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ABSTRACT. In this paper we consider semilinear Neumann problems with a nonsmooth potential.

Using variational methods based on the nonsmooth critical point theory, we prove existence and

multiplicity theorems. Our framework of analysis incorporates strongly resonant problems and in

contrast to earlier works on the subject, the Euler functional of our problem need not be coercive.
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1. INTRODUCTION

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. In this paper, we

study the following semilinear Neumann problem with a nonsmoth potential (hemi-

variational inequality):
{

−△x(z) ∈ ∂j(z, x(z)) a.e. on Z,
∂x
∂n

= 0 on ∂Z.

}
(1.1)

Here the potential function j(z, x) is measurable in z ∈ Z and only locally Lipschitz

and in general nonsmooth in x ∈ R. By ∂j(z, x) we denote the generalized subdiffer-

ential of the locally Lipschitz function x→ j(z, x) (see Section 2). Also, n(z) denotes

the outward unit normal on ∂Z and ∂x
∂n

= (Dx, n)RN is the normal derivative of x on

∂Z in the sense of traces.
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The goal of this paper, is to prove a multiplicity theorem for problem (1.1), when

the Euler functional of the problem is bounded below but need not be coercive. Our

framework of analysis incorporates resonant and strongly resonant problems.

Previous works dealing with semilinear resonant Neumann problems, include

those of Iannacci-Nkashama [5], Kuo [6], [7], Tang [9] and Tang-Wu [10]. In all

the aforementioned works, the potential function j(z, ·) is C1 (smooth problems).

In Iannacci-Nkashama [5] and Kuo [6],[7] the approach is degree theoretic and the

authors employ Landesman-Lazer type conditions. They prove existence but not mul-

tiplicity results and their hypotheses imply that the Euler functional of the problem

is coercive. Tang [9] proves existence theorems using a variational approach based on

the saddle point theorem. Finally, Tang-Wu [10], is the only paper with a multiplicity

result. They establish the existence of two nontrivial solutions using the local linking

theorem (see, for example, Gasinski-Papageorgiou [3], p. 665). Their Euler functional

is coercive. None of the above works incorporates in its framework of analysis strongly

resonant problems. We recall that such problems, have the distinctive feature that

the compactness property of the Euler functional (the Palais-Smale or the Cerami

condition), is not valid at all levels. Our approach is variational based on nonsmooth

critical point theory. In the next section, for the convenience of the reader, we recall

some basic definitions and facts from this theory, which we shall need in the sequel.

2. MATHEMATICAL BACKGROUND

The nonsmooth critical point theeory, is based on the subdifferential theory for

locally Lipschitz functions due to Clarke [1]. So, let us start with a quick review of

the basics of this theory.

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the

duality brackets of the pair (X∗, X). Let ϕ : X → R be a locally Lipschitz function.

The generalized directional derivative of ϕ at x ∈ X in the direction h ∈ X, is defined

by

ϕ0(x; h) = lim sup
x′→x

λ↓0

ϕ(x′ + λh) − ϕ(x′)

λ
.

It is easy to check that the function h→ ϕ0(x; h) is sublinear and continuous. There-

fore, by the Hahn-Banach theorem, we have that ϕ0(x, ·) is the support function of a

nonempty, convex and w∗compact set ∂ϕ(x), i.e.

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) for all h ∈ X}.

The multifunction x → ∂ϕ(x) is called the generalized subdifferential of ϕ. If

ϕ ∈ C1(X), then ϕ is locally Lipschitz and ∂ϕ(x) = {ϕ′(x)}. If ϕ : X → R is
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continuous convex, then ϕ is locally Lipschitz and the generalized subdifferential

coincides with the subdifferential in the sense of convex analysis ∂cϕ(x), defined by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x+ h) − ϕ(x) for all h ∈ X}.

