MULTIPLICITY RESULTS FOR SUBLINEAR AND SUPERLINEAR HAMMERSTEIN INTEGRAL EQUATIONS VIA MORSE THEORY

DONAL O'REGAN

Department of Mathematics, National University of Ireland Galway, Ireland *E-mail:* donal.oregan@nuigalway.ie

ABSTRACT. In this paper we establish some results for nonlinear sublinear and superlinear Hammerstein integral equations. Using Morse theory and in particular critical groups we prove a number of multiplicity results.

AMS (MOS) Subject Classification. 47J20, 47J30

1. INTRODUCTION

In this paper we use critical point theory to establish some existence results for the Hammerstein integral equation

$$u(x) = \int_{\Omega} k(x, y) f(y, u(y)) dy \quad \text{for} \quad x \in \Omega;$$
(1.1)

here Ω is a closed bounded subset of \mathbb{R}^n . We look for solutions to (1.1) in $C(\Omega)$. Throughout this paper we will also use the usual Lebesgue space $L^2(\Omega)$ with norm $|\cdot|_{L^2}$ and inner product (\cdot, \cdot) . A discussion of (1.1) using variational methods can be found in the books [3, 8]. For a more recent treatment using the ideas in [3, 8] we refer the reader to [4]. The results we present here are new and are based on critical groups and the multiplicity theory was motivated from ideas in [1, 7].

Throughout this paper we assume the kernel $k: \Omega \times \Omega \to \mathbf{R}$ satisfies the following:

$$k \in C(\Omega \times \Omega, \mathbf{R}) \tag{1.2}$$

$$k(x,y) = k(y,x) \text{ for } x, y \in \Omega$$
(1.3)

and

$$\int_{\Omega \times \Omega} k(x, y) \, u(x) u(y) \, dx \, dy \ge 0 \,\,\forall u \in L^2(\Omega).$$
(1.4)

Let

$$K u(x) = \int_{\Omega} k(x, y) u(y) dy$$
 for $x \in \Omega$ and $u \in C(\Omega)$.

Received January 15, 2009

1083-2564 \$15.00 ©Dynamic Publishers, Inc.

It is well known [3, 8] that $K : L^2(\Omega) \to L^2(\Omega)$ is a linear, completely continuous, self adjoint, nonnegative (i.e. $(Ky, y) \ge 0$ for all $y \in L^2(\Omega)$) operator. Also the square root operator of K, $K^{\frac{1}{2}} : L^2(\Omega) \to L^2(\Omega)$ exists. From the spectral theory of such operators [9] we know that K has a countably infinite number of real eigenvalues (μ_i) (recall μ_i is an eigenvalue of K if there exists a $\psi_i \in L^2(\Omega)$ with $\mu_i K \psi_i = \psi_i$) with $\mu_i > 0$ for all i. ASSUME throughout this paper that if $K\psi = 0$ for some $\psi \in L^2(\Omega)$ then $\psi = 0$. Then we can relabel the eigenvalues (μ_i) so that

$$\mu_1 \leq \mu_2 \leq \mu_3 \leq \cdots$$

and note $\mu_1 > 0$.

Also we assume

 $f: \Omega \times \mathbf{R} \to \mathbf{R}$ is continuous. (1.5)

Let

$$N_f u(x) = f(x, u(x))$$
 for $x \in \Omega$ and $u \in C(\Omega)$.

It is well known [3, 4, 8] that

$$u = K N_f u \tag{1.6}$$

has a solution in $C(\Omega)$ if and only if

$$v = K^{\frac{1}{2}} N_f K^{\frac{1}{2}} v \tag{1.7}$$

has a solution in $L^2(\Omega)$.

Let $\Phi: L^2(\Omega) \to \mathbf{R}$ be given by

$$\Phi(u) = \frac{1}{2} |u|_{L^2}^2 - \int_{\Omega} \int_0^{K^{\frac{1}{2}} u(x)} f(x, v) \, dv \, dx \quad \text{for} \quad u \in L^2(\Omega).$$
(1.8)

Again it is well known [3, 4, 8] that if there exists a $v \in L^2(\Omega)$ with

$$\Phi'(v) = 0 \tag{1.9}$$

then v is a solution of (1.7).

