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1. INTRODUCTION

Dynamics of flow in porous media has direct application in recovery of under-

ground resources like oil, gas and water. Deterministic models based on Darcy’s law

or more generalized versions of such laws are well known [1,2,5] and recently such

models have been used with controls included for optimal extraction of underground

water resources from aquifers. In this paper, we present a stochastic model which

takes care of uncertainties in the recharge process that feeds the system. We prove

existence and regularity properties of weak solutions and discuss some control prob-

lems. For continuity of presentation, Sections 2 and 3 are briefly devoted to model

description and some recent results on existence of weak solutions. The stochastic

model is introduced in Section 4. In Section 5, we present the main results of this

paper.

2. BASIC DETERMINISTIC SYSTEM MODEL

Let Σ denote the porous media which we assume to be an open, bounded set with

piecewise smooth boundary ∂Σ. Let ρ(t, ·) denote the spatial distribution of fluid in
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Σ at time t ≥ 0. The temporal and spatial evolution of the density ρ is governed by

a nonlinear partial differential equation of the form

(∂/∂t)(cρ) −△Φ(ρ) = f on I × Σ, (2.1)

Φ(ρ) = 0 on I × ∂Σ, (2.2)

ρ(0) = ρ0, ξ ∈ Σ, (2.3)

where c(ξ) is a scalar valued function defined on Σ and taking values 0 ≤ c(ξ) ≤ 1,

representing porosity of the medium. See [1, 2] for more on the model.

Flux of Vector flow Rate: In general Φ is a monotone increasing function of density

ρ. The flux of vector flow rate J is given by J ≡ ▽Φ. For simplicity, we have assumed

that Φ is independent of the spatial variable ξ ∈ Σ. For porous media, the typical

form of Φ is

Φ(ρ) = βργ, β > 0, γ = 1 + (1/α), 0 < α < ∞,

and the pressure P ≡ F (ρ) = bργ−1, b > 0. The exact expression for Φ is dependent

on Darcy’s law [4,1].

Source Term: The function f ≡ f(t, x), t ≥ 0, x ∈ Σ, is nonnegative and represents

the natural source term giving the rate at which resources are replenished by nature.

Detailed construction of the model based on physical arguments can be found in [1,2]

and the references therein.

Remark 2.1. Since Φ
′

(0) = 0, the system is degenerate parabolic (not strictly par-

abolic). Further, if the set

Σo ≡ {ξ ∈ Σ : c(ξ) = 0}

is nonempty and has positive Lebesgue measure, system (2.1) may change type. It is

elliptic on Σo and parabolic on Σ \ Σo. [See also Remark 3.3].

3. EXISTENCE AND REGULARITY OF SOLUTIONS (Deterministic)

Here we consider deterministic systems and present a brief review of some recent

results from [1,2]. This is useful for the study of stochastic system to follow. Define

the operator:

G ≡ (−△)−1 (3.1)

subject to homogeneous Dirichlet boundary condition. Using this operator, system

(2.1)–(2.3) can be written as an abstract differential equation on a suitable Banach

space,

(d/dt)(G(cρ)) + Φ(ρ) = Gf,

ρ(0) = ρ0. (3.2)
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For this problem, suitable Banach spaces are the Gelfand triple

V →֒ H →֒ V ∗

where H ≡ L2(Σ) and it is identified with its dual,

V ≡ W 1,p
0 (Σ) and V ∗ ≡ W−1,q(Σ),

with q being the conjugate of p, that is, (1/p + 1/q) = 1, and 1 < q ≤ 2 ≤ p < ∞.

Since G is a positive self adjoint operator in H , its square root is well defined and

hence the operator G
1/2
c (ϕ) ≡ G1/2(cϕ) is well defined. We introduce the vector

(function) space W as follows

W ≡ {ρ : G1/2
c ρ ∈ Lp(I, V ) & G1/2

c ρ̇ ∈ Lq(I, V ∗)}.

Furnished with the norm topology, given by

‖ ρ ‖W=‖ G1/2
c ρ ‖Lp(I,V ) + ‖ G1/2

c ρ̇ ‖Lq(I,V ∗),

it is a Banach space and the embedding W →֒ C(I, H) is continuous. The proof of

this embedding is similar to that given in [4, Theorem 1.2.15, p. 27].

In Showalter [5], considering c(ξ) = 1, a simple and elegant proof is given on

page 142, Example 6.6. In [2, Theorem 3.1] we have presented a differ ent and con-

structive proof based on finite dimensional projection and limiting arguments without

assuming c(ξ) = 1. This classical approach is also useful for both approximation and

computation as required for real physical applications.

Theorem 3.1 (Existence & regularity). Consider system (3.2) with the following

assumptions:

(A1): ∃c1 ∈ (0, 1] such that infξ∈Σ c(ξ) = c1.

(A2): Φ : R −→ R is continuous and m-monotone.

(A3): ∃ p ≥ 2 and constants c2 > 0, c3 > 0, such that

(1) : Φ(r)r ≥ c2|r|p and

(2) : |Φ(r)| ≤ c3|r|p−1 ∀ r ∈ R.

