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1. INTRODUCTION AND MAIN RESULT

Let X be a Banach space and f : X −→ R a function of class C1. A basic result

of Morse theory, its global counterpart, says that, if a, b ∈ R with a < b, f satisfies

(PS)c for any c ∈ [a, b] and has a finite number of critical points in f−1([a, b]), then

there exists a formal series of powers Q with coefficients in N := N ∪ {∞} such that∑
a≤f(u)≤b
f ′(u)=0

P (f, u; K)(t) = P (f, a, b; K)(t) + (1 + t)Q(t) , (1.1)

where K is an assigned field,

Cm(f, u; K) = Hm ({f ≤ f(u)}, {f ≤ f(u)} \ {u}; K) ,

P (f, u; K)(t) =
∑
m≥0

dim (Cm(f, u; K)) tm ,

P (f, a, b; K)(t) =
∑
m≥0

dim (Hm ({f ≤ b}, {f < a}; K)) tm ,

andH∗ denotes for instance Alexander-Spanier cohomology (see e.g. [4, Theorem I.4.3]

and [19, Theorem 8.2]). Then the task of the local counterpart of Morse theory is to

provide a connection between P (f, u; K) and other concepts of local nature describing

the behavior of f near u. This is the part well established if X is a Hilbert space,

but with only partial results in the Banach setting (see, in particular, [4, 22, 23] and,

more recently, [5, 6]).
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Coming back to (1.1), already at this stage some conclusion can be derived. For

instance, if Hm({f ≤ b}, {f < a}; K) is nontrivial for some m, then there exists a

critical point u in f−1([a, b]) with Cm(f, u; K) nontrivial.

However, if each P (f, u; K) is a polynomial with coefficients in N, rather than a

formal series of powers with coefficients in N, then much more information can be de-

duced from (1.1). For instance, one is allowed to put t = −1 in (1.1), obtaining a typi-

cal relation involving the Euler-Poincaré characteristic of the pair ({f ≤ b}, {f < a}).
Again, if X is a Hilbert space, from the Shifting theorem of Gromoll and Meyer (see

e.g. [4, Theorem I.5.4] or [19, Theorem 8.4]) one deduces a satisfactory information:

if f is of class C2 and the Hessian of f at u is a Fredholm operator, then P (f, u; K)

is a polynomial with coefficients in N. For a generalization, with less regularity but

still in the Hilbert setting, we refer the reader to [18, Theorem 2.2]. If X is a Banach

space, partial results are contained in the papers we have already mentioned, but

they do not cover, for instance, the functional

f(u) =
1

p

∫
Ω

|∇u|p dx−
∫

Ω

G(x, u) dx ,

with G of subcritical growth, defined on the Sobolev space W 1,p
0 (Ω).

Our purpose is to provide a result which is applicable to such a functional. Con-

sider a separable and reflexive Banach space X, whose dual space is denoted by X ′.

Let f : X −→ R be a function of the form f = f0 + f1, satisfying the following

assumptions:

(A1) f0 : X −→ R is convex, of class C1 and, for every sequence (uk) weakly conver-

gent to u in X with

lim sup
k

f0(uk) ≤ f0(u) ,

we have ‖uk − u‖ → 0;

(A2) f1 : X −→ R is of class C1 and f ′1 : X −→ X ′ is completely continuous, namely,

for every bounded sequence (uk) in X, the sequence (f ′1(uk)) admits a convergent

subsequence in X ′.

Our main result is the following

Theorem 1.1. Let u be an isolated critical point of f . Then⊕
m≥0

Cm(f, u; K)

has finite dimension over K, namely P (f, u; K) is a polynomial with coefficients in N.

Moreover, there exists an open neighborhood U of u such that {f ≤ f(u)} ∩ U and

({f ≤ f(u)} \ {u}) ∩ U are both absolute neighborhood retracts.
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In particular, the second information says that the choice of Alexander-Spanier

cohomology, rather than singular cohomology, is not decisive, if critical points are

isolated (see also [8, Remark 2]).

Let us point out that, since we have no generalized Morse lemma at our disposal,

our proof is purely of topological rather than differential-topological type. The idea is

to show that the cohomology of the pair ({f ≤ f(u)}, {f ≤ f(u)}\{u}) is isomorphic

to that of the same pair endowed with the weak topology. In this way we gain a kind of

local compactness which allows us to show that this cohomology is in turn isomorphic

to that of a compact ANR pair, which is of finite type by a well known result [24].