Remark 1.1. It is worth pointing out here that one could extend the results of this paper so that $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ above and indeed one could look at the more general problem

$$u(x) = \int_{\Omega} k(x, y) f(y, u(y)) dy$$
 for a.e. $x \in \Omega$;

here we look for solutions in $L^{p}(\Omega)$. Also here the continuity of f is replaced by f is (p,q) Carathéodory of potential type (see [8, Chapter 6 and 7]) and (1.2) is replaced by a condition to guarantee that $K : L^{q_0}(\Omega) \to L^{p_0}(\Omega)$; here p, q, p_0, q_0 are as in [8, Chapter 6 and 7].

We will obtain a variety of existence results for (1.7) in the next two sections using Morse theory. For convenience we recall here some results which we will need in Section 2 and Section 3. Let Φ be a real valued function on a real Banach space W and assume $\Phi \in C^1(W, \mathbf{R})$. For every $c \in \mathbf{R}$ let

$$\Phi^{c} = \{x \in W : \Phi(x) \le c\} \text{ (the sublevel sets at } c)$$

and

 $K = \{x \in W : \Phi'(x) = 0\}$ (the set of critical points of Φ).

In Morse theory the local behavior of Φ near an isolated critical point u is described by the sequence of critical groups

$$C^{q}(\Phi, u) = H^{q}(\Phi^{c} \cap U, \Phi^{c} \cap U \setminus \{u\}), \ q \ge 0$$

where $c = \Phi(u)$ is the corresponding critical value and U is a neighborhood of u containing no other critical points of Φ . When the critical values are bounded from below and Φ satisfies (PS) the global behavior of Φ can be described by the critical groups at infinity

$$C^q(\Phi,\infty) = H^q(W,\Phi^a), \ q \ge 0$$

where a is less than all critical values. A critical point u of Φ with $C^1(\Phi, u) \neq 0$ is called a mountain pass point.

Next we discuss the variational eigenvalues from [7] in our situation here. Consider

$$u = \lambda \, K \, u$$

where $K: L^2(\Omega) \to L^2(\Omega)$. Let

$$M = \{ u \in L^{2}(\Omega) : \frac{1}{2}(u, u) = 1 \}, \ J(u) = \frac{1}{2}(Ku, u)$$

with

$$\Psi(u) = \frac{1}{J(u)}, \ u \in L^2(\Omega) \setminus \{0\} \text{ and } \widetilde{\Psi} = \Psi|_M.$$

Let F denote the class of symmetric subsets of M and $i(M_0)$ the Fadell–Rabinowitz cohomological index of $M_0 \in F$. Then

$$\lambda_k = \inf_{M_0 \in F, \ i(M_0) \ge k} \quad \sup_{u \in M_0} \tilde{\Psi}(u), \quad 1 \le k \le \infty.$$

We know from Theorem 4.2.1 (ii) of [7] that $\lambda_1 = \mu_1$ where

$$\mu_1 = \min_{u \neq 0} \frac{(u, u)}{(Ku, u)}$$

Remark 1.2. In fact in our situation (i.e. for the Hammerstein integral equation described above) $\lambda_k = \mu_k$ for all k as was noted by Kanishka Perera. Suppose for simplicity that all the μ_i 's described above are simple with

$$\mu_1 < \mu_2 < \mu_3 < \cdots$$

Fix $k \ge 1$ so if $\mu_k < \mu < \mu_{k+1}$ the set $\widetilde{\Psi}^{\mu}$ deformation retracts (see the introduction of [7]) to the intersection of M with the subspace spanned by the eigenvectors of

 μ_1, \ldots, μ_k , which is a (k-1)-dimensional sphere, so (4.2.6) of [7] holds with all the λ 's replaced by μ 's. This together with (4.2.6) of [7] itself gives $\lambda_k = \mu_k$.