Then, for each ρ0 ∈ V ∗ satisfying G
1/2
c ρ0 ∈ H and f ∈ Lq(I, V ∗) satisfying G1/2f ∈

L2(I, H), system (3.2) has a unique weak solution ρ ∈ Lp(I, Lp(Σc)), in the sense

that the following identity

−
∫

I

〈ρ, (d/dt)Gcφ〉dt +

∫

I

< Φ(ρ), φ >V ∗,V dt

= (E1/2
c ρ(0), G1/2

c φ(0))H +

∫

I

〈G1/2f, φ〉V ∗,V dt
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holds for all φ ∈ Lp(I, V ) satisfying G
1/2
c φ̇ ∈ L2(I, H) and φ(T ) = 0. Further, the

solution has the following regularity properties:

{

G1/2
c ρ ∈ Lp(I, V ), G1/2

c ρ̇ ∈ Lq(I, V ∗) & G1/2
c ρ ∈ L∞(I, H) ∩ C(I, H)

}

.

Proof. See [Ref. 2, Theorem 3.1].

Remark 3.2. Recall that the porosity coefficient 0 ≤ c(ξ) ≤ 1. Let

Lp(Σc) ≡
{

ϕ : (measurable) :

∫

Σ

c(ξ)|ϕ(ξ)|p < ∞
}

.

Furnished with norm topology :

‖ ϕ ‖Lp(Σc)=

(
∫

Σ

c(ξ)|ϕ|pdξ

)1/p

.

This is a Banach space and in general Lp(Σ) →֒ Lp(Σc) is continuous. In Theorem 3.1,

we assumed that the porosity coefficient c(ξ), ξ ∈ Σ, is bounded away from zero.

This is used to ensure that Lp(Σc) ∼= Lp(Σ), which, in turn, is used to prove the

regularity of solutions as stated in the Theorem 3.1. It would be interesting to relax

this assumption.

Remark 3.3. Recall the set Σo as introduced in Remark 2.1. On this set the system

is elliptic. Since Φ is strictly monotone, the solution in the elliptic phase is given by

ρ(t, ξ) = Φ−1(Gf)(t, ξ), (t, ξ) ∈ I × Σo

provided the data satisfies the compatibility condition

lim
t↓0

Φ−1(Gf)(t, ξ) = ρ0(ξ), ξ ∈ Σ0.

On the other hand, for physical reasons it is evident that the fluid content of any part

of the medium that has zero porosity must be zero. Hence, the initial condition and

the data f must be identically zero on Σo.

4. STOCHASTIC SYSTEM MODEL

Let (Ω,F ,Ft, t ≥ 0, P ) denote a complete filtered probability space with Ft, t ≥ 0,

being an increasing family of right continuous (having left limits) subsigma algebras

of the sigma algebra F , P is the probability measure defined for any F measurable set

in Ω. Without further notice, we assume that all the random processes introduced

in this paper are Ft adapted. For any F -measurable random variable z, we let

E(z) ≡
∫

Ω
z(ω)P (dω) denote the mathematical expectation of the random variable z.

Let X be any separable Hilbert space and, for any 1 ≤ p ≤ ∞, let Lp(Ω, X) denote

the space of F -measurable X valued random variables whose X norms are p-th power

P integrable. For 1 ≤ p ≤ ∞, we let Lp(I, Lp(Ω, X)) denote the class of stochastic
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processes with values in X and adapted to the filtration Ft, t ≥ 0, satisfying the

integrability condition

E

∫

I

|x(t)|pXdt < ∞.

By virtue of Fubini’s theorem, it is clear that E
∫

I
|x(t)|pX dt =

∫

I
E|x(t)|pX dt. Fur-

nished with the natural norm topology, these are Banach spaces. One particular

Banach space of significant interest is the space L∞(I, Lp(Ω, X)) which is used in the

study of the stochastic system introduced here.

Now, returning to our system model (3.2), it is reasonable to assume that the

recharge process is a stochastic process. It may have a deterministic, as well as a

stochastic component. The recharge process f is a deterministic process. So we must

add a stochastic term. The standard practice is to use Brownian motion. Clearly the

density ρ must always be a nonnegative quantity. So we can not use an additive noise

term. To preserve positivity it has to be multiplicative satisfying some additional

properties. We consider the following model,

(∂/∂t)(cρ) −△Φ(ρ) = f + σ(ρ)Ẇ , I × Σ, (4.1)

Φ(ρ) = 0, for (t, ξ) ∈ I × ∂Σ, (4.2)

ρ(0, ξ) = ρ0(ξ), for ξ ∈ Σ, (4.3)

where σ(ρ)Ẇ is the multiplicative term with Ẇ denoting the space time white noise,

that is, the distributional derivative of the space time Brownian motion W (t, ξ), t ≥ 0,

ξ ∈ Σ. For Hilbert space canonical representation, we shall write W (t), t ≥ 0, as the

H ≡ L2(Σ) valued Brownian motion adapted to Ft having mean zero, E(W (t), h) =

0, h ∈ H , and covariance operator Q, given by

E(W (t), h)2
H = t(Qh, h), h ∈ H,

where Q is a positive self adjoint operator in H . Since Brownian motion is not

differentiable in the classical sense, we shall soon rewrite this system in the canonical

form involving stochastic Ito integral.

