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ABSTRACT. We establish the existence of two nontrivial solutions for the semilinear elliptic

problem

−∆u = g(x, u) in Ω

u = 0 on ∂Ω,

where Ω ⊂ R
N is a smooth bounded domain, g ∈ C1(Ω × R \ {0}, R) is such that g(x, 0) = 0 and

asymptotically linear. Our proofs are based on minimax methods and critical groups.
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1. INTRODUCTION

Let Ω be a smooth bounded domain in R
N . We study the existence of two

nontrivial solutions of the elliptic problem

−∆u = g(x, u) in Ω

u = 0 on ∂Ω,
(1.1)

where g ∈ C1(Ω × R \ {0}, R) is such that g(x, 0) = 0. Furthermore, it is required

that there exist

α± = lim
t→±∞

g(x, t)

t
, α± ∈ R, uniformly in Ω; (1.2)

and

β± = lim
t→0±

g(x, t)

t
, β± ∈ R, uniformly in Ω. (1.3)

Without loss of generality, we can assume that α− ≤ α+. It is well known that

existence and multiplicity of solutions for problem (1.1) rely strongly on the position

of the pairs (α−, α+) and (β±, β∓), with respect to eigenvalues of (−∆, H1
0 (Ω)).

Similar multiplicity results for problem (1.1) were investigated by many authors.

See for instance Ahmad [1], Ambrosetti and Mancine [2], Bartsch et al. [3], Castro and

Lazer [5], Hirano [9, 10], Li et al. [12], Li and Su [14], Li and Willem [15], Mizoguchi

[17], de Paiva [18, 19], Zou [21] and references therein. There are several techniques
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used to study this problem. For example, Morse theory (critical groups and Morse

inequalities) was used in [3, 12, 14, 15, 18, 19, 21]. In [1, 2, 9], the authors used degree

theory based on Leray-Schauder degree. The Lyapunov-Schmmidt method combined

with critical point theory was applied in [5, 15]. In [17], the author used minimax

theorems combined with Conley index theory. Our approach is based on minimax

theorems and critical groups (Morse theory).

The paper is organized as follows: in Section 2 we collect some preliminaries

needed to prove the theorems. Section 3 is devoted to present and prove the main

results.

2. PRELIMINARIES

For the convenience of the reader, we recall some notation and results of Morse

Theory. Let H be a Hilbert space and f : H → R be a functional of class C1. We

assume that f satisfies the Palais-Smale condition (we write it (PS) for short). We

will also assume that the set of critical points of f , denoted by K, is finite. Let y ∈ H

be a critical point of f with c = f(y). The group

Cp(f, y) = Hp(f
c, f c \ {y}), p = 0, 1, 2, ...,

is called the pth critical group of f at y, where f c = {x ∈ H : f(x) ≤ c} and Hp(·, ·) is

the singular relative homology group with integer coefficients. The pth critical groups

of f at infinity is defined as

Cp(f,∞) = Hp(H, fα),

where α < inf f(K). The next result is extremely useful in Morse theory (see for

instance [4]).

Proposition 2.1. If a < b are regular values of f and Hk(f
b, fa) 6= 0, for some

k ∈ N, then f has a critical point y with Ck(f, y) 6= 0. Moreover, if there is a critical

point y with f(y) ∈ (a, b) and Ck(f, y) 6= Hk(f
b, fa), then there are other critical

points than y.

Now, we present an application of the previous proposition (see the proof of

Theorem 3.8 in [3]).

Proposition 2.2. Assume that 0 is a critical point of f with f(0) = 0 and Ck(f, 0) 6=

0. If Hk(H, fα) = 0, then there is a critical point y such that either Ck−1(f, y) 6= 0

or Ck+1(f, y) 6= 0.
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Proof. By Ck(f, 0) 6= 0, for ǫ > 0 small enough we have Hk(f
ǫ, f−ǫ) 6= 0. Consider

the following diagram

Hk+1(H, f ǫ) → Hk(f
ǫ, fα) → Hk(H, fα)

↓

Hk(f
ǫ, f−ǫ)

↓

Hk−1(f
−ǫ, fα).

The property of exactness of the Homology implies that either

Hk−1(f
−ǫ, fα) 6= 0 or Hk+1(H, f ǫ) 6= 0,

since Hk(f
ǫ, f−ǫ) 6= 0 and Hk(H, fα) = 0. By the previous proposition, we conclude

that there is a nontrivial critical point y that satisfies either

Ck−1(f, y) 6= 0 or Ck+1(f, y) 6= 0,

which is the desired conclusion.