Now from Proposition 9.4.1 (ii) of [7] (note $K^{\frac{1}{2}}N_f K^{\frac{1}{2}} : L^2(\Omega) \to L^2(\Omega)$ is compact (completely continuous)) we have the following result in our situation.

Theorem 1.3. Suppose

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx = \frac{\lambda}{2} \left(Ku, u \right) + o(|u|_{L^{2}}^{2}) \quad as \quad u \to 0$$

and zero is an isolated critical point.

- (i). If $\lambda < \lambda_1$ then $C^q(\Phi, 0) = \delta_{q,0} \mathbf{Z}_2$.
- (ii). If $\lambda_k < \lambda < \lambda_{k+1}$ then $C^k(\Phi, 0) \neq 0$.

In our main multiplicity result of Section 2 we will use Theorem 1.3 together with the following result in [2, 5].

Theorem 1.4. Let Φ be a C^1 functional defined on a Banach space. If Φ is bounded from below, satisfies (PS) and $C^k(\Phi, 0) \neq 0$ for some $k \geq 1$, then Φ has two nontrivial critical points.

2. MAIN RESULTS IN SUBLINEAR CASE

We begin with an easy result.

Theorem 2.1. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume there exists a $\lambda < \mu_1$ and a C > 0 with

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}}u(x)} f(x,w) \, dw \, dx \le \frac{\lambda}{2} \left(Ku,u\right) + C \quad \forall \ u \in L^{2}(\Omega).$$

$$(2.1)$$

Then Φ given in (1.8) is coercive, satisfies (PS) and is bounded from below. Also Φ has a global minimum on $L^2(\Omega)$. Moreover if Φ has a finite number of critical points then $C^q(\Phi, \infty) = \delta_{q,0} \mathbf{Z}_2$ and Φ has a global minimizer u with $C^q(\Phi, u) = \delta_{q,0} \mathbf{Z}_2$.

Remark 2.2. Note $(Ku, u) = (K^{\frac{1}{2}}u, K^{\frac{1}{2}}u) = |K^{\frac{1}{2}}u|_{L^2}^2$ for $u \in L^2(\Omega)$.

Proof. Replacing λ with max $\{\lambda, 0\}$ if necessary we may assume $\lambda \geq 0$. Then for $u \in L^2(\Omega)$ we have

$$\begin{split} \Phi(u) &= \frac{1}{2} |u|_{L^2}^2 - \int_{\Omega} \int_0^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx \\ &\geq \frac{1}{2} |u|_{L^2}^2 - \frac{\lambda}{2} \left(Ku, u \right) - C \\ &\geq \frac{1}{2} |u|_{L^2}^2 - \frac{\lambda}{2} \frac{1}{\mu_1} |u|_{L^2}^2 - C \\ &= \frac{1}{2} \left(1 - \frac{\lambda}{\mu_1} \right) |u|_{L^2}^2 - C \\ &\to \infty \quad \text{as} \quad |u|_{L^2} \to \infty. \end{split}$$

Every (PS) sequence is bounded by coercivity and hence has a convergent subsequence from Lemma 3.1.3 of [7]. Also since $\Phi(u) \geq -C$ from above then Φ is bounded from below. Now Theorem 4.4 of [6] (or Proposition 3.5.1 of [7]) guarantees that Φ has a global minimum on $L^2(\Omega)$ (note $\Phi : L^2(\Omega) \to \mathbf{R}$ is Fréchet differentiable; see [3, 4, 8]). If Φ has a finite number of critical points then Corollary 3.5.3 of [7] (note Φ is bounded from below) guarantees that $C^q(\Phi, \infty) = \delta_{q,0} \mathbf{Z}_2$ and Φ has a global minimizer u with $C^q(\Phi, u) = \delta_{q,0} \mathbf{Z}_2$.

Remark 2.3. Suppose there exists $\lambda < \mu_1, 0 \leq \gamma < 1, b > 0$ and C > 0 with

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx \leq \frac{\lambda}{2} \left(Ku, u \right) + b \left[(Ku, u) \right]^{\gamma} + C \quad \forall \ u \in L^{2}(\Omega).$$

It follows immediately that we can find a $\mu < \mu_1$ and a constant $C_1 > 0$ with

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx \le \frac{\mu}{2} \, (Ku, u) + C_1 \ \forall \ u \in L^2(\Omega).$$

We are now ready to prove our main result in this section.