In order to preserve positivity of ρ, we can take any σ satisfying the following

properties:

Basic properties of σ(·) :

(S1): σ : R −→ R,

(S2): σ(r) ≥ 0 for r ≥ 0, σ(r) = 0 for r ≤ 0,

(S3): sup{σ(r), r ∈ R} ≤ b < ∞ and Lipschitz with Lipschitz constant K.

Under the assumptions on Φ and σ, given that f ≥ 0 and ρ0 ≥ 0, it is easy to

verify that every solution of the system (4.1)–(4.3), if one exists, is nonnegative. We

consider the Nemytski operator associated with the map σ and denote this by the

same symbol. Under the given assumption on σ, as a function, it is easy to verify that
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σ, considered as the Nemytski operator, maps H to L(H). Indeed, for any ν ∈ H

and h ∈ H , it is evident that |σ(ν)h|H ≤ b|h|H and σ : H −→ L(H) is Lipschitz

continuous. Using this Nemytski operator σ and the Dirichlet map G we can rewrite

the system (4.1)–(4.3) as an abstract stochastic differential equation on the Hilbert

space H as follows:

d(G(cρ)) + Φ(ρ)dt = Gfdt + Gσ(ρ)dW, t ∈ I, ρ(0) = ρ0. (4.4)

This is the canonical form for stochastic differential equations on infinite dimensional

spaces obtained from stochastic PDE.

A class of stochastic porous media equations have also been considered by Barbu,

Da Prato and Rockner in [6] where they assume that the porosity is homogeneous

and c ≡ 1 and the recharge process f ≡ 0. These assumptions are not suitable for

aquifer modeling. Thus we have eliminated them. Further, our method of proof is

constructive, rather than abstract and very different from that of [6]. For existence

of weak solutions, we use finite dimensional projection and limiting arguments.

5. EXISTENCE AND REGULARITY OF SOLUTIONS

For the proof of existence of solution for the stochastic system, we need the

following a-prior bounds as stated in the following lemma.

Lemma 5.1. Suppose the basic assumptions of Theorem 3.1 hold, and σ satisfy the

assumptions (S1)–(S3) and that W is an H-valued Brownian motion with nuclear

covariance Q. Then, if ρ is any weak solution of the system (4.4), it must satisfy the

following inequality:

E|G1/2
c ρ(t)|2H ≤ exp(T )

{

E|G1/2
c ρ0|2H + E

(
∫

I

|G1/2f |2Hds

)}

. (5.1)

Thus, the data to the solution map,

(ρ0, f) −→ ρ,

is continuous from L2(Ω, V ∗) × Lq(I, Lq(Ω, V ∗)) to L∞(I, L2(Ω, V ∗)).

Proof. Recall that c is a nonnegative bounded function and that G is a positive

selfadjoint operator on the Hilbert space H ≡ L2(Σ) and so it admits a positive

square root. Taking the scalar product with respect to {V ∗, V } pairing of equation

(4.4) with cρ, and integrating by parts, we obtain,

E|G1/2
c ρ(t)|2H + 2E

∫ t

0

〈Φ(ρ), cρ〉ds = E|G1/2
c ρ0|2H

+ 2E

∫ t

0

(G1/2f, G1/2
c ρ)ds + 2E

∫ t

0

(σ(ρ)dW, Gcρ), t ∈ I, (5.2)
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where 〈z, y〉V ∗,V = (z, y)H whenever z ∈ H ⊂ V ∗. To proceed further, we must verify

that the expected value of the stochastic integral in the expression (5.2) vanishes. If

the expected value is proved to be finite, then by use of iterated conditional expecta-

tions relative to the family of σ-algebras Ft, one can easily verify that the expected

value vanishes. This is very similar to the finite dimensional case. To prove that the

expected value is finite, it suffices to verify that

E

(
∫ t

0

(σ(ρ)dW, Gcρ)

)2

< ∞.

Since σ, considered as Nemytski map from H to L(H), is uniformly bounded with

bound b > 0, and G is a bounded positive selfadjoint operator on H , we have

E

(
∫ t

0

(σ(ρ)dW, Gcρ)

)2

= E

∫ t

0

(Q(σ(ρ))∗Gc(ρ), (σ(ρ))∗Gc(ρ))ds

= E

∫ t

0

(Q(σ(ρ))Gc(ρ), (σ(ρ))Gc(ρ))ds

≤ Tr(Q)E

∫ t

0

|(σ(ρ))Gc(ρ)|2Hds

≤ b2 ‖ G1/2 ‖2
L(H) Tr(Q)

∫ t

0

|G1/2
c ρ|2Hds, (5.3)

where Tr(Q) stands for trace of Q.