A feature of this argument is that, in spite of the fact that f is of class C1, we are

brought to consider also nonsmooth functionals, as this is the case of f with respect

to the weak topology.

Actually, it would be interesting to complement Theorem 1.1 with a further

information. It is easily seen that assumptions (A1) and (A2) imply that f ′ : X −→ X ′

is of class (S)+ in the sense of [2]. We conjecture that a Poincaré-Hopf theorem holds

in the sense that

P (u, f ; K)(−1) = deg(f ′, V, 0)

for every sufficiently small neighborhood V of u, where deg denotes the degree for

maps of class (S)+, as defined in [2]. Let us recall that, in the Hilbert setting, a

result of this type is well known (see [4, Theorem 3.2], [19, Theorem 8.5] and, with

less regularity, [18, Theorem 3.2]).

Another possible conjecture is that, if f is even, then P (0, f ; K)(1) is an odd num-

ber. Again, this is true in finite dimension by approximation with Morse functions,

hence whenever a Shifting theorem holds.

In Section 2 we recall some known properties concerning ANRs, while in Sec-

tion 3 we recall some basic facts of nonsmooth critical point theory. In Section 4

we prove that P (f, u; K) is a polynomial with coefficients in N, when f is a continu-

ous functional defined on a metric space satisfying suitable assumptions. Finally, in

Section 5 we deduce Theorem 1.1.

2. ABSOLUTE NEIGHBORHOOD RETRACTS

All the results contained in this section are either well known or simple extensions

of well known results. First of all, let us recall [14, Definition 11.1.1].

Definition 2.1. A topological space X is said to be an absolute neighborhood retract

(ANR, for short) if it is metrizable and, for every metrizable space Y , every closed

subset C of Y and every continuous map ϕ : C −→ X, there exist a neighborhood U

of C in Y and a continuous map Φ : U −→ X such that Φ
∣∣
C

= ϕ.
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Theorem 2.2. Let X be an ANR and C a closed subset of X. Assume that C is

also an ANR and that the quotient X/C is metrizable.

Then X/C is an ANR.

Proof. Since X/C is metrizable, it is an ANR as a particular case of adjunction space

(see e.g. [15, Theorem VI.1.2]).

If X is a metric space, we denote by Br (u) the open ball in X of center u and

radius r. The proof of the next result is quite similar to that of [20, Theorem 16].

We sketch it for reader’s convenience.

Theorem 2.3. Let X, Y be two normed spaces, C a convex subset of Y and V an

open subset of C. Let also L : X −→ Y be a linear and continuous map such that

L(X) ∩ C is dense in C and let U = L−1(V ).

Then L
∣∣
U

: U −→ V is a homotopy equivalence.

Proof. The sets C and L−1(C) are both ANRs, being convex subsets of normed

spaces (see e.g. [14, Theorem 7.7.5]). In turn, V and U are also ANRs, being open

subsets of ANRs (see e.g. [14, Proposition 11.1.2]). By [20, Theorem 14], V and U

are dominated by simplicial complexes. By Whitehead’s theorem [25, Theorem 1], it

is therefore enough to prove that L
∣∣
U

: U −→ V is a weak homotopy equivalence.

Let g : Sk −→ V be a continuous map. Let ε > 0 be such that ‖g(x) − v‖ > ε

whenever x ∈ Sk and v ∈ C \ V . Let v1, . . . , vn ∈ L(X) ∩ C be such that g(Sk) ⊆⋃n
j=1 Bε (vj), say vj = Luj with uj ∈ X, and let ϑ1, . . . , ϑn : Y −→ [0, 1] be continuous

functions such that ϑj = 0 outside Bε (vj) and
∑n

j=1 ϑj = 1 on g(Sk). Define a

continuous map f : Sk −→ X by

f(x) =
n∑
j=1

ϑj(g(x))uj .

Then we have

Lf(x) =
n∑
j=1

ϑj(g(x)) vj ∈ C ,

‖Lf(x)− g(x)‖ ≤
n∑
j=1

ϑj(g(x)) ‖vj − g(x)‖ ≤ ε ,

whence Lf(x) ∈ V , namely f(x) ∈ U . Define now H : Sk × [0, 1] −→ V by

H(x, t) =
n∑
j=1

ϑj(g(x)) ((1− t)g(x) + tvj) .

Then H is a homotopy between g and Lf , so that
(
L
∣∣
U

)
#

: πk(U) −→ πk(V ) is onto.