Theorem 2.4. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume there exists a $\lambda > \mu_1$ with $\lambda \neq \lambda_i (= \mu_i)$ for $i \in \{2, 3, ...\}$ and with

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx = \frac{\lambda}{2} \left(Ku, u \right) + o(|u|_{L^{2}}^{2}) \quad as \quad u \to 0$$
(2.2)

and also assume f(x,0) = 0 for $x \in \Omega$. Finally suppose there exists a constant γ , $0 \leq \gamma < 1$, a constant $b < \mu_1$, and a constant $C \geq 0$ with

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx \le \frac{b}{2} \left(Ku, u \right) + C \left(\left[(Ku, u) \right]^{\gamma} + 1 \right) \quad \forall \ u \in L^{2}(\Omega).$$
(2.3)

Then Φ has two nontrivial critical points.

Proof. Without loss of generality assume $b \ge 0$. For any $u \in L^2(\Omega)$ we have

$$\Phi(u) \geq \frac{1}{2} |u|_{L^{2}}^{2} - \frac{b}{2} (Ku, u) - C [(Ku, u)]^{\gamma} - C$$

$$\geq \frac{1}{2} \left(1 - \frac{b}{\mu_{1}}\right) |u|_{L^{2}}^{2} - \frac{C}{\mu_{1}^{\gamma}} |u|_{L^{2}}^{2\gamma} - C.$$

Since $0 \leq \gamma < 1$ we see that Φ is bounded from below and coercive, so Φ satisfies the (PS) condition. Note $\Phi'(0) = 0$ since f(x, 0) = 0 for $x \in \Omega$. We may assume the origin is an isolated critical point (otherwise we have a sequence of nontrivial critical points of Φ and we are finished). Now Theorem 1.3 guarantees that $C^k(\Phi, 0) \neq 0$ for some $k \geq 1$. Then Φ has two nontrivial critical points by Theorem 1.4.

Our next two results follow immediately from Theorem 7.2.2 and Theorem 7.4.1 of [7] respectively (note $\lambda_k = \mu_k$ for all k).

Theorem 2.5. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume either

$$\frac{\lambda_k}{2} \left(Ku, u \right) \le \int_{\Omega} \int_0^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx < \frac{\lambda_{k+1}}{2} \left(Ku, u \right) \quad \forall \ u \in B_{\rho}(0) \setminus \{0\}$$

for some k such that $\lambda_k < \lambda_{k+1}$ and $\rho > 0$, or

$$\frac{\lambda_{\star}}{2} \left(Ku, u \right) + o(|u|_{L^2}^2) \le \int_{\Omega} \int_0^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx \le \frac{\lambda^{\star}}{2} \left(Ku, u \right) + o(|u|_{L^2}^2) \quad as \quad u \to 0$$

for some $\lambda_k < \lambda_* \leq \lambda^* < \lambda_{k+1}$. Also suppose (2.1) holds and assume f(x, 0) = 0 for $x \in \Omega$. Then (1.7) has a positive solution $v_1 \neq 0$. If $k \geq 2$ then there is a second solution $v_2 \neq 0$.

Remark 2.6. The result in Theorem 2.5 can be improved if we use the ideas in Theorem 2.4. In fact in Theorem 2.5 there is a second solution $v_2 \neq 0$ if $k \geq 1$. To see this (again without loss of generality assume the origin is an isolated critical point) note [7, Lemma 7.2.1] guarantees that $C^k(\Phi, 0) \neq 0$ and of course (2.1) guarantees that Φ is bounded from below and satisfies the (PS) condition. The result now follows from Theorem 1.4.