Using this estimate in (5.2) we obtain the following inequality

E|G1/2
c ρ(t)|2H + 2E

∫ t

0

〈Φ(ρ), cρ〉ds ≤ 1 + E|G1/2
c ρ0|2H

+ 2E

∫ t

0

(G1/2f, G1/2
c ρ)ds + b̃

∫ t

0

|G1/2
c ρ|2Hds, t ∈ I, (5.4)

where b̃ ≡ b ‖ G1/2 ‖L(H)

√
Tr(Q). Since Φ(r)r ≥ 0 and G1/2f ∈ L2(I, H) almost

surely, it follows from the above inequality that

E|G1/2
c ρ(t)|2H ≤ 1 + E|G1/2

c ρ0|2H + E

∫ t

0

|G1/2f |2Hds

+ (1 + b̃)E

∫ t

0

|G1/2
c ρ|2Hds, t ∈ I. (5.5)

Using Gronwall’s inequality, this leads to the following estimate

E|G1/2
c ρ(t)|2H ≤

(

1 + E|G1/2
c ρ0|2H + E

∫

I

|G1/2f |2Hds

)

exp(1 + b̃)T (5.6)

for all t ∈ I. From this it is evident that,

G1/2
c ρ ∈ L∞(I, L2(Ω, H)) ⊂ L2(I, L2(Ω, H)).

Using this fact it follows from (5.3) that the stochastic integral in the expression (5.2)

is well defined and hence the expectation of the integral is zero. Also recalling that
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the porosity coefficient c(ξ) ≥ 0 for ξ ∈ Σ and Φ(r)r ≥ 0, it follows from equation

(5.2) that

E|G1/2
c ρ(t)|2H ≤ E|G1/2

c ρ0|2H + E

∫

I

|G1/2f |2Hds +

∫ t

0

E|G1/2
c ρ|2Hds

for all t ∈ I. Again, by Gronwall inequality, this leads to the estimate as stated in

the Lemma.

From this result we have also other useful estimates as stated in the following

corollary.

Corollary 5.2. Under the assumptions of Lemma 5.1, we have

ρ ∈ Lp(I, Lp(Ω, V )), Φ(ρ) ∈ Lq(I, Lq(Ω, V ∗)).

Proof. Using the identity (5.2) and the properties of the monotone map Φ, in partic-

ular the assumption (A3), and recalling that c(ξ) ≥ c0 > 0, it is easy to see that

E|G1/2
c ρ(t)|2H + 2c0c2

∫ t

0

E|ρ(s)|pV ds ≤ E|G1/2
c ρ0|2H

+ E

∫ t

0

|G1/2
c ρ(s)|2Hds +

∫ t

0

|G1/2f |2Hds. (5.7)

Thus, it follows from Lemma 5.1, that there exists a positive constant γ ≡ γ(T, c0, c2),

dependent on the parameters indicated, so that

E

∫

I

|ρ(s)|pV ds ≤ γ

{

E|G1/2
c ρ0|2H + E

∫

I

|G1/2f |2Hds

}

. (5.8)

This shows that ρ ∈ Lp(I, Lp(Ω, V )) ≡ Lp(I × Ω, V ). Using this estimate, the as-

sumption (A3)(2), and the embedding constant V →֒ V ∗, denoted by ‖ i ‖, it is easy

to verify that

E

∫

I

〈Φ(ρ), φ〉V ∗,V dt ≤ c3(‖ i ‖p/q) ‖ ρ ‖p/q
Lp(I,Lp(Ω,V ))‖ φ ‖Lp(I,Lp(Ω,V )) . (5.9)

This is true for arbitrary φ ∈ Lp(I, Lp(Ω, V )) and hence Φ(ρ) ∈ Lq(I, Lq(Ω, V ∗)).

This completes the proof.

Now we are prepared to consider the question of existence of solutions of the

stochastic differential equation (4.4). We need the following definition.

Definition 5.3. A process ρ ∈ Lp(I, Lp(Ω, V )) with G
1/2
c ρ ∈ L∞(I, L2(Ω, H)), is

said to be a weak solution of equation (4.4) if, for every ϕ ∈ Lp(I, V ) with G1/2ϕ̇ ∈
L2(I, H), the following identity holds P -a.s. for all t ∈ I:

((G1/2
c ρ)(t), G1/2ϕ(t)) −

∫ t

0

(G1/2
c ρ, G1/2ϕ̇)dt +

∫ t

0

〈Φ(ρ), ϕ〉V ∗,V

= (G1/2
c ρ0, G

1/2ϕ(0)) +

∫ t

0

(G1/2f, G1/2ϕ)Hds +

∫ t

0

(G∗ϕ, σ(ρ)dW ). (5.10)
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To prove existence of solution of equation (4.4), we use finite dimensional ap-

proximation and limiting arguments. Let {vi} be a complete basis for the Gelfand

triple {V, H, V ∗} with {vi} being orthonormal in H and orthogonal in both V and

V ∗. Since the embedding V →֒ H is compact, such a basis exists. Let Xn denote

the finite dimensional space given by the closure of the span{vi, 1 ≤ i ≤ n}. Define

ρn ≡
∑n

i=1 xn
i (t)vi and consider the following system of equations

d(Gcρ
n, vi) + 〈Φ(ρn), vi〉dt = (Gf, vi)dt + (G∗vi, σ(ρn)dW n), (5.11)

for all 1 ≤ i ≤ n, where W n is the projection of the infinite dimensional Brownian

motion to Xn given by

W n(t, ·) =
n
∑

i=1

√
λivi(·)wi(t)

with {wi} being an infinite family of independent standard real valued Brownian

motions. Clearly, the trace of the covariance operator Qn corresponding to W n is

given by

Tr(Qn) =
n
∑

i=1

λi.