If ψ : X → R is another locally Lipschitz function and λ ∈ R, then ∂(ϕ + ψ)(x) ⊆
∂ϕ(x) + ∂ψ(x) and ∂(λϕ)(x) = λ∂ϕ(x) for all x ∈ X.

In the first inclusion, equality holds if one of the functions is C1.

We say that x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R,

if 0 ∈ ∂ϕ(x). Then c = ϕ(x) is a critical value of ϕ. Of course, when ϕ ∈ C1(X),

this definition coincides with the usual one. If x ∈ X is a local extremum of ϕ (i.e.,

a local minimum or a local maximum), then 0 ∈ ∂ϕ(x), i.e., x ∈ X is a critical point

of ϕ.

In what follows,we set

mϕ(x) = inf{‖x∗‖ : x∗ ∈ ∂ϕ(x)}.

From the smooth critical point theory, we know that some kind of compactness con-

dition on ϕ is necessary, in order to compensate for the lack of local compactness in

the ambient space X and derive minimax characterizations of the critical values of

the function. In the present nonsmooth setting, this condition takes the following

form:

“A locally Lipschitz function ϕ : X → R satisfies the Palais Smale condition at

the level c ∈ R (the nonsmooth PSc-condition, for short), if every sequence {xn}n≥1 ⊆
X such that

ϕ(xn) → c and m(xn) → 0 in X∗ as n→ ∞,

has a strongly convergent subsequence.”

We say that ϕ satisfies the nonsmooth Palais-Smale condition (the nonsmooth

PS-condition for short), if it is satisfies the nonsmooth PSc-condition for every c ∈ R.

Let ϕ : X → R be locally Lipschitz function and c ∈ R. We define

• ϕ̇c = {x ∈ X : ϕ(x) < c} (the strict sublevel set of ϕ at c),

• K = {x ∈ X : 0 ∈ ∂ϕ(x)} (the critical set of ϕ at c),

• Kc = {x ∈ X : ϕ(x) = c} (the critical set of ϕ at the level c).

The next result, is a nonsmooth version of the so-called second deformation theo-

rem and it is due to Corvellec [2] (for the smooth version of the result see, for example,

Gasinski-Papageorgiou [4], p. 628). In fact, the result of Corvellec [2], is formulated

in the more general context of metric spaces and continuous functions, using the so-

called weak slope. However, for our purposes, the following particular version of the

result suffices.
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Theorem 2.1. If X is a Banach space, a ∈ R, a < b ≤ ∞, ϕ : X → R is a locally

Lipschitz function which satisfies the nonsmmoth PSc-condition for every c ∈ [a, b],

ϕ has no critical points in ϕ−1(a, b) and Ka is a finite set consisting of only local

minima, then there exists a continuous deformation h : [0, 1] × ϕ̇b → ϕ̇b such that

(a) h(t, ·)|Ka
= id|Ka

for all t ∈ [0, 1];

(b) h(1, ϕ̇b) ⊆ ϕ̇a ∪Ka;

(c) ϕ(h(t, x) ≤ ϕ(x) for all (t, x) ∈ [0, 1] × ϕ̇b.

Remark 2.2. In particular, the above theorem implies that the set ϕ̇a∪Ka is a weak

deformation retract of ϕ̇b. In the smooth second deformation theorem, the conclusion

is that ϕb\Kb is a strong deformation retract of ϕb, where ϕb = {x ∈ X : ϕ(x) ≤ b}.

More about the nonsmooth critical point theory, can be found in Gasinski-

Papageorgiou [3] and Motreanu-Radulescu [8].

3. EXISTENCE THEOREM

In this section, we prove an existence theorem which is of independence interest

and which will also be used in the multiplicity theorem in Section 4. The existence

theorem concerns the following more general Neumann problem:
{

−△x(z) ∈ ∂j(z, x(z)) + h(z) a.e. on Z,
∂x
∂n

= 0 on ∂Z, h ∈ L∞(Z).