In a similar way it can be shown that
(
L
∣∣
U

)
#

: πk(U) −→ πk(V ) is one-to-one

and the assertion follows.
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3. METRIC CRITICAL POINT THEORY

Let X be a metric space endowed with the metric d and let f : X −→ [−∞,+∞]

be a function. We set

f c = {u ∈ X : f(u) ≤ c} (c ∈ R) ,

epi (f) = {(u, λ) ∈ X × R : f(u) ≤ λ} .

In the following, X × R will be endowed with the metric

d ((u, λ) , (v, µ)) =
(
d(u, v)2 + (λ− µ)2

) 1
2

and epi (f) with the induced metric. Finally, as in [10], we define a continuous function

Gf : epi (f) −→ R by Gf (u, λ) = λ.

The next definition is taken from [3]. In an equivalent form, the notion was

introduced in [11, 17], while a variant was considered in [16].

Definition 3.1. For every u ∈ X with f(u) ∈ R, we denote by |df | (u) the supremum

of the σ’s in [0,+∞[ such that there exist a neighborhood W of (u, f(u)) in epi (f),

δ > 0 and a continuous map H : W × [0, δ] −→ X satisfying

d(H((v, µ), t), v) ≤ t , f(H((v, µ), t)) ≤ µ− σt ,

whenever (v, µ) ∈ W and t ∈ [0, δ].

The extended real number |df | (u) is called the weak slope of f at u.

It is easily seen that, if (uk) is a sequence convergent to u in X with f(u) ∈ R
and f(uk)→ f(u), then

|df | (u) ≤ lim inf
k
|df | (uk) .

Moreover, according to [3, Proposition 2.3], for every u ∈ X with f(u) ∈ R, we have

|df | (u) =


|dGf | (u, f(u))√

1− |dGf | (u, f(u))2
if |dGf | (u, f(u)) < 1,

+∞ if |dGf | (u, f(u)) = 1.

(3.1)

Finally, if X is an open subset of a normed space and f : X −→ R is of class C1,

then |df | (u) = ‖f ′(u)‖ for every u ∈ X (see [11, Corollary 2.12]).

Proposition 3.2. Let β : X −→ R be a locally Lipschitz function and set, for every

u ∈ X,

Lip(β, u) = inf

{
inf
{
σ ≥ 0 :

β is Lipschitz continuous of constant σ on Bδ (u)
}

: δ > 0

}
.

Then the following facts hold:
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(a) for every u ∈ X with f(u) ∈ R, we have

|df | (u)− Lip(β, u) ≤ |d(f + β)| (u) ≤ |df | (u) + Lip(β, u) ;

(b) if we set Y = {u ∈ X : f(u) ≤ β(u)}, for every u ∈ Y with f(u) ∈ R and

|df | (u) > Lip(β, u), we have∣∣d (f ∣∣
Y

)∣∣ (u) ≥ |df | (u) .

Proof. Assertion (a) is proved in [13, Proposition 1.6]. To prove (b), consider u ∈ Y
with f(u) ∈ R and σ with Lip(β, u) < σ < |df | (u). Let δ > 0 and

H : (Bδ (u, f(u)) ∩ epi (f))× [0, δ] −→ X

be a continuous map such that

d(H((v, µ), t), v) ≤ t , f(H((v, µ), t)) ≤ µ− σt ,

for every (v, µ) ∈ (Bδ (u, f(u)) ∩ epi (f)) and t ∈ [0, δ]. Without loss of generality, we

may also assume that β is Lipschitz continuous of constant σ on B2δ (u), hence on

the range of H. Then, if we define a continuous map

K : (Bδ (u, f(u)) ∩ epi (f) ∩ (Y × R))× [0, δ] −→ X

by

K((v, µ), t) =


H((v, µ), t) if µ ≤ β(v) ,

v if µ ≥ β(v) and σt ≤ µ− β(v) ,

H ((v, β(v)), t− σ−1(µ− β(v))) if µ ≥ β(v) and σt ≥ µ− β(v) ,

we have d(K((v, µ), t), v) ≤ t. If µ ≤ β(v), it holds

f(K((v, µ), t)) ≤ µ− σt ≤ β(v)− σd(K((v, µ), t), v) ≤ β(K((v, µ), t)) .

If µ ≥ β(v) and σt ≤ µ− β(v), we have

f(K((v, µ), t)) ≤ β(K((v, µ), t)) = β(v) ≤ µ− σt .

Finally, if µ ≥ β(v) and σt ≥ µ− β(v), it holds

f(K((v, µ), t)) ≤ β(v)− σ(t− σ−1(µ− β(v))) = µ− σt

and also

f(K((v, µ), t)) ≤ β(v)− σ(t− σ−1(µ− β(v)))

≤ β(v)− σd(K((v, µ), t), v) ≤ β(K((v, µ), t)) .