The system (5.11) can be written as a stochastic differential equation in Rn of Ito

type. This is given by

Γdxn(t) + Φ̃(xn)dt = fn(t)dt + Λ(xn)dwn, xn(0) = xn
0 , (5.12)

where xn
0 ≡ {(ρ0, vi), 1 ≤ i ≤ n}. The rest of the system parameters

{Γ, Φ̃, fn, Λ, wn}

appearing in (5.12) are given as follows:

(1): Γ ∈ M(n × n) is a positive square matrix with elements given by

Γi,j = (Gcvj, vi)H , 1 ≤ i, j ≤ n.

(2): Φ̃ : Rn −→ Rn is a continuous monotone map with elements given by

Φ̃i(x) ≡
〈

Φ

(

n
∑

j=1

xjvj

)

, vi

〉

V ∗,V

, 1 ≤ i ≤ n.

(3): The function fn(t) = {fn
i (t), 1 ≤ i ≤ n} where the components are given by

fn
i (t) = ((Gf)(t), vi)H .

(4): The operator Λ : Rn −→ L(Rn, Rn) ≡ M(n × n) with elements given by

Λi,j(x) =
√

λj(G
∗vi, σ(

n
∑

k=1

xkvk)vj)H , 1 ≤ i, j ≤ n.

(5) Finally the n-dimensional Brownian motion is given by

wn ≡ {wn
i , 1 ≤ i ≤ n},
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where the components are given by

wn
i (t) ≡ (1/

√
λi)(W

n(t, ·), vi)H .

We are now prepared to prove the existence of solution of the finite dimensional SDE

(5.12). For convenience of presentation, we remove the superscript n and consider

the system,

Γdx(t) + Φ̃(x)dt = f̃(t)dt + Λ(x)dw, x(0) = x0, (5.13)

as a n-dimensional SDE with f̃ ≡ fn. For the proof of existence of solution of the

infinite dimensional problem (4.4), first we prove the existence of solution of the finite

dimensional system (5.13) and then use the a-priori bounds and limiting arguments

to complete the proof. We prove the following result.

Lemma 5.4. Consider the system (5.13) and suppose that x0 is F0(⊂ Ft) measurable

having finite second moment, f̃ ∈ L2(I × Ω, Rn) adapted to the sigma algebra Ft

and the operators {Γ, Φ̃, Λ} are as defined above. Then system (5.13) has at least

one solution x adapted to Ft having finite second moment for all t ∈ I, that is,

x ∈ L∞(I, L2(Ω, Rn)).

Proof. We use an implicit difference scheme to prove the existence. Partition the

interval I = [0, T ] into k(∈ N) equal subintervals

0 = tk0 ≤ tk1 ≤ tk2 ≤ · · · ≤ tkk−1 ≤ tkk = T

and define ∆k ≡ (tki+1 − tki ). Approximate the equation (5.13) by

(Γ + ∆kΦ̃)(x(tki+1)) = Γx(tki ) +

∫ tki+1

tki

f̃(s)ds

+ Λ(x(tki ))(w(tki+1) − w(tki )), 0 ≤ i ≤ k − 1. (5.14)

Since Φ is m-monotone, the reader can easily verify that Φ̃ is m-monotone in Rn.

Recall that c(ξ) ≥ 0, ξ ∈ Σ, and G is a positive selfadjoint operator on H . Thus,

the (finite dimensional) operator Γ, as defined above, is (symmetric) positive in Rn.

Hence the sum (Γ + ∆kΦ̃) is an m-monotone operator in Rn and therefore has a

unique inverse. Thus, it follows from (5.14) that

x(tki+1) = (Γ + ∆kΦ̃)−1

(

Γx(tki ) +

∫ tki+1

tk
i

f̃(s)ds + Λ(x(tki ))(w(tki+1) − w(tki ))

)

(5.15)

is well defined for all 0 ≤ i ≤ k − 1. The argument of the above map (expression

within the parenthesis) is evidently measurable relative to the sigma algebra Ft for all

t ≥ tki+1 and the inverse map is (Lipschitz) continuous. Hence x(tki+1) is measurable

relative to Ft, t ≥ tki+1. Thus, given the data x0 and f̃ , we can construct a piecewise

approximate solution of equation (5.13) by the implicit difference scheme as displayed

above. Since the map (Γ+∆kΦ̃)−1 is Lipschitz continuous and Λ is uniformly bounded
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on Rn because σ is uniformly bounded on R and x0 has finite second moment and

E
∫

I
|f̃ |2ds < ∞, it follows from the above expression that E{|x(tki )|2Rn} < ∞ for all

1 ≤ i ≤ k. Now we can construct a sequence of stochastic processes {xk(t), t ∈ I} as

follows

xk(t) = x(tki ) t ∈ [tki , t
k
i+1], 0 ≤ i ≤ k − 1.

Clearly this process has bounded second moments and therefore it is bounded in

probability. Following the same procedure as in Skorohod [3, Lemma 3], one can

verify that

lim
h→0

lim
k→∞

sup
|τ−s|≤h

P{|xk(τ) − xk(s)| > ε} = 0.

Hence, one can follow the compactness arguments of Skorohod (finite difference

method) [3, p. 59–73] for the finite dimensional distributions of the processes {xk}
to prove that the limit process limk→∞ xk(t) = x(t), t ∈ I, exists and is a solution of

equation (5.13).