}
(3.1)

For problem (3.1) we establish the existence of a nontrivial solution for all

h ∈ L∞(Z) such that
∫

Z
h(z)dz = 0. For this purpose, we shall need the follow-

ing hypotheses (in what follows λ0 = 0 < λ1 are the first two eigenvalues of the

negative Neumann Laplacian).

H1: j : Z × R → R is a function such that j(z, 0) = 0 for a.a. z ∈ Z and

(i) for all x ∈ R, z → j(z, x) is measurable;

(ii) for almost all z ∈ Z, x→ j(z, x) is locally Lipschitz;

(iii) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(j, x), we have

|u| ≤ a(z) + c|x|r−1,

with a ∈ L∞(Z)+, c > 0 and 2 ≤ r < 2∗ =

{
2N

N−2
if N ≥ 3

+∞ if N = 1, 2
;

(iv) there exists ξ ∈ L∞(Z)+ such that j(z, x) ≤ ξ(z) for a.a. z ∈ Z and all

x ∈ R;

(v) there exists a function η ∈ L∞(Z)+, η 6= 0 such that

η(z) ≤ lim inf
x→0

2j(z, x)

x2

uniformly for a.a. z ∈ Z;
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(vi) for almost all z ∈ Z and all x ∈ R, j(z, x) ≤ λ1

2
x2;

(vii)
∫

Z
lim sup|x|→∞ j(z, x)dz < +∞.

Remark 3.1. These hypotheses incorporate in our framework of analysis problems

which at zero are resonant with respect to λ1 > 0, the first nonzero eigenvalue of

(−△, H1(Z)). Also, hypothesis H1(v) implies that at zero, we also have nonuniform

nonresonance with respect to the principal eigenvalue λ0 = 0. Note that hypothesis

H1 incorporate in our framework problems which at infinity are strongly resonant with

respect to the principal eigenvalue λ0 = 0 (i.e., problems in which limx→±∞ j(z, x) =

j±(z) a.e. on Z, with j± ∈ L∞(Z)).

Example 3.2. The following functions satisfy hypotheses H1. For the sake of sim-

plicity, we drop the z-dependence.

j1(x) =






λ1

2
x2 if |x| ≤ 1

λ1

2x2 + ξ ln |x|√
|x|

if |x| > 1
with ξ > 0,

and j2(x) = λ1

2
= min{x2 − |x|p, 1 − |x|r}, 2 < p ≤ 2∗. Note that, if ξ = 2λ1, then

j1 ∈ C1(R).

Let ϕ1 : H1(Z) → R be the Euler functional for problem (3.1), defined by

ϕ1(x) =
1

2
‖Dx‖2

2 −
∫

Z

j(z, x(z))dz −
∫

Z

h(z)x(z) for all x ∈ H1(Z).

We know that ϕ1 is Lipschitz continuous on bounded sets (see Clarke [1], p. 85),

hence it is locally Lipschitz.

We consider the auxiliary Neumann problem
{

−△x(z) = h(z) a.e. on Z,
∂x
∂n

= 0 on ∂Z.

}
(3.2)

We also consider the following orthogonal direct sum decomposition

H1(Z) = R ⊕ V, (3.3)

with V = {x ∈ H1(Z) :
∫

Z
x(z)dz = 0}.

Proposition 3.3. If h ∈ L∞(Z) and
∫

Z
h(z)dz = 0, then problem (3.2) admits a

unique solution x0 ∈ C1(Z) ∩ V .

Proof. Let ψ : H1(Z) → R be the C1-functional, defined by

ψ(x) =
1

p
‖Dx‖p

p −
∫

Z

h(z)x(z)dz for all x ∈ H1(Z).