Thus, in any case f(K((v, µ), t)) ≤ µ − σt and K has values in Y . Then we have∣∣d (f ∣∣
Y

)∣∣ (u) ≥ σ and the assertion follows by the arbitrariness of σ.
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Definition 3.3. An element u ∈ X is said to be a (lower) critical point of f , if

f(u) ∈ R and |df | (u) = 0. A real number c is said to be a (lower) critical value of f ,

if there exists a (lower) critical point u of f with f(u) = c. For every c ∈ R, we set

Kc = {u ∈ X : f(u) = c , |df | (u) = 0} .

Definition 3.4. For every u ∈ X with f(u) ∈ R, every field K and every nonnegative

integer m, we set

Cm(f, u; K) = Hm (f c, f c \ {u}; K) ,

where c = f(u) and H∗ denotes Alexander-Spanier cohomology (see [21]). Cm(f, u; K)

is called the m-th critical group of f at u.

By excision, we have Hm (f c, f c \ {u}; K) ≈ Hm (f c ∩ U, (f c \ {u}) ∩ U ; K) for

every neighborhood U of u. Therefore, the concept has local nature. Moreover, if u is

not a critical point of f , we have Cm(f, u; K) = {0} for anym (see [7, Proposition 3.4]).

Finally, since the map

(f c, f c \ {u}) −→
(
Gcf ,Gcf \ {(u, f(u))}

)
u 7→ (u, c)

is a homotopy equivalence, we have

Cm(f, u; K) ≈ Cm(Gf , (u, f(u)); K) (3.2)

(see [7, p. 1064]).

Definition 3.5. Let c ∈ R. A sequence (uk) in X is said to be a Palais-Smale

sequence at level c ((PS)c-sequence, for short) for f , if f(uk)→ c and |df | (uk)→ 0.

The function f is said to satisfy the Palais-Smale condition at level c ((PS)c, for

short), if every (PS)c-sequence for f admits a convergent subsequence in X.

Theorem 3.6. (Quantitative deformation theorem) Let f : X −→ R be a

continuous function and let a, b ∈ R with a < b. Assume that X is complete and that

there exists σ > 0 such that |df | (u) > σ for every u ∈ f−1(]a, b]).

Then f−1(a) is a strong deformation retract of f−1([a, b]) by a map

η : f−1([a, b])× [0, 1] −→ f−1([a, b])

satisfying f(η(u, t)) ≤ f(u)− σd(η(u, t), u) for any u ∈ f−1([a, b]) and t ∈ [0, 1].

Proof. It is a particular case of [9, Theorem 2.1].

Theorem 3.7. (Second deformation lemma) Let f : X −→ R be a continuous

function and let a, b ∈ R with a < b. Assume that X is complete, that f satisfies

(PS)c for any c ∈ [a, b], that there are no critical points of f in f−1(]a, b[) and only

a finite number in f−1(a).
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Then f−1(a) is a strong deformation retract of f−1([a, b]) \Kb by a map

η :
(
f−1([a, b]) \Kb

)
× [0, 1] −→

(
f−1([a, b]) \Kb

)
satisfying

η(u, t) 6= u =⇒ f(η(u, t)) < f(u)

for any u ∈ f−1([a, b]) \Kb and t ∈ [0, 1].

Proof. See [7, Theorem 2.3] or [8, Theorem 4 and Remark 2]. The last assertion is

not explicitly stated, but it is contained in the proof.

4. CRITICAL GROUPS OF FINITE TYPE IN METRIC SPACES

Let X be a set endowed with two metrics d and d0, let f : X −→ R be a function,

let u ∈ X and let c = f(u). Assume that:

(M1) for every v, w ∈ X, we have

d0(v, w) ≤ d(v, w) , |d0f | (v) ≥ |df | (v) ,

where |d0f | and |df | denote the weak slope with respect to the metrics d0 and d,

respectively;

(M2) the space X is d-complete, is an ANR both in the d- and in the d0-topology

and, for every d0-open subset U of X, the identity map of U is a homotopy

equivalence from the d- to the d0-topology;

(M3) the function f is continuous with respect to the d0-topology and there exists

ε > 0 such that {v ∈ X : c− ε ≤ f(v) ≤ c+ ε} is d0-compact and f satisfies

(PS)a with respect to the metric d for every a ∈ [c− ε, c+ ε];

(M4) u is an isolated critical point of f with respect to the metric d.

