we additionally assume that
∫ t

0

‖S(r)R−1B‖2
L2

dr < ∞ , (3.6)

then the process

S(t)R−1ξ +

∫ t

0

S(t − s)R−1BdW (s), t ∈ [0, T ],

is a weak solution of (3.1). Condition (3.6) is clearly more restrictive than (3.4) since

the solution operators U(t) = S(t)R−1 are not bounded in this case.

3.2. Regularized solutions to the linear stochastic Cauchy problem with

cylindrical Wiener process. A cylindrical H-valued Wiener process is usually

defined by the following formal expansion in H (see, for example, [4]):

W (t) =

∞∑

j=1

βj(t)ej .

This series is not convergent in L2(Ω; H). However 〈BW (t), y〉, y ∈ H, is a well

defined process and the stochastic convolution

WA(t) =
∞∑

j=1

∫ t

0

S(t − s)Bejdβj(t)

is convergent in L2(Ω; H) if condition (3.4) is satisfied for Q = I. We have the

following result for the Cauchy problem with a cylindrical Wiener process.

Theorem 3.7. Let A be the generator of an R-regularized semigroup {S(t), t ∈ [0, τ)}
and {W (t), t ≥ 0} be a cylindrical Wiener process. Suppose that operator A is densely

defined and that condition (3.4) with Q = I is fulfilled. Then for each F0-measurable

ξ ∈ H,

X(t) = S(t)ξ + WA(t) , t ∈ [0, T ] ,

is a weak R-regularized solution of (3.1). If S is a k-convoluted or R-semigroup, the

solution is unique.

In this case condition (3.4) is naturally more restrictive. For example, the sto-

chastic convolution related to the stochastic heat equation

dtX(t, x) = △xX(t, x)dt + dW (t, x) , t ∈ [0, T ] , x ∈ O ⊆ R
N ,

X(t, x) = 0 , t ∈ [0, T ] , x ∈ ∂O ,

X(0, x) = 0 , x ∈ O ,

exists in L2(Ω; H) only if N = 1 (see Example 5.7 in [4]).
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Now we consider the probability space (S ′(Rd),B(S ′(Rd)), µ), where S ′(Rd) is

the space of tempered distributions on Rd, µ is the (unique) probability measure on

(S ′(Rd),B(S ′(Rd)) satisfying the condition
∫

S′(Rd)

ei〈ω,φ〉dµ(ω) = e
− 1

2
‖φ‖2

L2(Rd)

and 〈ω, φ〉 denotes the action of ω ∈ S ′(Rd) on φ ∈ S(Rd).

Consider spaces of H-valued stochastic distributions S(H)−ρ, ρ ∈ [0, 1]:

S(H)1 ⊂ S(H)ρ ⊂ S(H)0 ⊂ L2(S
′; H) ⊂ S(H)−0 ⊂ S(H)−ρ ⊂ S(H)−1 .

As illustrated in [7, 14], the cylindrical H-valued Wiener process W and all its

derivatives belong to the space S(H)−0.

The generalized stochastic convolution is defined in S(H)−0 as a Hitsuda-Skorohod

integral ∫ t

0

S(t − s)BδW (s) =

∞∑

j=1

∫ t

0

S(t − s)Bejδβj(s) .

Note that the condition (3.4) is not needed for existence of the generalized sto-

chastic convolution. Similarly to the case of the semigroups of class C0 (see [7, 14]),

we arrive at the following result.

Theorem 3.8. Suppose that a densely defined operator A is the generator of an

R-regularized semigroup {S(t), t ∈ [0, τ)} on H, operator-function R(t) is strongly

continuously differentiable in t and R(0) = 0 or R(t) ≡ R. If ξ ∈ S(H)−1, then the

process

X(t) = S(t)ξ +

∫ t

0

S(t − s)BδW (s) , t ∈ [0, T ] ,

is a unique continuously differentiable S(H)−1-valued solution to the equation

X(t) = R(t)ξ + A

∫ t

0

X(s)ds +

∫ t

0

R(t − s)BδW (s), t ∈ [0, T ] .

3.3. Semi-linear stochastic Cauchy problems in Hilbert spaces. Consider a

semi-linear stochastic Cauchy problem

dX(t) =
[
AX(t) + F (t, X)

]
dt + B(t, X)dW (t), X(0) = ξ, (3.7)

where A is the generator of a regularized semigroup {S(t), t ∈ [0, τ)} in a Hilbert

space H and W is an H-valued Q-Wiener process.

