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affinché la freschezza dell’adolescenza non lo abbandoni mai.
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work during the last 30 years. In the second part we discuss some aspects of numerical ranges for

nonlinear operators which have been a field of particular interest of De Pascale.
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INTRODUCTION

In this note we give a brief review, to the best of our knowledge, of the math-

ematical œvre of Espedito De Pascale whose retirement was celebrated during an

International Conference in Amantea, Calabria, in June 2008.

In the paper [35], one of Espedito’s first papers written 30 years ago, he studies

numerical ranges for both linear and nonlinear operators. Since he has always been

interested in this topic during the last 30 years, in the final part of this note we

mention some directions in which current research on numerical ranges is moving.

Incidentally, one of the last chapters of our monograph [15] (jointly with Alfonso

Vignoli) on nonlinear spectral theory is entirely dedicated to the state-of-the-art of

numerical ranges. So Espedito returned, after so many years, to the topic he was

interested in right at the beginning of his research activity; this explains the somewhat

cryptic French saying in the title.

In the following sections we try to summarize even superficially some of De

Pascale’s contributions to the following fields: Functional analysis and geometry

of Banach spaces; numerical functional analysis; differential, integral, and integro-

differential equations; measures of noncompactness and condensing maps; nonlinear
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superposition operators; fixed points and topological degree; nonlinear spectral the-

ory. Of course, this classification is highly random, since most contributions could

be attributed to more than one of these fields. Moreover, it goes without saying that

we do not aim for a complete coverage, but just choose some typical features which

show that Espedito’s influential research contributions cover a wide range of topics

and illustrate his broad view of mathematical analysis as a whole.

1. FUNCTIONAL ANALYSIS AND GEOMETRY

OF BANACH SPACES

As far as we know, the note [36] on so-called quasi-bounded P -compact maps is

De Pascale’s first paper in classical functional analysis, and probably his very first

paper. There are three similar articles whose contents is concerned with geometrical

properties of Banach spaces. The first is the paper [49], where the authors introduce

some “constant of quasi-normality” for cones and subspaces and apply this notion

to operator equations in Banach spaces. The second paper [20] is concerned with a

new class of Banach limits as multiplicative functionals on ℓ∞ which are not shift-

invariant (as classical Banach limits are) but have stronger geometrical properties.

Finally, in the more recent important paper [28] the authors study Cohen’s definition

of injective envelope and give an explicit description of the algebraic structure hidden

in the metric injective envelope of a Banach space, thus solving also an old conjecture

raised by Isbell [68] in 1969.

Another interesting contribution is the joint paper [29] with Cianciaruso. It is

well-known that, given a metric space X and a closed subset A ⊂ X, one may extend

every nonexpansive map f : A → R to a nonexpansive map f : X → R. Any

target space Y which may replace here the real line R and still has the mentioned

extension property is called hyperconvex. In [29] the authors study some “measure

of non-hyperconvexity” and use it to characterize hyperconvex metric spaces.

2. NUMERICAL FUNCTIONAL ANALYSIS

In the last 15 years, De Pascale became more and more interested in application-

oriented questions, including (but not restricted to) numerical analysis, iteration

schemes, and error estimates for approximate solutions, the most prominent topic

being the Newton-Kantorovich iteration

xn+1 = xn − F ′(xn)
−1F (xn) (n = 1, 2, 3, . . .)

for approximate solutions of the operator equation F (x) = 0 in a (usually, infinite

dimensional) Banach space X. The crucial condition is here a Hölder condition (also
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called Vertgejm condition in the Russian literature) on the Fréchet derivative of F

on a closed ball Br(x0) = {x ∈ X : ‖x− x0‖ ≤ r}, i.e.,

(1) ‖F ′(x1) − F ′(x2)‖ ≤ k‖x1 − x2‖
α (x1, x2 ∈ Br(x0))

which may also be imposed in the weaker form

(2) ‖F ′(x) − F ′(x0)‖ ≤ k0‖x− x0‖
α (x ∈ Br(x0)).