Our main result is the following

Theorem 4.1. There exists a d0-open neighborhood U of u such that:

(a) (f c ∩ U, (f c \ {u}) ∩ U) is a pair of ANRs both in the d- and in the d0-topology;

(b) the identities of f c ∩ U and of (f c \ {u}) ∩ U , as maps from the d- to the d0-

topology, are homotopy equivalences;

(c) the identity of (f c ∩ U, (f c \ {u}) ∩ U), as a map from the d- to the d0-topology,

induces an isomorphism in cohomology;

(d) for every field K, the linear space⊕
m≥0

Cm(f, u; K)

has finite dimension over K.

The section will be devoted to the proof of this result.
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Lemma 4.2. There exist two d0-open neighborhoods U, V of u and a d0-closed neigh-

borhood W of u such that:

(i) the d0-closure of V is contained in U ;

(ii) f c∩U is a strong deformation retract of U both in the d- and in the d0-topology;

(iii) f c ∩ (U \ V ) is a strong deformation retract of (f c \ {u})∩U both in the d- and

in the d0-topology;

(iv) f c ∩ (U \ V ) is a strong deformation retract of U \W both in the d- and in the

d0-topology;

(v) if f c ∩ U is endowed with the d0-topology, then the quotient space

(f c ∩ U)/ (f c ∩ (U \ V ))

is a compact ANR.

Proof. By (M3) and (M4), there exist r, σ > 0 such that σr ≤ ε and

|df | (v) > 0 for every v ∈ X with 0 < d0(v, u) ≤ 2r ,

|df | (v) > σ for every v ∈ X with r ≤ d0(v, u) ≤ 2r .

Define β : X −→ R by β(v) =
[
r − (d0(v, u)− r)+]+, so that β is globally Lipschitz

continuous of constant 1 and satisfies

Lip(β, v) = 0 if d0(v, u) < r or d0(v, u) > 2r

with respect to d0, hence also to d. Then set

U = {v ∈ X : |f(v)− c| < σβ(v)} ,

which is clearly a d0-open neighborhood of u. Again by (M3), there exists σ′ ∈]0, σ/2]

such that

|df | (v) > σ′ for every v ∈ X with c+
σ

2
β(v) < f(v) ≤ c+ σβ(v) .

If we set g = f − (σ − σ′)β and

Y = {v ∈ X : c+ (σ − σ′)β(v) ≤ f(v) ≤ c+ σβ(v)}

= {v ∈ X : c ≤ g(v) ≤ c+ σ′β(v)} ,

then Y is d-complete and d0-compact. Moreover, by Proposition 3.2 and (M1) we

have

|dg| (v) , |d0g|(v) > σ′ for every v ∈ X with r ≤ d0(v, u) ≤ 2r ,

|dg| (v) = |df | (v) , |d0g|(v) = |d0f |(v) otherwise ,

hence

|dg| (v) , |d0g|(v) > σ′ for every v ∈ X with c < g(v) ≤ c+ σ′β(v) .
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Again by Proposition 3.2 and (M1), it follows∣∣d (g∣∣
Y

)∣∣ (v) ≥ |dg| (v) > σ′ ,
∣∣d0

(
g
∣∣
Y

)∣∣ (v) ≥ |d0g|(v) > σ′ ,

for every v ∈ Y with g(v) > c. By Theorem 3.6 we infer that

{v ∈ X : f(v) = c+ (σ − σ′)β(v)} = {v ∈ Y : g(v) = c}

is a strong deformation retract, both in the d- and in the d0-topology, of Y by maps

η satisfying

f(η(v, t)) ≤ f(v)− σ′d(η(v, t), v) (resp. f(η(v, t)) ≤ f(v)− σ′d0(η(v, t), v)) .

It easily follows that in both cases

f(v) < c+ σβ(v) =⇒ f(η(v, t)) < c+ σβ(η(v, t)) .

Therefore,

{v ∈ X : d0(v, u) < 2r , f(v) = c+ (σ − σ′)β(v)}

is a strong deformation retract, both in the d- and in the d0-topology, of

{v ∈ X : c+ (σ − σ′)β(v) ≤ f(v) < c+ σβ(v)} .