Now we are prepared to prove our main result giving the existence of solution of

the infinite dimensional problem (4.4).

Theorem 5.5. Consider the system (4.4) and suppose the assumptions (A1)–(A3)

of Theorem 3.1 hold and σ is a nondecreasing function satisfying the properties

(S1)–(S3). Further, suppose ρ0 ∈ L2(Ω, V ∗) satisfying G
1/2
c ρ0 ∈ L2(Ω, H), f ∈

Lq(I, Lq(Ω, V ∗)) satisfying G1/2f ∈ L2(I, L2(Ω, H)). Then system (4.4) has at least

one weak solution in the sense of Definition 5.3.

Proof. By Lemma 5.4, the n dimensional system given by the SDE (5.13) has a

solution x which we denote by xn. Thus, the system (5.11) has a solution given by

ρn(t) ≡∑n
i=1 xn

i (t)vi, t ∈ I. Take any function η ∈ C1(I) and multiply on either side

of equation (5.11) and integrate by parts to obtain

(G1/2
c ρn(t), G1/2η(t)vi)H −

∫ t

0

(G1/2
c ρn(s), G1/2η̇(s)vi)Hds

+

∫ t

0

〈Φ(ρn), ηvi〉V ∗,V ds = (G1/2
c ρn

0 , G
1/2η(0)vi)H

+

∫ t

0

(G1/2f, G1/2η(s)vi)Hds +

∫ t

0

(G∗(η(s)vi), σ(ρn(s))dW n(s)). (5.16)

By virtue of Lemma 5.1, the sequence {G1/2
c ρn} is contained in a bounded subset of the

Banach space L∞(I, L2(Ω, H)) and by Corollary 5.2, the sequence {ρn} is contained

in a bounded subset of Lp(I, Lp(Ω, V )) and the sequence {Φ(ρn)} is contained in

bounded set in Lq(I, Lq(Ω, V ∗)). Hence, there exists a subsequence of the sequence



282 N. U. AHMED AND S. KERBAL

{ρn}, relabeled as ρn, and an element ρo such that

G1/2
c ρn w∗

−→ G1/2
c ρo in L∞(I, L2(Ω, H)), (5.17)

G1/2
c ρn w−→ G1/2

c ρo in L2(I, L2(Ω, H)), (5.18)

ρn w−→ ρo in Lp(I, Lp(Ω, V )). (5.19)

Since q > 1 and V ∗ is reflexive, it is clear that Lq(I, Lq((Ω, V ∗)) is reflexive. Hence,

the boundedness of the sequence {Φ(ρn)} implies that there exists an element ζ ∈
Lq(I, Lq(Ω, V ∗)) such that, along a subsequence if necessary,

Φ(ρn)
w−→ ζ in Lq(I, Lq(Ω, V ∗)). (5.20)

Since {vi} is a basis for the triple {V, H, V ∗}, and ρn
0 ≡

∑n
i xn

0vi, it is clear that

G1/2
c ρn

0
s−→ G1/2

c ρ0 in L2(Ω, H). (5.21)

For the stochastic integral in (5.16), we show that the Brownian motion W n converges

strongly in L2(I, L2(Ω, H)). Recall that

W n(t, ξ) =
n
∑

i=1

√
λivi(ξ)wi(t) and W (t, ξ) =

∞
∑

i=1

√
λivi(ξ)wi(t).

From this representation, it follows that

E

∫

I×Σ

|W (t, ξ)− W n(t, ξ)|2dξdt = (T 2/2)

∞
∑

i≥n+1

λi.

Since the covariance operator Q of the Brownian motion W is assumed to be nu-

clear, the above sum converges to zero as n → ∞ which implies that W n s−→ W in

L2(I, L2(Ω, H)). Define

σn(t) ≡ σ(ρn(t)), t ∈ I.

By assumption, σ is uniformly bounded and hence the sequence

{σn(·)G∗(η(·)vi), n ∈ N}

is contained in a bounded subset of L2(I, L2(Ω, H)) and therefore has a weakly con-

vergent subsequence, relabeled as the original sequence, giving

σn(·)G∗(η(·)vi)
w−→ σo(·)G∗(η(·)vi), in L2(I, L2(Ω, H)) (5.22)

for some σo which is uniformly bounded. Now multiplying the identity (5.16) by an

arbitrary F -measurable random variable Z ∈ L∞(Ω) and taking the (mathematical)

expectation and letting n → ∞, it follows from the convergence results (5.17)–(5.22)
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that

E{Z(G1/2
c ρo(t), G1/2η(t)vi)H} − E{Z

∫ t

0

(G1/2
c ρo(s), G1/2η̇(s)vi)Hds}

+ E{Z
∫ t

0

〈ζ, ηvi〉V ∗,V ds} = E{Z(G1/2
c ρ0, G

1/2η(0)vi)H}

+ E{Z
∫ t

0

(G1/2f, G1/2η(s)vi)Hds} + E{Z
∫ t

0

(σo(s)G
∗(η(s)vi), dW (s))}. (5.23)