Let ψ̂ = ψ|V . By virtue of the Poincare-Wirtinger inequality (see, for example

Gasinski-Papageorgiou [4], p. 224), we see that ψ̂ : V → R is coercive. Moreover,

from the compact embedding of H1(Z) into L2(Z), it is clear that ψ̂ is sequentially
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weakly lower semicontinuous. So, by the Weierstrass theorem, we can find x0 ∈ V

such that

−∞ < m̂0 < inf
V
ψ̂ = ψ̂(x0),

⇒ ψ̂′(x0) = 0 in V ∗. (3.4)

Every x ∈ H1(Z) has a unique decomposition

x = x+ x̂ with x ∈ R, x̂ ∈ V (see (3.3)).

Hence

ψ(x) = ψ(x+ x̂) =
1

2
‖Dx̂‖2

2 −
∫

Z

hx̂dz = ψ(x̂) for all for all x ∈ H1(Z) (3.5)

(recall that by hypothesis
∫

Z
hdz = 0). So, if pV : H1(Z) → V denotes the orthogonal

projection onto V , then from (3.5) we see that

ψ = ψ̂ ◦ pV .

Therefore, by the chain rule, we have

ψ′(x) = p∗V ψ̂
′(pV (x)) for all x ∈ H1(Z). (3.6)

In what follows, by 〈·, ·〉, we denote the duality brackets for the pair (H1(Z)∗,

H1(Z)) and by 〈·, ·〉V the duality brackets for the pair (V ∗, V ). For all x, y,∈ H1(Z),

we have

〈ψ′(x), y〉 = 〈p∗V ψ̂′(pV (x)), y〉 (see (3.6)) (3.7)

= 〈ψ̂′(pV (x)), pV (y)〉V (3.8)

= 〈ψ̂′(x̂), ŷ〉V . (3.9)

Hence

〈ψ′(x0), y〉 = 〈ψ̂′(x0), ŷ〉V = 0 (see (3.7)). (3.10)

Since y ∈ H1(Z) is arbitrary, from (3.10) it follows that

ψ′(x0) = 0,

⇒ A(x0) = h, (3.11)

where A ∈ L(H1(Z), H1(Z)∗) is defined by

〈A(x), y〉 =

∫

Z

(Dx,Dy)RNdz for all x, y ∈ H1(Z).

From (3.11) and using Green’s identity, we obtain

−△x0(z) = h(z) a.e. on Z,
∂x

∂n
= 0 on ∂Z.
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Regularity theory, implies that x0 ∈ C1
0 (Z). Moreover, the strict monotonicity of

the map A|V (equivalently the strict convexity of the function ψ̂), implies that the

solution x0 ∈ C1(Z) ∩ V is unique in V .

We shall use the solution x0 ∈ C1(Z) ∩ V , to produce a solution for the problem

(3.1). In what follows, β =
∫

Z
lim sup|x|→∞ j(z, x)dz. By hypothesis H1(vii), we have

β < +∞. As we already mentioned in the Introduction, our setting includes problems

which are strongly resonant at infinity with respect to the principal eigenvalue λ0 = 0.

A characteristic feature of such problems, is the failure of the global compactness

condition. This is evident in the next proposition.

Proposition 3.4. If hypotheses H1 hold and c < −β + ψ(x0), then ϕ1 satisfies the

nonsmooth PSc-condition.

Proof. Let {xn}n≥1 ⊆ H1(Z) be a sequence such that

ϕ1(xn) → c and mϕ1
(xn) → 0 as n→ ∞. (3.12)

Since ∂ϕ1(xn) ⊆ H1(Z)∗ is weakly compact and the norm functional in a Banach

space is sequentially weakly lower semicontinuous, by the Weierstrass theorem, we

can find x∗n ∈ ∂ϕ1(xn) such that mϕ1
(xn) = ‖x∗n‖ for all n ≥ 1. We know that

x∗n = A(xn) − un − h, (3.13)

with un ∈ Lr′(Z) (1
r

+ 1
r′

= 1) and un(z) ∈ ∂j(z, xn(z)) for a.a. z ∈ Z, n ≥ 1 (see

Clarke [1], p. 83). Recall that

xn = xn + x̂n with xn ∈ R, x̂n ∈ V, n ≥ 1 (see (3.3)). (3.14)