In a long series of papers with several coauthors [8-10,18,19,21,24,30-34,47, 60,61] De

Pascale has analyzed the rather sophisticated “interaction” between the constants k

in (1) and k0 in (2), on the one hand, and the constants

(3) a := ‖F ′(x0)
−1F (x0)‖, b := ‖F ′(x0)

−1‖,

on the other. It is clear that always k0 ≤ k, and examples show that the ratio k/k0

may be arbitrarily large. Building on the constants a and b in (3), one may construct

very subtle lower and upper bounds for solutions, reducing the “terra incognita” of

non-existence step by step by sharpening these bounds. This applies, in particular, to

approximate solutions of nonlinear integral equations of Uryson or Hammerstein type,

see [9,10,18,60]. Results of this type, both of theoretical and practical interest (but

too technical to be presented here in detail) have been further developed subsequently

by De Pascale’s PhD student Filomena Cianciaruso, see e.g. [27].

3. DIFFERENTIAL, INTEGRAL AND

INTEGRO-DIFFERENTIAL EQUATIONS

There is a vast literature on existence, uniqueness, regularity, boundedness, and

stability results for solutions of boundary value problems for differential equations,

both linear and nonlinear. In the papers [1] and [59] the authors prove exponen-

tial stability of Poincaré-Ljapunov type of solutions by extending Bohl’s theorem on

bounded solutions for perturbed systems. Lienard equations with delay are consid-

ered in the conference proceedings [44], while an essential enlargement of the existence

interval in abstract Cauchy-Kovalevskaja type theorems is obtained in [46]. In this

connection, we also mention the paper [45], where the authors study the structure of

compact subsets in spaces of bounded continuous functions and subsequently apply

their results to boundary value problems on unbounded intervals.

Existence theorems for nonlinear integral equations are often based on topologi-

cal, variational, or monotonicity methods. When applying topological methods, such

as fixed point theorems or degree theory (see Sections 4 and 6 below) to problems

with lack of compactness, the celebrated fixed point principle for condensing maps

by Darbo [38] and Sadovskij [75] are a very useful tool, see also [79]. A typical exam-

ple is the paper [16], where this fixed point principle is applied to strongly singular
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nonlinear integral equations of the type

(4) u(x) = λ

∫ b

a

k(x, y)

x− y
f(y, u(y)) dy (a ≤ x ≤ b)

in generalized Hölder spaces. Hammerstein integral equations in Lp spaces are con-

sidered in [22] in the case when the kernel function of the linear part is not symmetric,

but “splits” into two parts which makes it possible to reduce everything to the Hilbert

space case p = 2. Integral equations with Ljapunov-Schmidt kernel are studied in

[50].

Another field of study of De Pascale is the theory of integro-differential equations

of Barbashin type which in the simplest setting have the form

(5)
∂x(t, s)

∂t
= c(s)x(t, s) +

∫ b

a

k(s, σ)x(t, σ) dσ + f(t, s).

Looking at the multiplication and integral part in (5) as operator functions with

values in a Banach space, and identifying the scalar solution (t, s) 7→ x(t, s) with the

abstract function t 7→ x(t) := x(t, ·), one may rewrite (5) equivalently as (ordinary)

differential equation

(6)
dx

dt
= Cx + Kx + f(t)

in this Banach space, where C and K are suitable linear operators generated by the

multiplication and integral terms in the right-hand side of (5), and f(t) := f(t, ·). In

the paper [7] the authors give some conditions for the existence of a Green function

for (6) and its continuous dependence on a parameter, obtaining some analogue to

the classical Bogoljubov-Krylov averaging principle.

4. MEASURES OF NONCOMPACTNESS AND CONDENSING MAPS

Loosely speaking, a measure of noncompactness shows how far a bounded set

in a Banach space is from being precompact. Classical examples are the Hausdorff

measure of noncompactness

(7) χ(M) = inf {ε > 0 : M admits a finite ε-net in X}

and the Kuratowski measure of noncompactness

(8) α(M) = inf {δ > 0 : M admits a finite covering by sets of diameter ≤ δ}.