Theorem 2.7. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume

f(x,-u) = -f(x,u) for all $(x,u) \in \Omega \times \mathbf{R}$

and that (2.1) holds. Finally assume

$$\int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx \ge \frac{\lambda_{\star}}{2} \left(Ku, u \right) + o(|u|_{L^{2}}^{2}) \quad as \quad u \to 0$$

for some $\lambda_{\star} > \lambda_m$. Then (1.7) has m distinct pairs (note Φ is even) of solutions (at positive levels).

2. MAIN RESULTS IN SUPERLINEAR CASE

For notational purposes for $u \in L^2(\Omega)$ let

$$F(u) = \int_{\Omega} \int_{0}^{K^{\frac{1}{2}} u(x)} f(x, w) \, dw \, dx$$

and

$$H_{\mu}(u) = F(u) - \frac{1}{\mu} \left(K^{\frac{1}{2}} N_f K^{\frac{1}{2}} u, u \right), \ \mu > 0.$$

We begin with our main result in this section.

Theorem 3.1. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume

 $f(x,0) = 0 \quad for \quad x \in \Omega \tag{3.1}$

$$F$$
 is bounded from below (3.2)

 H_{μ} is bounded from above for some $\mu > 2$ (3.3)

and

$$\lim_{t \to \infty} \frac{F(t u)}{t^2} = \infty \quad \forall \ u \neq 0.$$
(3.4)

Finally suppose there exists λ with $\lambda \neq \lambda_i (= \mu_i)$ for $i \in \{1, 2, ...\}$ and with

$$F(u) = \frac{\lambda}{2} (Ku, u) + o(|u|_{L^2}^2) \text{ as } u \to 0.$$

Then Φ has a nontrivial critical point.

Proof. Note $\Phi'(0) = 0$ from (3.1). Suppose Φ has no nontrivial critical points. Then

$$C^{q}(\Phi, 0) = H^{q}(\Phi^{0}, \Phi^{0} \setminus \{0\}), \ q \ge 0.$$

By the second deformation lemma (see Lemma 3.2.5 of [7] with $b = \infty$ and b = 0) Φ^0 is a deformation retract of $L^2(\Omega)$ and $\Phi^0 \setminus \{0\}$ deformation retracts to Φ^a for any a < 0 so

$$C^{q}(\Phi, 0) = H^{q}(L^{2}(\Omega), \Phi^{a}).$$
 (3.5)

We know from Theorem 5.3.2 of [7] that Φ satisfies (PS). In Section 5.3 of [7] we proved for any u in the unit sphere S that

$$\frac{d}{dt}\Phi(tu) \le \frac{2}{t} \ (\Phi(tu) - a_0)$$

where

$$a_0 = \inf \frac{1}{2} \left(\left[\mu - 2 \right] F - \mu H_{\mu} \right)$$

so all the critical values of Φ are greater than or equal to a_0 (note $2\Phi(u) - \Phi'(u) = (\mu - 2)F(u) - \mu H_{\mu}(u)$). Note $a_0 \leq 0$ since $F(0) = H_{\mu}(0) = 0$. Also in Lemma 5.3.1 of [7] we showed for each $a < a_0$ there is a C^1 map $T_a : S \to (0, \infty)$ such that

$$\Phi^a = \{t \, u : \ u \in S : \ t \ge T_a(u)\} \cong S.$$

As a result if |a| is sufficiently large (here a < 0), Φ^a is homotopic to S and hence contractible so from (3.5) we have

$$C^q(\Phi, 0) = 0 \quad \forall \ q. \tag{3.6}$$

On the other hand since $\lambda \neq \lambda_i$ for $i \in \{1, 2, ...\}$ and since zero is an isolated critical point (note $\Phi'(0) = 0$ and we assumed Φ has no nontrivial critical points) we know from Theorem 1.3 that $C^k(\Phi, 0) \neq 0$ for some $k \geq 0$. This is a contradiction. Thus Φ has a nontrivial critical point.

Remark 3.2. To see how conditions (3.2), (3.3) and (3.4) relate to subcritical growth and the Ambrosetti–Rabinowitz condition we refer the reader to Example 5.3.3 in [7].