Because of (3.12), we can find M1 > 0 such that for all n ≥ 1, we have

M1 ≥ ϕ1(xn) =
1

2
‖Dxn‖2

2 −
∫

Z

j(z, xn)dz −
∫

Z

hxndz

=
1

2
‖Dx̂n‖2

2 −
∫

Z

j(z, xn)dz −
∫

Z

hx̂ndz

(see (3.14) and recall that
∫

Z
hdz = 0)

= ψ(x̂n) −
∫

Z

j(z, xn)dz

≥ ψ(x̂n) − ‖ξ‖1 (see hypothesis H1(iv)). (3.15)

From (3.15) and the Poincare-Wirtinger inequality, it follows that {x̂n}n≥1 ⊆ H1(Z)

is bounded. So, by passing to a suitable subsequence if necessary, we may assume

that

|x̂n(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1, with k ∈ L2(Z)+. (3.16)
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Suppose that {xn}n≥1 ⊆ H1(Z) is unbounded. We may assume that ‖xn‖ → ∞.

Since {x̂n}n≥ ⊆ H1(Z) is bounded, we must have |xn| → ∞. Then

|xn(z)| ≥ |xn| − |x̂n(z)| ≥ |xn| − k(z) a.e. on Z (see (3.16)),

⇒|xn(z)| → +∞ for a.a. z ∈ Z as n→ ∞.

From (3.15), we have

ϕ1(xn) = ψ(x̂n) −
∫

Z

j(z, xn)dz

≥ ψ(x0) −
∫

Z

j(z, xn)dz for all n ≥ 1 (recall x0 is the minimizer of ψ̂)

⇒c ≥ ψ(x0) − lim sup
n→∞

∫

Z

j(z, xn)dz (see (3.12))

≥ ψ(x0) −
∫

Z

lim sup
n→∞

j(z, xn)dz (by Fatou’s Lemma, see H1(iv))

= ψ(x0) − β,

which contradicts the choice of c. This proves that {xn}n≥1 ⊆ H1(Z) is bounded. So,

we may assume that

xn
w→ x in H1(Z) and xn → x in Lr(Z). (3.17)

From (3.12) and (3.13), we have

|〈A(xn), xn−x〉−
∫

Z

un(xn−x)dz−
∫

Z

h(xn−x)dz| ≤ εn‖xn−x‖ with εn ↓ 0. (3.18)

Note that∫

Z

un(xn − x)dz → 0 and

∫

Z

h(xn − x)dz → 0 as n→ ∞ (see (3.17)). (3.19)

So, if in (3.18) we pass to the limit as n→ ∞ and use (3.19), we obtain

lim
n→∞

〈A(xn), xn − x〉 = 0. (3.20)

Since A(xn)
w→ A(x) in H1(Z), from (3.20) we have

‖Dxn‖2
2 = 〈A(xn), xn〉 → 〈A(x), x〉 = ‖Dx‖2

2.

Recall that Dxn
w→ Dx in L2(Z,RN). Therefore, from the Kadec-Klee property of

Hilbert spaces, we have Dxn → Dx in L2(Z,RN), hence xn → x in H1(Z) (see

also (3.17)). This proves that ϕ1 satisfies the nonsmooth PSc-condition for all c <

−β + ψ(x0).

Using this proposition and a variational argument, we can establish the existence

of a nontrivial solution for problem (3.1).

Proposition 3.5. If hypotheses H1 hold and β <
∫

Z
j(z, x0)dz, then problem (3.1)

has a nontrivial solution y0 ∈ C1(Z).
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Proof. Recall (see the proof of Proposition 3.3) that

ϕ1(x) = ψ(x̂) −
∫

Z

j(z, x)dz ≥ ψ(x0) − ‖ξ‖1,

⇒ ϕ1 is bounded below.