The classical solutions of problem (1.1) correspond to critical points of the C2−0-

functional, denoted by F , defined on H1
0 = H1

0 (Ω) by

F (u) =
1

2

∫

Ω

|∇u|2dx −

∫

Ω

G(x, u)dx, u ∈ H1
0 , (2.1)

where G(x, t) =
∫ t

0
g(x, s)ds. The following nonresonance condition will be assumed

throughout the paper: the problem

−∆u = α+u+ − α−u−, u ∈ H1
0 ,

has only the trivial solution. Under this assumption the functional F satisfies the

Palais-Smale compactness condition. In order to apply Morse theory to obtain multi-

plicity of critical points of F , we need to compute the critical groups of known critical

points and the critical groups at infinity. In this direction we have the following result

(see for instance [6, 13]).

Proposition 2.3. (i) If λm < α± < λm+1, then Cp(F,∞) = δpmZ.

(ii) If there is δ > 0 such that λk ≤ g(x,t)
t

≤ λk+1, ∀ x ∈ Ω and 0 ≤ |t| < δ, then

Cp(F, 0) = δpkZ.

Remark 2.4. Assume the hypotheses of the previous proposition with m 6= k. Propo-

sition 2.1 implies that there is a nontrivial critical point u1 with Cm(F, u1) 6= 0.

Moreover, Proposition 2.2 implies that there is a nontrivial critical point u2 such that

either Ck−1(F, u2) 6= 0 or Ck+1(F, u2) 6= 0. In order to prove that u1 6= u2 we will

assume some additional conditions, see Theorems 3.1 and 3.2 in the next section. Our

results were motivated by [3, 15], where similar results have been obtained.
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Now, we present a version of the Shifting Theorem for C2−0-functionals. Take

X = C1
0(Ω) and u a nontrivial critical point of F . We have that F ′ ∈ C1(D, H1

0) and

F ′′(u0) is a bounded linear operator from X to H1
0 , where D is a neighborhood of

u0 in the X-topology. The Morse index µ(u0) of u0 measures the dimension of the

maximal subspace of X on which F ′′(u0) is negative definite. The nullity of u0 is the

dimension of the kernel of F ′′(u0), we denote it by ν(u0). The authors in [12] were

able to give a version of the Shifting Theorem to this case. We summarize it in the

next proposition.

Proposition 2.5. Assume that u is a nontrivial critical point of F with finite Morse

index µ and nullity ν, then either

(i) Cp(F, u) = 0 for p ≤ µ and p ≥ µ + ν, or

(ii) Cp(F, u) = δpµZ, or

(iii) Cp(F, u) = δp(µ+ν)Z.

Another useful tool that we will make use of are the spectral properties of

weighted eigenvalue problems. Let p(x) be a bounded function in Ω with nontrivial

positive part. Consider the eigenvalue problem

−∆v = λp(x)v in Ω

v = 0 on ∂Ω.
(2.2)

This problem have a sequence of eigenvalues 0 < λ1(p) < λ2(p) ≤ · · · ≤ λj(p) →

∞, and the associated eigenfunctions satisfies the Unique Continuation Property.

Moreover, if p(x) ≤ q(x), with strict inequality holding on a set of positive measure,

then λj(p) > λj(q). For all this properties and more we refer to [8]. We remark that

in the case p ≡ 1 we denote λj(1) by λj .

3. MAIN RESULTS AND PROOFS

We will denote by ϕj the normalized eigenfunction associated to λj and Hj :=

span{ϕ1, · · · , ϕj}.

Theorem 3.1. Suppose that there exist k and m ≥ k + 1 such that λk−1 ≤ β± < λk

and λm < α± < λm+1. Moreover, assume that one of the following conditions holds:

(a) g′(x, t) ≥ g(x, t)/t, for all x ∈ Ω and all t ∈ R;

(b) k = 2 and g′(x, t) ≤ λm+1, for all x ∈ Ω and t ∈ R.

Then problem (1.1) has at least two nontrivial solutions.

Proof. From λm < α± < λm+1 the functional F satisfies the (PS) condition and has

the geometry of Saddle Point Theorem. More precisely, we have

(i) F (u) → −∞, as ||u|| → ∞, for u ∈ Hm; and
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(ii) F (u) → ∞, as ||u|| → ∞, for u ∈ H⊥
m.