Darbo’s fixed point principle [38] refers to α-condensing operators A : X → X, i.e.,

those which strictly decrease the measure of noncompactness (8) in the sense that

(9) α(A(M)) ≤ qα(M)
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for some q < 1 and each bounded subset M of X. This condition is some kind of

topological counterpart to the usual metric condition

(10) ‖A(u) − A(v)‖ ≤ q‖u− v‖

which is crucial in the Banach-Caccioppoli contraction mapping principle. Subse-

quently, many other measures of noncompactness have been constructed, often in

special Banach spaces, in order to apply a Darbo type result to a large variety of

nonlinear problems with lack of compactness.

Sometimes such new measures of noncompactness are also of theoretical interest.

Thus, in the papers [51,52] the authors study relations between the function (7) in the

metric space M(Ω) of (classes of equivalent) measurable functions on Ω, on the one

hand, and other measure-theoretic characteristics, on the other. Similar relations,

but in the Lebesgue space Lp(Ω), are given in [4], with a particular emphasis on the

cases p = 1 and p = ∞.

5. NONLINEAR SUPERPOSITION OPERATORS

Given a bounded domain Ω ⊂ R
N , N ≥ 1, and a function f : Ω × R → R, the

nonlinear superposition operator (or Nemytskij operator) generated by f is defined

by

(11) F (u)(x) = f(x, u(x)).

In spite of its simple form, this operator exhibits a quite surprising behaviour. For

example, if the operator F acts between so-called ideal spaces of measurable functions

(or Banach lattices, in different terminology) X and Y , its boundedness behaviour

essentially depends on the space X, and its continuity behaviour on the space Y ,

while the analytical form of the generating function f is, surprisingly enough, less

important. The role of the source space X in the boundedness properties of Nemytskij

operators is studied in [5]. On the other hand, in [6] it is shown that the condition

(9) is very often satisfied for the Nemytskij operator F in spaces of continuous or

differentiable functions, while imposing a Lipschitz condition like (10) leads to a

strong degeneracy for the generating function f .

There is also a vast literature on superposition operators generated by multivalued

functions f . Some contributions in this direction may be found in [17], applications to

nonlinear integral inclusions of Hammerstein type in [11]. The survey [12] contains a

rather complete presentation of the theory and applications of multivalued Nemytskij

operators, including many illuminating examples and surprising counterexamples.
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6. FIXED POINTS AND TOPOLOGICAL DEGREE

The fixed point principles by Brouwer, Schauder, and Darbo-Sadovskij belong to

the most powerful topological tools in proving existence results for nonlinear problems.

They may be obtained as simple consequences of the Brouwer degree for continuous

maps in R
N , the Leray-Schauder degree for compact perturbations of the identity in

Banach spaces, and the Nussbaum-Sadovskij degree for condensing perturbations of

the identity in Banach spaces, respectively. For a detailed account of degree and fixed

point theory we refer the reader to [79].

In one of his first papers [41] (see also [42]), De Pascale showed that the degree

for certain multivalued noncompact maps depends, as the Leray-Schauder degree in

the singlevalued case or Ma’s degree in the multivalued case, only on the boundary

values of the vector field. In the paper [53] the authors introduce and study a topo-

logical degree for weakly continuous maps in reflexive Banach spaces, while in [54]

the same authors provide a comparison between the Browder-Petryshyn degree and

the Canfora-Pacella degree for certain classes of monotone maps.

Concerning fixed point theory, in [3] and [16] it is shown that the strongly sin-

gular integral equation (4) may serve as a natural example for a problem to which

the Darbo-Sadovskij fixed point principle applies, but neither Schauder’s fixed point

principle nor Banach’s contraction mapping principle do. Positive fixed points are

studied in [43], particular classes of fixed point theorems in [40] and [62]. More pre-

cisely, in the paper [40] Espedito and his son Luigi (who, by the way, meanwhile

started a brillant mathematical career on his own) consider, for given α, β, γ > 0, the

nonstandard contraction-type condition

(12) ‖A(u)(t)−A(v)(t)‖E ≤ β‖u(t)−v(t)‖E+
γ

tα

∫ t

0

‖u(s)−v(s)‖E ds (0 < t ≤ T )

in the space C([0, T ], E) of continuous functions with values in a Banach space E.