Consider now

Z = {v ∈ X : c− ε ≤ f(v) ≤ c+ (σ − σ′)β(v)} ,

which is again d-complete and d0-compact. Arguing as before, it turns out that∣∣d (f ∣∣
Z

)∣∣ (v) ≥ |df | (v) ,
∣∣d0

(
f
∣∣
Z

)∣∣ (v) ≥ |d0f |(v) ≥ |df | (v) ,

for every v ∈ Z with f(v) > c− ε. In particular, f
∣∣
Z

satisfies (PS)a for every a ≥ c

and there is no critical point of f
∣∣
Z

in {v ∈ Z \ {u} : f(v) ≥ c}, with respect to both

metrics. By Theorem 3.7 we infer that {v ∈ X : f(v) = c} is a strong deformation

retract of

{v ∈ X : c ≤ f(v) ≤ c+ (σ − σ′)β(v)} ,

with respect to both topologies, by maps η satisfying

η(v, t) 6= v =⇒ f(η(v, t)) < f(v) .

Therefore

{v ∈ X : d0(v, u) < 2r , f(v) = c}

is a strong deformation retract of

{v ∈ X : d0(v, u) < 2r , c ≤ f(v) ≤ c+ (σ − σ′)β(v)}

with respect to both topologies. Combining this fact with the previous step, we infer

that

{v ∈ X : d0(v, u) < 2r , f(v) = c}
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is a strong deformation retract of

{v ∈ X : d0(v, u) < 2r , c ≤ f(v) < c+ σβ(v)}

with respect to both topologies. It easily follows that f c ∩ U is a strong deformation

retract of U with respect to both topologies and assertion (ii) is proved.

Define now

V = {v ∈ X : |f(v)− c| < σβ(v)− σr/2} ,

which is clearly a d0-open neighborhood of u whose d0-closure is contained in U .

Consider h = f + σβ and

E = {v ∈ X : c− σβ(v) ≤ f(v) ≤ c} = {v ∈ X : c ≤ h(v) ≤ c+ σβ(v)} ,

which is d-complete and d0-compact. As before, we see that h
∣∣
E

satisfies (PS)a for

every a > c, that h(u) = c+ σr and there is no critical point of h
∣∣
E

in

{v ∈ E \ {u} : c < h(v) ≤ c+ σr}

with respect to both metrics. By Theorem 3.7 we infer that

{v ∈ X : f(v) ≤ c , f(v) = c− σβ(v) + σr/2} = {v ∈ E : h(v) = c+ σr/2}

is a strong deformation retract of

{v ∈ X \ {u} : c− σβ(v) + σr/2 ≤ f(v) ≤ c}

= {v ∈ E \ {u} : c+ σr/2 ≤ h(v) ≤ c+ σr}

with respect to both topologies. It easily follows that f c ∩ (U \ V ) is a strong defor-

mation retract of (f c \ {u})∩U with respect to both topologies and assertion (iii) is

proved.

Finally, let

W = {v ∈ X : f(v) ≥ c− σβ(v) + 3σr/4} ,

which is clearly a d0-closed neighborhood of u. Arguing as in the proof of (b), it turns

out that

{v ∈ X : d0(v, u) < 2r , f(v) = min {c , c− σβ(v) + σr/2}}

is a strong deformation retract of

{v ∈ U : min {c , c− σβ(v) + σr/2} ≤ f(v) < c− σβ(v) + 3σr/4}

with respect to both topologies. It easily follows that f c ∩ (U \ V ) is a strong defor-

mation retract of U \W with respect to both topologies and assertion (iv) is proved.

Consider now only the d0-metric. The closure f c ∩ U is d0-compact by assump-

tion (M3). Since
(
f c ∩ U, f c ∩ (U \ V )

)
is a compact metrizable pair, then the quo-

tient f c ∩ U/f c ∩ (U \ V ) is Hausdorff and compact, hence metrizable by [1, Propo-

sition IX.2.17]. In turn, f c ∩ U/f c ∩ (U \ V ), which is clearly homeomorphic to
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f c ∩ U/f c ∩ (U \ V ), is also compact and metrizable. Being retracts of the open sub-

sets U and U \W of X, f c ∩U and f c ∩ (U \ V ) are ANRs by (M2) and f c ∩ (U \ V )

is closed in f c∩U . Since the quotient f c∩U/f c∩ (U \V ) is metrizable, it is an ANR

by Theorem 2.2.

Proof of Theorem 4.1. We have already observed that f c ∩ U is an ANR in the d0-

topology and the same argument applies to the d-topology. Then (f c \ {u}) ∩ U is

also an ANR, with respect to both topologies, being open in f c∩U and assertion (a)

follows.