To complete the proof, we must show that ζ = Φ(ρo) and σo = σ(ρo). Consider the

first identity. Since Φ is monotone, we have

∫ t

0

〈Φ(ρ) − Φ(ρn), ρ − ρn〉V ∗,V ds ≥ 0, P -a.s. (5.24)

for all t ∈ I and for all ρ ∈ Lp(I ×Ω, V ). Since (along a subsequence if necessary), ρn

converges weakly in Lp(I, Lp(Ω, V )), by Mazur’s theorem, we can construct another

sequence {ρnk} by a proper convex combination of the original sequence {ρn} such

that ρnk
s−→ ρo in Lp(I, Lp(Ω, V )). Letting n → ∞ along the subsequence, it follows

from (5.24) that
∫ t

0

〈Φ(ρ) − ζ, ρ − ρo〉V ∗,V ds ≥ 0, P -a.s., (5.25)

for all ρ ∈ Lp(I, Lp(Ω, V )). Hence, taking ρ = ρo + ε̺ for any ̺ ∈ Lp(I, Lp(Ω, V ))

and ε > 0, it follows from the above inequality that
∫ t

0

〈Φ(ρo + ε̺) − ζ, ̺〉V ∗,V ds ≥ 0, P -a.s., (5.26)

for all ε > 0 and ̺ ∈ Lp(I, Lp(Ω, V )). Since Φ, as a real valued function, is con-

tinuous on the real line, it is easy to verify that Φ, considered as an operator on

Lp(I, Lp(Ω, V )), is semicontinuous. Thus by letting ε → 0, it follows from the above

inequality that for all t ∈ I,
∫ t

0

〈Φ(ρo) − ζ, ̺〉V ∗,V ds ≥ 0, P -a.s., ∀̺ ∈ Lp(I, Lp(Ω, V )). (5.27)

This is possible if and only if ζ = Φ(ρo). This proves the first identity. For the second,

we can follow similar procedure. Since σ is monotone nondecreasing, it is evident that
∫

I×Σ

[σ(ρ(t, ξ)) − σ(̺(t, ξ))](ρ(t, ξ) − ̺(t, ξ))dξdt ≥ 0, P -a.s., (5.28)

for all ρ, ̺ ∈ Lp(I, Lp(Ω, V )) ⊂ L2(I, L2(Ω, H)). Thus, along the same subsequence,

as constructed by use of Mazur’s theorem and relabeled as {ρm} ⊂ Lp(I, Lp(Ω, V )) ⊂
L2(I, L2(Ω, H)), we have

∫

I×Σ

[σ(ρ(t, ξ)) − σ(ρm(t, ξ))](ρ(t, ξ) − ρm(t, ξ))dξdt ≥ 0, P -a.s. (5.29)
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Letting m → ∞, it follows from this that
∫

I×Σ

[σ(ρ(t, ξ)) − σo](ρ(t, ξ) − ρo(t, ξ))dξdt ≥ 0, P -a.s. (5.30)

This holds for all ρ ∈ L2(I, L2(Ω, H)), and hence, by similar arguments as employed

in the case of Φ, we arrive at the conclusion that σo = σ(ρo), P -a.s. Using these

results in equation (5.23) we obtain the following identity,

E{Z(G1/2
c ρo(t), G1/2η(t)vi)H} − E{Z

∫ t

0

(G1/2
c ρo(s), G1/2η̇(s)vi)Hds}

+ E{Z
∫ t

0

〈Φ(ρo), ηvi〉V ∗,V ds} = E{Z(G1/2
c ρ0, G

1/2η(0)vi)H}

+ E{Z
∫ t

0

(G1/2f, G1/2η(s)vi)Hds} + E{Z
∫ t

0

(σ(ρo)G∗(η(s)vi), dW (s))}. (5.31)

This is true for all Z ∈ L∞(Ω), and hence, the following identity holds P -a.s.

(G1/2
c ρo(t), G1/2η(t)vi)H −

∫ t

0

(G1/2
c ρo(s), G1/2η̇(s)vi)Hds

+

∫ t

0

〈Φ(ρo), ηvi〉V ∗,V ds = (G1/2
c ρ0, G

1/2η(0)vi)H

+

∫ t

0

(G1/2f, G1/2η(s)vi)Hds +

∫ t

0

(σ(ρo)G∗(η(s)vi), dW (s)) (5.32)

for all t ∈ I and for every η ∈ C1(I) and every vi. Since η ∈ C1(I) is arbitrary and

{vi} is the basis of the triple, we conclude that

(G1/2
c ρo(t), G1/2ϕ(t))H −

∫ t

0

(G1/2
c ρo(s), G1/2ϕ̇(s))Hds

+

∫ t

0

〈Φ(ρo), ϕ〉V ∗,V ds = (G1/2
c ρ0, G

1/2ϕ(0))H

+

∫ t

0

(G1/2f, G1/2ϕ(s))Hds +

∫ t

0

(G∗(ϕ(s)), σ(ρo)dW (s)), t ∈ I, (5.33)

for all ϕ ∈ Lp(I, V ) with G1/2ϕ̇ ∈ L2(I, H). Thus, by Definition 5.3, ρo is a weak

solution of the stochastic PDE (4.4). This completes the proof.