Therefore, m̂1 = infH1(Z) ϕ1 > −∞. We have

−∞ < m̂1 ≤ ϕ1(x0) = ψ(x0) −
∫

Z

j(z, x0)dz (since x0 ∈ V )

< ψ(x0) − β (since by hypothesis β <
∫

Z
j(z, x0)dz).

Proposition 3.4 implies that ϕ1 satisfies the nonsmooth PS bm1
-condition. Then

from Gasinski-Papageorgiou [3], p. 144, we can find y0 ∈ H1(Z) such that

ϕ1(y0) = m̂1 = inf
H1(Z)

ϕ1,

⇒ 0 ∈ ∂ϕ1(y0),

⇒ A(y0) = u0 + h, (3.21)

with u0 ∈ Lr′(Z), u0(z) ∈ ∂j(z, y0(z)) a.e. on Z. From (3.21), using Green’s identity,

we obtain

−△y0(z) = u0(z) + h(z) a.e. on Z,

⇒ y0 ∈ H1(Z) is a solution of problem (3.1).

Moreover, regularity theory implies that y0 ∈ C1(Z). It remains to show that y0 6= 0.

By virtue of hypothesis H1(v), given ε > 0, we can find δ = δ(ε) > 0 such that

j(z, x) ≥ 1

2
(η(z) − ε)x2 for a.a. z ∈ Z, all |x| ≤ δ. (3.22)

Let c ∈ (0, δ]. Then

ϕ1(c) = −
∫

Z

j(z, c)dz (since
∫

Z
hdz = 0)

≤ c2

2
[ε|Z|N −

∫

Z

ηdz] (see (3.22)). (3.23)

So, if we choose ε ∈ (0, 1
|Z|N

‖η‖1), then from (3.23), we see that

ϕ1(c) < 0

⇒ m̂1 = ϕ1(y0) < 0 = ϕ1(0),

⇒ y0 6= 0.
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4. MULTIPLICITY THEOREM

In this section, by strengthening the hypotheses on j(z, ·), we prove a multiplicity

theorem for problem (1.1), i.e. h = 0. Also, in this case the Euler functional ϕ :

H1(Z) → R of the problem, is given by

ϕ(x) =
1

2
‖Dx‖2

2 −
∫

Z

j(z, x(z))dz for all x ∈ H1(Z).

This too is locally Lipschitz.

The new hypotheses on the potential function j(z, x), are the following:

H2 : j : Z × R → R is a function such that j(z, 0) = 0 a.e. on Z, hypotheses

H2(i) → (vi) are the same as the corresponding hypotheses H1(i) → (vi) and

(vii) β =
∫

Z
lim sup|x|→∞ j(z, x)dz ≤ 0.

Example 4.1. The following function satisfies hypotheses H2. As before for the sake

of simplicity we drop the z-dependence:

j3(x) =

{
λ1

2
(x2 − x4) if |x| ≤ 1

c(π
4
− tan−1|x|) if |x| > 1

with c > 0. If c = 2λ1, then j3 ∈ C1(R).

Theorem 4.2. If hypotheses H2 hold, then problem (1.1) has at least two nontrivial

solutions y0, v0 ∈ C1(Z).