By (ii) and (iv) of Lemma 4.2, the inclusions f c ∩U −→ U and f c ∩ (U \V ) −→
U \W are homotopy equivalences with respect to both topologies. From (M2) we

deduce that the identities of f c ∩ U and of f c ∩ (U \ V ), as maps from the d- to the

d0-topology, are homotopy equivalences. By (iii) of Lemma 4.2 assertion (b) follows.

Assertion (c) is an obvious consequence of (b) and the Five lemma (see [21]).

From (iii) of Lemma 4.2 we also see that

Hm (f c ∩ U, (f c \ {u}) ∩ U ; K) ≈ Hm (f c ∩ U, f c ∩ (U \ V ); K) .

On the other hand, from [21, Theorem 6.6.5], we infer that

Hm (f c ∩ U, f c ∩ (U \ V ); K) ≈ Hm (f c ∩ U/f c ∩ (U \ V ), {f c ∩ (U \ V )}; K) .

From (v) of Lemma 4.2 and [24, Corollary 5.3], we conclude that⊕
m≥0

Hm (f c ∩ U/f c ∩ (U \ V ), {f c ∩ (U \ V )}; K)

has finite dimension and assertion (d) follows.

5. CRITICAL GROUPS OF FINITE TYPE IN BANACH SPACES

Let X be a separable and reflexive Banach space, whose dual space is denoted

by X ′, and let f : X −→ R be a function of the form f = f0 + f1 satisfying (A1)

and (A2).

From (A2) it easily follows that

f1 is sequentially continuous with respect to the weak topology . (5.1)

Proposition 5.1. Let C be a bounded, closed and convex subset of X and let ϕ = f
∣∣
C

.

Then ϕ satisfies (PS)c for every c ∈ R.

Proof. Let (uk) be a sequence in C with |dϕ| (uk) → 0. By [11, Proposition 2.10

and Theorem 2.11], there exists a sequence (wk) in X ′ with

‖wk‖ = |dϕ| (uk) ,

f0(v) ≥ f0(uk)− 〈f ′1(uk), v − uk〉+ 〈wk, v − uk〉 ∀v ∈ C .
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Up to a subsequence, (uk) is weakly convergent to some u ∈ C and (f ′1(uk)) is strongly

convergent to some z in X ′. Since

f0(u) ≥ f0(uk)− 〈f ′1(uk), u− uk〉+ 〈wk, u− uk〉 ,

we have

lim sup
k

f0(uk) ≤ f0(u)

and the assertion follows.

Let now (ek) be a dense sequence in the unit ball of X ′ and let, for every u, v ∈ X,

(u|v)0 =
∞∑
k=1

2−k 〈ek, u〉 〈ek, v〉 .

Then ( | )0 is a scalar product on X whose associated norm ‖ ‖0 satisfies

‖u‖0 ≤ ‖u‖ ∀u ∈ X

and induces the weak topology of X on every ‖ ‖-bounded subset of X. We also

consider the product X × R endowed with the norms

‖(u, λ)‖ =
(
‖u‖2 + |λ|2

) 1
2 ,

‖(u, λ)‖0 =
(
‖u‖2

0 + |λ|2
) 1

2 .

Proposition 5.2. Let C be a ‖ ‖-bounded and convex subset of X and let ϕ = f
∣∣
C

.

Then, for every u ∈ C and λ > ϕ(u), we have

|d0ϕ| (u) ≥ |dϕ| (u) ,

|d0Gϕ| (u, ϕ(u)) ≥ |dGϕ| (u, ϕ(u)) ,

|d0Gϕ| (u, λ) = |dGϕ| (u, λ) = 1 ,

where d0 denotes the weak slope with respect to the norm ‖ ‖0.

Proof. Let u ∈ C. By substituting f0 with f0(v) + f1(u) + 〈f ′1(u), v − u〉 and f1 with

f1(v)− f1(u)− 〈f ′1(u), v − u〉, we may assume that f1(u) = 0 and f ′1(u) = 0. By [11,

Proposition 2.10 and Theorem 2.11], it follows that |dϕ| (u) =
∣∣d (f0

∣∣
C

)∣∣ (u).

If |dϕ| (u) = 0, the first inequality is obvious. Otherwise, let 0 < σ < |dϕ| (u)

and let v ∈ C with ‖v − u‖ < 1 and f0(v) < f0(u)− σ‖v − u‖. Then the map

H : epi (ϕ)× [0, 1] −→ C

defined as H((w, µ), t) = w + t(v − w) is ‖ ‖0-continuous and satisfies

‖H((w, µ), t)− w‖0 ≤ t(‖v − u‖+ ‖w − u‖) .