Our next two results follow immediately from Theorem 7.1.3 and Theorem 7.2.3 of [7] respectively (note $\lambda_k = \mu_k$ for all k).

Theorem 3.3. Suppose (1.2), (1.3), (1.4), (1.5), (3.1), (3.2), (3.3) and (3.4) hold. In addition assume Φ has a finite number of critical points and either

$$F(u) \le \frac{\lambda_1}{2} (Ku, u) \quad \forall \ u \in B_{\rho}(0)$$

for some $\rho > 0$, or

$$F(u) \le \frac{\lambda^{\star}}{2} (Ku, u) + o(|u|_{L^2}^2) \quad as \ u \to 0$$

for some $0 \leq \lambda^* < \lambda_1$. Then (1.7) has a mountain pass solution $v \neq 0$.

Theorem 3.4. Suppose (1.2), (1.3), (1.4), (1.5), (3.1), (3.2), (3.3) and (3.4) hold. In addition assume Φ has a finite number of critical points and either

$$\frac{\lambda_k}{2} (Ku, u) \le F(u) < \frac{\lambda_{k+1}}{2} (Ku, u) \quad \forall \ u \in B_{\rho}(0) \setminus \{0\}$$

for some k such that $\lambda_k < \lambda_{k+1}$ and $\rho > 0$, or

$$\frac{\lambda_{\star}}{2} (Ku, u) + o(|u|_{L^2}^2) \le F(u) \le \frac{\lambda^{\star}}{2} (Ku, u) + o(|u|_{L^2}^2) \quad as \quad u \to 0$$

for some $\lambda_k < \lambda_\star \leq \lambda^\star < \lambda_{k+1}$. Then (1.7) has a solution $v \neq 0$ with either $\Phi(v) < 0$ and $C^{k-1}(\Phi, v) \neq 0$ or $\Phi(v) > 0$ and $C^{k+1}(\Phi, v) \neq 0$.

Remark 3.5. We can remove the condition that Φ has a finite number of critical points in Theorem 3.4 and then we deduce that (1.7) has a solution $v \neq 0$. Of course the result is immediate from Theorem 3.4. Alternately the proof is exactly the same as in Theorem 3.1 except here we deduce $C^k(\Phi, 0) \neq 0$ from [7, Lemma 7.2.1].

Our final result is a multiplicity result which follows immediately from Theorem 7.4.3 of [7].

Theorem 3.6. Suppose (1.2), (1.3), (1.4), (1.5), (3.2), (3.3) and (3.4) hold. In addition assume

$$f(x, -u) = -f(x, u)$$
 for all $(x, u) \in \Omega \times \mathbf{R}$

and

$$F(u) \le \frac{\lambda_{\star}}{2} (Ku, u) + o(|u|_{L^2}^2) \quad as \quad u \to 0$$

for some $\lambda_{\star} < \lambda_k$. Then (1.7) has infinite distinct pairs (note Φ is even) of solutions (at positive levels).

REFERENCES

- [1] R.P. Agarwal, K. Perera and D. O'Regan, Multiplicity results for *p*-sublinear *p*-Laplacian problems involving indefinite eigenvalue problems via Morse theory, to appear.
- [2] K.C. Chang, Infinite-dimensional Morse theory and multiple solution problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, 1993.
- [3] M.A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon, Oxford, 1964.
- [4] F. Li, Y. Li and Z. Liang, Existence of solutions to nonlinear Hammerstein integral equations and applications, *Jour. Math. Anal. Appl.* **323** (2006), 209–227.
- [5] J.Q. Liu and S.H. Li, An existence theorem for multiple critical points and its application, *Kexue Tongbao (Chinese)* 29 (1984), 1025–1027.
- [6] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Volume 74 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989.
- [7] K. Perera, R.P. Agarwal and D. O'Regan, Morse-theoretic aspects of p-Laplacian type operators, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, to appear.
- [8] R. Precup, Methods in nonlinear integral equations, Kluwer, Dordrecht, 2002.
- [9] N. Young, An introduction to Hilbert spaces, Cambridge University Press, Cambridge, 1989.