Remark 5.6 (Uniqueness). If both Φ and σ are strictly monotone, the weak solution

of the system (4.4) is unique.

6. A CONTROL PROBLEM

In references [1,2], the problem of optimal management and control of under-

ground resources, in particular aquifers, were considered proving existence of optimal

policies and necessary conditions of optimality. Considering the model presented in



STOCHASTIC DYNAMICS FOR AQUIFERS 285

[2], and assuming that the positions of the wells are fixed, the stochastic model will

take the form,

d(G(cρ)) + Φ(ρ)dt = Gfdt + GBudt + Gσ(ρ)dW, t ∈ I, ρ(0) = ρ0. (6.1)

The operator B : RN −→ H and u(t) ∈ U denotes the N -vector of extraction rates

with U ⊂ RN
+ being a compact set. The set of admissible controls is given by the set

Uad = L∞(I, U) ⊂ L∞(I, RN). The cost functional is given by

J(u) = E

∫ T

0

ℓ(t, cρ(t), u(t))dt,

for a suitable function ℓ, [see 1,2]. For stochastic problems, such as this, it is essential

to consider fully observed or partially observed feedback control. There are two

possible techniques as described below.

1. Feedback Control Via HJB Equation: A standard technique for construction

of optimal feedback controls is to use the HJB equation. Define the value function

V (t, cz) = inf
u∈U

E

∫ T

t

ℓ(s, cρ(s, z), u)ds, t ∈ I, quadz ∈ H,

where ρ = z at time t. Let DV denote the Frechet derivative of V on H . Using

Bellman’s optimality principle and the system (6.1), formally it is easy to derive the

following HJB equation,

−∂V/∂t = inf
u∈U

{ℓ(t, cz, u) + (B∗DV, u)}

+ (1/2)Tr(σσ∗D2V ) + (DV,△Φ + f), (t, z) ∈ I × H

V (T, cz) = 0, z ∈ H. (6.2)

This is a partial differential equation on an infinite dimensional Hilbert space H . The

first hurdle is the question of existence of solutions (in some generalized sense such

as viscosity sense). Given the existence, the second difficulty is in the determination

(or computation) of V , and then constructing the control law from the expression:

uo = arg{inf{ℓ(t, cz, u) + (B∗DV, u)}}. All these questions are nontrivial, may be

even formidable, and require extensive work.

2. Feedback Control from a Given Class: Another possibility is to select a

feedback control law from a given class of feasible control laws. Clearly this will

produce relatively (relative with respect to the class) optimal control laws. In other

words, u(t) = F (ρ(t)) or u(t) = F (K(ρ(t))) where F is a suitable feedback control law

to be chosen and K : H −→ H0 ⊂ H is a given observation/measurement operator

satisfying necessary regularity properties. The objective (cost) functional is given by

J(F ) ≡ E

∫

I

ℓ(t, ρ(t), F (ρ(t)))dt
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in the fully observed case. In the case of partially observed problem, the feedback

operator F : H0 −→ U and the cost functional is given by

J(F ) ≡ E

∫

I

ℓ(t, ρ(t), F (K(ρ(t))))dt.

Let Fad ⊂ C(H0, U) denote the class of admissible feedback control laws furnished

with the topology of point wise convergence. We assume that Fad is compact with

respect to this topology. Our problem is to find an element F o ∈ Fad so that

J(F o) ≤ J(F ), ∀ F ∈ Fad.

In order to prove the existence of such an optimal feedback control law, we need

compactness as given in [7, Theorem 42.3] and continuity F −→ ρ −→ J(F ). This

kind of compactness and continuity results have been used in deterministic problems

[8, Theorem 4.3]. For the stochastic problem, this requires substantial work and we

leave it as an open problem for future research.

Remark 6.1. The second method is relatively simpler. To construct the optimal

control one must use necessary conditions of optimality and the associated numerical

code. This is far less demanding than solving a nonlinear PDE (HJB equation) on

infinite dimensional Hilbert space.

REFERENCES

[1] N. U. Ahmed, Porous medium dynamics with optimal control and extraction of underground

resources, Dynam. Continuous Discrete Impulsive Systems 15 (2008), 711–725.

[2] N. U. Ahmed, Dynamics of flow in porous media and its control applied to optimal management

of underground resources, Comm. Appl. Anal. 122 (2008), 221–234.

[3] A. V. Skorokhod, Studies in Theory of Randam Processes,Addison-Wesley Publishing Com-

pany, Inc. Massachusetts, 1965.

[4] N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems, Elsevier

North Holland Inc. , New York, Oxford, 1981.

[5] R. E. Showlter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential

Equations, Mathematical Surveys and Monographs, American Mathematical Society, Provi-

dence, RI, 491997.

[6] V. Barbu, G. Da Prato and M. Rockner, Some Results on Stochastic Porous Media Equations,

www.physik.uni-bielefeld.de/bibos/preprints/08-04-283.pdf.

[7] S. Willard, General Topology, Addison-Wesley Pub. Co., Massachusetts, Menlo Park, Califor-

nia, London, Don mils, Ontario, 1970.

[8] N. U. Ahmed, Optimal choice of nonlinear output feedback control law for a class of uncertain

parabolic systems,Dynamic Systems and Applications,17 (2008),571–582.