It is follows that there exists a critical point u1 of F such that, see [6, 16],

Cm(F, u1) 6= 0. (3.1)

Using β± < λk, we can prove that 〈F ′′(0)ϕj, ϕj〉 > 0 for all j ≥ k. Then µ(0)+ν(0) ≤

k − 1 and, by the Proposition 2.5, we have Cp(F, 0) = 0 for all p ≥ k. Therefore u1

is a nontrivial critical point of F provided m ≥ k + 1.

Proof of (a): By λk−1 ≤ β± < λk and g′(x, t) ≥ g(x, t)/t, we can show that

(i) there is R > 0 such that F (u) ≤ 0 for all u ∈ {tϕk + u; t ≥ 0, u ∈ Hk−1} with

||u|| ≤ R; and

(ii) there are r > 0 and a > 0 such that F (u) ≥ a for all u ∈ H⊥
k−1 with ||u|| = r.

So, the functional F satisfies the hypotheses of the Linking Theorem. We can conclude

that there is a critical point u2 that satisfies

Ck(F, u2) 6= 0, (3.2)

and so u2 is nontrivial. The proof of (a) is complete by the assumption m > k, (3.1),

and showing that:

Claim: Cm(F, u2) = 0.

Indeed, consider the eigenvalue problem

−∆v = λ
g(x, u2)

u2

v, v ∈ H1
0 .

Using that u2 solves (1), we can conclude that 1 is an eigenvalue of the above

problem and u2 is the associated eigenfunction. Moreover, we can certainly as-

sume that g(x, u2)/u2 > λk−1 in a set of positive measure. Indeed, if not, then

g(x, u2)/u2 = λk−1, so u2 = cϕk−1 and we can also show that g′(x, u2) = λk−1. But,

in this case, we have that sϕk−1 is a solution of (1.1) for all 0 < s < c, and it is easy

to see that the claim is true in that case. Now, assuming g(x, u2)/u2 > λk−1 in a set

of positive measure to hold, we have λi(g(x, u2)/u2) < λi(λk−1) ≤ 1 for all i ≤ k − 1.

Since 1 is an eigenvalue, we can conclude that λk(g(x, u2)/u2) ≤ 1. If we assume that

g′(x, u2) > g(x, u2)/u2 in a set of positive measure, then we have λk(g
′(x, u2)) < 1.

This implies that µ(u2) ≥ k, but µ(u2) ≤ k since (3.2) holds, so µ(u2) = k. Then,

by (3.2) and the item (ii) in Proposition 2.5, we have the desired conclusion in this

case. On the other hand, if we have g′(x, u2) = g(x, u2)/u2 < λm+1 for all x ∈ Ω,

then λm+1(g
′(x, u2)) > 1, which implies µ(u2) + ν(u2) ≤ m. Now, if µ(u2) = k the

conclusion follows by item (ii) in Proposition 2.5, and if µ(u2) < k the conclusion

follows by item (i) in Proposition 2.5. ♦

Proof of (b): Let u1 be a nontrivial solution such that Cm(F, u1) 6= 0. Let us first

prove that:
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Claim 1: Cp(F, u1) = δpmG.

In fact, by the Proposition 2.5, we have that µ(u1)+ ν(u1) ≥ m. Let ϕ ∈ H⊥
m, by

g′(x, t) ≤ λm+1 and the strict inequality holding in a set of positive measure, we have

〈F ′′(u1)ϕ, ϕ〉 =

∫

Ω

|∇ϕ|2 − g′(x, u1)ϕ
2

>

∫

Ω

|∇ϕ|2 − λm+1ϕ
2 ≥ 0,

where we use the variational characterization of λm+1. Follows that µ(u1)+ν(u1) ≤ m,

and so µ(u1) + ν(u1) = m. The claim follows from (3.1) and the item (iii) of the

Proposition 2.5. ♦

The proof (b) follows from the next claim and by the assumption m > 2.

Claim 2: There exists a critical point u2 of F such that

C2(F, u2) 6= 0.

First note that the flux of −∇F is well defined in X = C1
0 and D = P ∪ (−P ) is

an invariant set, where P = {u ∈ X; u ≥ 0} (see [7]). Moreover, we have that

(i) there is R > 0 such that F (u) < 0 for any u ∈ H2 with ||u|| ≥ R; and

(ii) there are a, r > 0 such that F (u) > a for any u ∈ H⊥
1 with ||u|| = r.

The rest of the proof follows as in [3, Theorem 3.6]. We only show the main ideas of

the proof. Set

B := {u = sϕ1 + tϕ2 ; |s| ≤ R, 0 ≤ t ≤ R}

and

∂B = {sϕ1 + tϕ2 ; |s| = R or t ∈ {0, R}}.