Proof. From Proposition 3.5, we already have one trivial solution y0 ∈ C1(Z). From

the proof of Proposition 3.5, (see (3.23)), we see that we can find ρ > 0 small such

that

ηρ = max
∂Bρ∩R

ϕ < 0, (4.1)

where Bρ = {x ∈ H1(Z) : ‖x‖ ≤ ρ} and ∂Bρ = {x ∈ H1(Z) : ‖x‖ = ρ}.
On the other hand, if v ∈ V, then

ϕ(v) =
1

2
‖Dv‖2

2 −
∫

Z

j(z, v(z))dz

≥ 1

2
‖Dv‖2

2 −
λ1

2
‖v‖2

2 (see hypothesis H2(vi))

≥ 0

(by the variational characterization of λ1, see Gasinski-Papageorgiou [4], p. 722),

⇒ inf
V
ϕ = 0. (4.2)

Now, let Γ = {γ ∈ C(Bρ ∩ R, H1(Z)) : γ|∂Bρ∩R
= id|∂Bρ∩R

} and define

ĉρ = inf
γ∈Γ

sup
x∈Bρ∩R

ϕ(γ(x)). (4.3)
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We know (see Gasinski-Papageorgiou [4], p. 642), that the pair {∂Bρ ∩R, Bρ ∩R} is

linking with V in H1(Z). Hence

γ(Bρ ∩ R) ∩ V 6= ∅ for all γ ∈ Γ,

⇒ ĉρ ≥ 0 (see (4.2) and (4.3)). (4.4)

Suppose that {0, y0} are the only critical points of ϕ. Let

a = inf ϕ = ϕ(y0) < 0 = b (see the proof of Proposition 3.5). (4.5)

According to Proposition 3.4, ϕ satisfies the nonsmooth PSc-condition for all c ∈ [a, b)

(recall that since h = 0, x0 = 0 and by hypothesis H2(vii), β ≤ 0). Also, Ka = {y0}
and y0 ∈ C1(Z) is a minimizer of ϕ (see the proof of Proposition 3.5 and recall

that h = 0). Hence we can apply Theorem 2.1 and obtain a continuous deformation

h : [0, 1] × ϕ̇b → ϕ̇b such that h(t, ·)|Ka
= id|Ka

for all t ∈ [0, 1] and

h(1, ϕ̇b) ⊆ ϕ̇a ∪Ka = {y0} (4.6)

and ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b. (4.7)

We introduce the map γ0 : Bρ ∩ R → H1(Z) defined by

γ0(x) =

{
y0 if |x| ≤ ρ

2

h(2(ρ−‖x‖)
ρ

, ρx

‖x‖
) if |x| > ρ

2

. (4.8)

Note that, if ‖x‖ = ρ

2
, then 2(ρ− ‖x‖) = ρ and ρ x

‖x‖
= 2x. Thus

h

(
2(ρ− ‖x‖)

ρ
,
ρx

‖x‖

)
= h(1, 2x) = y0 (see (4.4) and (4.1)),

⇒ γ0 is continuous, i.e., γ0 ∈ C(Bρ ∩ R, H1(Z)).

Also, if x ∈ ∂Bρ ∩ R, then ‖x‖ = ρ and so γ0(x) = h(0, x) = x (see (4.6) and recall

that h is a deformation). Therefore γ0 ∈ Γ. Moreover,

ϕ(γ0(x)) ≤ ϕ(x) (for all x ∈ Bρ ∩ R (see (4.5), (4.7) and (4.8)),

⇒ ϕ(γ0(x)) ≤ ηρ < 0 for x ∈ Bρ ∩ R (see (4.1)),

⇒ ĉρ ≤ ηρ < 0 (see (4.3)). (4.9)

Combining (4.4) and (4.9), we reach a contradiction. This means that ϕ has a third

critical point v0 ∈ H1(Z) distinct from 0 and y0. Then

0 ∈ ∂ϕ(v0),

⇒ A(v0) = u0

with u0 ∈ Lr′(Z), u0(z) ∈ ∂j(z, v0(z)) a.e. on Z,

⇒ −△v0(z) = u0(z) ∈ ∂j(z, v0(z)) a.e. on Z,
∂v0

∂n
= 0 on ∂Z.
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So, v0 is a nontrivial solution of (1.1) and regularity theory implies v0 ∈ C(Z).

Therefore, problem (1.1) has at least two nontrivial solutions y0, v0 ∈ C1(Z).
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