Observe also that, if (wk, µk) is a sequence in epi (ϕ) with ‖(wk, µk)−(u, ϕ(u))‖0 → 0,

then we have

lim sup
k

f(uk) ≤ lim
k
µk = f(u) ,
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which yields, by (5.1),

lim sup
k

f0(uk) ≤ f0(u) .

From (A1) it follows that ‖wk − u‖ → 0.

Now it is easy to see that

‖H((w, µ), t)− w‖0 ≤ t , ϕ(w + t(v − w)) ≤ ϕ(w)− σt ≤ µ− σt ,

provided that ‖(w, µ)− (u, ϕ(u))‖0 and t are small enough. Therefore, |d0ϕ| (u) ≥ σ

and the first inequality follows from the arbitrariness of σ. Taking into account (3.1),

the second inequality also follows.

Now let λ > ϕ(u). From [11, Proposition 2.3] it follows that |dGϕ| (u, λ) = 1. On

the other hand, by (A2) and (5.1), for every % > 0 there exists δ ∈]0, 1] such that

δ ≤ % and

|f1(w)− f1(u)|+ |〈f ′1(z), w − u〉| < %

whenever w, z ∈ C with ‖w − u‖0 < δ. If

H : {w ∈ C : ‖w − u‖0 < δ , f(w) < λ+ δ} × [0, δ] −→ C

is defined as H(w, t) = w + t(u− w), we have

‖H(w, t)− w‖0 ≤ %t ,

and, by the convexity of f0,

f(w + t(u− w)) ≤ f0(w) + t(f0(u)− f0(w)) + f1(w) + t〈f ′1(z), u− w〉

for some z ∈ C. It follows

f(w + t(u− w)) ≤ f(w) + t(f(u)− f(w) + %) .

By [12, Corollary 2.11] we conclude that |d0Gϕ| (u, λ) = 1.

Proposition 5.3. Let C be a ‖ ‖-bounded and convex subset of X and let ϕ = f
∣∣
C

.

Then the following facts hold:

(a) the map

epi (f0) ∩ (C × R) −→ epi (ϕ)

(u, λ) 7→ (u, λ+ f1(u))

is a homeomorphism when both spaces are endowed with the ‖ ‖-topology or the

‖ ‖0-topology;

(b) for every ‖ ‖0-open subset V of epi (ϕ), the identity of V is a homotopy equiva-

lence from the ‖ ‖-topology to the ‖ ‖0-topology.

Proof. Assertion (a) easily follows from (5.1). By Theorem 2.3, for every ‖ ‖0-open

subset V of epi (f0) ∩ (C ×R), the identity of V is a homotopy equivalence from the

‖ ‖-topology to the ‖ ‖0-topology. Then assertion (b) follows from (a).
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Proof of Theorem 1.1. Let u be an isolated critical point of f , let

C = {v ∈ X : ‖v − u‖ ≤ 1}

and let ϕ = f
∣∣
C

By the excision property and (3.2), we have

Cm(f, u; K) ≈ Cm(ϕ, u; K) ≈ Cm(Gϕ, (u, ϕ(u)); K)

with respect to the ‖ ‖-topology. Consider now the set epi (ϕ) endowed with the met-

rics d and d0 induced by ‖ ‖ and ‖ ‖0, respectively. Consider also Gϕ : epi (ϕ) −→ R
and (u, ϕ(u)) ∈ epi (ϕ). We aim to apply Theorem 4.1. By (3.1) and Proposition 5.2,

assumption (M4) holds.

From the definition of ‖ ‖0 and Proposition 5.2, we see that (M1) holds. Since C

is closed in the Banach space (X, ‖ ‖) and f is ‖ ‖-continuous, it is clear that epi (ϕ)

is d-complete. On the other hand, epi (f0) ∩ (C × R) is a convex subset of X × R,

hence an ANR both in the d and in the d0-topology. Then the same fact is true

for epi (ϕ), by (a) of Proposition 5.3. Taking into account (b) of Proposition 5.3, we

conclude that (M2) is satisfied.

By (3.1) and Propositions 5.1, 5.2, the function Gϕ satisfies (PS)a with respect

to the metric d, for any a ∈ R. Of course, Gϕ is d0-continuous and C is d0-compact,

as X is reflexive. From (A1) and (5.1) we see that ϕ is lower semicontinuous with

respect to the weak topology, namely the d0-topology. In particular, the set

{(v, µ) ∈ epi (ϕ) : a ≤ µ ≤ b}

is d0-compact for any a, b ∈ R. Therefore (M3) also holds. From Theorem 4.1 the

assertion follows.
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