Suppose that F : [0, T ]×Ω×H → H and B : [0, T ]×Ω×H → L2 are measurable

mappings from ([0, T ]×Ω×H, PT×B(H)) to (H, B(H)) and (L2, B(L2)) respectively,

and that they satisfy the Lipschitz conditions:

‖F (t, ω; x) − F (t, ω; y)‖+ ‖B(t, ω; x) − B(t, ω; y)‖L2 ≤ C |x − y| (3.8)
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for x, y ∈ H, t ∈ [0, T ], ω ∈ Ω, and the growth conditions:

‖F (t, ω; x)‖2 + ‖B(t, ω; x)‖2
L2

≤ C(1 + |x|2) (3.9)

for x ∈ H, t ∈ [0, T ], ω ∈ Ω. Here PT is a predictable σ-field on [0, T ] × Ω.

We now introduce the notion of a mild regularized solution to a semi-linear prob-

lem.

Definition 3.9. An H-valued predictable process X = {X(t), t ∈ [0, T ]}, is a mild

solution of (3.7), if
∫ t

0
‖X(τ‖2dτ < ∞ P -a.s. and

X(t) = U(t)ξ +

∫ t

0

U(t − s)F (s, X)ds +

∫ t

0

U(t − s)B(s, X)dW (s),

where U(t), t ∈ [0, T ], are solving operators for the homogeneous Cauchy problem.

We say that process X is a mild regularized solution of (3.7) if

X(t) = S(t)ξ +

∫ t

0

S(t − s)F (s, X)ds +

∫ t

0

S(t − s)B(s, X)dW (s). (3.10)

Using the design of the proof of Theorem 3.4 we can show that (3.10) is a weak

solution to the following regularized Cauchy problem:

X(t) = R(t)ξ + A

∫ t

0

X(s)ds +

+

∫ t

0

R(t − s) F (s, X(s))ds +

∫ t

0

R(t − s) B(s, X(s))dW (s).

Theorem 3.10. Let operator A be the generator of a regularized semigroup {S(t), t ∈
[0, τ)} in a Hilbert space H, W be an H-valued Q-Wiener process, F : [0, T ]×Ω×H →
H and B : [0, T ] × Ω × H → HL2 satisfy the Lipschitz and growth conditions (3.8)–

(3.9). Then a mild regularized solution to (3.7) exists and is unique.

Proof. Firstly we note that both integrals in (3.10) are well defined and similarly to

the case of semigroups of class C0 [4], X(t) is a predictable process. Let Hp, p ≥ 2,

be the Banach space of all H-valued predictable processes Y with the norm

‖Y ‖p =
(

sup
t∈[0,T ]

E‖Y (t)‖p
)1/p

.

Define the following mappings on Hp :

K1(Y ) :=

∫ t

0

S(t − s)F (s, Y (s))ds, K2(Y ) :=

∫ t

0

S(t − s)B(s, Y (s))dW (s),

and K(Y ) := S(t)Y (0) + K1(Y ) + K2(Y ).
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Due to the growth condition (3.9) we have the following estimates for K1:

‖K1(Y )‖p
p ≤ Mp

E

[ ∫ T

0

‖F (s, Y (s))‖ds
]p

≤ T p−1Mp
E

[ ∫ T

0

‖F (s, Y (s))‖pds
]

≤ 2p/2−1T p−1MpCp
E

[ ∫ T

0

(
1 + ‖Y (s)‖p

)
ds
]

≤ 2p/2−1(TMC)p
(
1 + ‖Y ‖p

p

)
,

where M = supt∈[0,T ] ‖S(t)‖. Hence K1 acts from Hp to Hp. The corresponding

estimates for K2

‖K2(Y )‖p
p ≤ C

(
1 + ‖Y ‖p

p

)

hold due to the equality

E

[
sup

s∈[0,t]

∫ t

0

Ψ(τ)dW (τ)|2r
]
≤ C E

[ ∫ t

0

‖Ψ(τ)‖2
L2

ds
]r

, t ∈ [0, T ] ,

that holds for any r ≥ 1 and for arbitrary L2-valued predictable process Ψ (see [4]).

Hence K2 acts from Hp to Hp as well. Due to the Lipschitz condition (3.8), we obtain

the following estimates:

‖K(Y1) − K(Y2)‖p ≤ M‖Y1 − Y2‖p + ‖K1(Y1) − K1(Y2)‖p + ‖K2(Y1) − K2(Y2)‖p

≤ CM,T‖Y1 − Y2‖p .

Application of the fixed point theorem for contraction mappings proves the existence

of a mild regularized solution to (3.7). The proof of uniqueness is similar to one in

[4, Theorem 7.4] .
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