Denoting F̃ = F |X and using (i), we have ∂B ⊂ F̃ 0 ∪ D. Let γ = max F̃ (B) so that

(B, ∂B)
i
→֒ (F̃ γ ∪ D, F̃ 0 ∪ D). Now, by (ii), we have

(B, ∂B)
i
→֒ (F̃ γ ∪ D, F̃ 0 ∪ D)

j
→֒ (X, X \ {u ∈ H⊥

1 ; ||u|| = r}).

Using that H2(B, ∂B)
j∗
→ H2(X, X \ {u ∈ H⊥

1 ; ||u|| = r}) is nontrivial, follows that

H2(B, ∂B)
i∗→ H2(F̃

γ ∪D, F̃ 0 ∪D) is nontrivial. Let ξ ∈ H2(F̃
γ ∪D, F̃ 0 ∪D) defined

by ξ = i∗(1), where 1 ∈ Z ∼= H2(B, ∂B). Define

Γ = {δ ∈ R; ξ ∈ image(iδ)} and c = inf Γ,

where iδ : H2(F̃
δ ∪D, F̃ 0 ∪D) → H2(F̃

γ ∪D, F̃ 0 ∪D)} is induced by the inclusion. It

was proved in [3] that c is a critical value of F and 0 < c ≤ γ. Furthermore, there is a

critical point of F at level c that satisfies the conditions required in the claim. ♦

Theorem 3.2. Suppose that there exist m and k ≥ m+2 such that λm < α± < λm+1

and λk < β± ≤ λk+1. Moreover, assume that one of the following conditions holds:
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(a) g′(x, t) ≤ g(x, t)/t, for all x ∈ Ω and all t ∈ R;

(b) m = 1 and g(x, t)/t ≤ λk+1, for all x ∈ Ω and all t ∈ R.

Then problem (1.1) has at least two nontrivial solutions.

Proof. Proof of (a): As in the proof of previous theorem, we have that there exists u1

a critical point of F such that

Cm(F, u1) 6= 0. (3.3)

Moreover, we can show that

(i) ∃ r > 0 such that supu∈S F (u) < 0, where S := {u ∈ Hk; ||u|| = r};

(ii) F (u) ≥ 0 for all u ∈ H⊥
k ; and

(ii) F is bounded below on {sϕk + u; s ≥ 0, u ∈ H⊥
k }.

Then, by [20, Theorem 3.2], there is a critical point u2 of F such that

Ck−1(F, u2) 6= 0.

By λk < β± ≤ λk+1 and g(x, t)/t ≤ λk+1, follows that Cp(F, 0) = δpkZ. Thus u1 and

u2 are nontrivial critical points of F . The proof follows from the next claim and by

the assumption k − 1 > m.

Claim: Cm(F, u2) = 0.

In fact, by the item (i) in Proposition 2.5, we have that µ(u2) ≥ k − 1. We can

assume that g(x, u2)/u2 < λk+1 in a set of positive measure. Thus λi(g(x, u2)/u2) >

λi(λk+1) ≥ 1, for all i ≥ k + 1. Now, using that u2 solves (1.1), we have

−∆u2 =
g(x, u2)

u2
u2.

This implies that λk(g(x, u2)/u2) ≥ 1. Then, assuming g′(x, u2) < g(x, u2)/u2 in a

set of positive measure, we have µk(g
′(x, u2)) > 1. This implies that µ(u2) ≤ k − 1,

and so µ(u2) = k − 1. The item (i) of the Proposition 2.5 and (3.2) imply the Claim.

If g′(x, u2) = g(x, u2)/u2 for all x ∈ Ω, then g′(x, u2) > λm. Hence λm(g′(x, u2)) < 1

and follows that µ(u2) ≥ m. Now, if µ(u2) = k − 1 the conclusion follows by item

(ii) in Proposition 2.5, and if µ(u2) > k − 1 the conclusion follows by item (i) in

Proposition 2.5. ♦

Proof of (b): As in the proof of (a), we have a nontrivial critical point u2 such that

Ck−1(F, u2) 6= 0.

The proof follows from the next claim and the assumption k > 2.

Claim 2: There exists a critical point u1 of F such that

Cp(F, u1) = δp,1Z.
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By the characterization of mountain pass, it is sufficient to prove the existence

of a critical point u1 of F such that C1(F, u1) 6= 0 (see [6]). But it follows as in the

case (a) since m = 1.
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