They show that a previous theorem by Lou [72] may be obtained, even in a stronger

version, by applying the theory of K-normed spaces developed mainly by Petr P.

Zabrejko, and also that the term β‖u(t) − v(t)‖E in (12) cannot be replaced by the

term β‖u−v‖C([0,T ],E). In [62] De Pascale and Zabrejko present some new facts in the

theory, methods, and applications of fixed point theorems in such spaces. Typically,

the classical contraction condition (10) for some number q < 1 is replaced in this type

of results by the far more general condition

]|A(u) −A(v)|[≤ Q ]|u− v|[,

where ]| · |[ is some “generalized norm” taking its values in the nonnegative cone K

of some Banach space, and Q is a bounded linear operator in this Banach space with

spectral radius less than 1. In particular, in the paper [62] the authors also consider
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the non-standard contraction condition

‖A(u)(t) −A(v)(t)‖E ≤ Q(‖u− v‖E)(t) (0 ≤ t ≤ t)

in the space C([0, T ], E), where E is a Banach space and Q is a “sufficiently well-

behaved” nonnegative linear operator in C([0, T ],R).

De Pascale also contributed to abstract fixed point theory in metric spaces. For

example, contraction type operators in so-called (o)-metric spaces are discussed in the

joint work [48] with Paolamaria Pietramala and Giuseppe Marino (who together with

Gennaro Infante organized the nice celebration event in Amantea), as well as in [26].

The papers [39] and [55-58] are related to the so-called Schauder conjecture which

claims that the Schauder-Tychonov fixed point principle holds not only in Banach

spaces or, more generally, locally convex spaces, but also in complete topological

vector spaces which are not necessarily locally convex. Although the papers [39] and

[58] give a deeper insight into this conjecture, as far as we know the full conjecture

has not been proven yet.

7. NONLINEAR SPECTRAL THEORY

In view of the enormous importance of spectral theory for linear operators, in

both mathematics and quantum mechanics, it is not surprising that various attempts

have been made to define and study spectra also for nonlinear operators. A brief

state-of-the-art of nonlinear spectral theory at the beginning of the new century is

contained in the survey paper [13], while a very detailed, self-contained, and virtually

complete overview of what has been done in nonlinear spectral theory between 1965

and 2005, say, may be found in the monograph [15] mentioned at the beginning. A

new contribution is the paper [14], where the authors introduce a spectrum σ(L, F ) for

pairs of operators, where L is a linear densely defined (but not necessarily bounded)

Fredholm operator of index zero between two Banach spaces, and F is a continuous

nonlinear operator between the same spaces. Such pairs occur frequently in the

theory of differential equations with non-invertible linear part, e.g., in the presence

of ω-periodic boundary conditions of the form
{

ẍ(t) = f(t, x(t), ẋ(t)),

x(0) = x(ω), ẋ(0) = ẋ(ω).

In this case F is a nonlinear Nemytskij operator of type (11), and L is a linear

differential operator containing lower order terms and acting between suitable spaces

of ω-periodic functions. In case L = I (the identity operator), the spectrum σ(L, F )

defined in [14] reduces to the familiar Furi-Martelli-Vignoli spectrum from [65]. In

fact, the definition of the spectrum σ(F, L) in [14] imitates the construction of another

spectrum defined by Feng and Webb in [64] which in the case L = I reduces to Feng’s



468 J. APPELL

spectrum from [63]. In the joint paper [67] with Webb, De Pascale’s friend and former

postgraduate student Gennaro Infante has written an interesting paper on nonlinear

spectra which may be defined through finite dimensional approximations, see also

[37].

An important part of any spectrum, linear or nonlinear, is the point spectrum

which in the classical setting is defined by

(13) σp(F ) = {λ ∈ K : F (u) = λu for some u 6= 0};

here it is tacitly assumed that F (0) = 0, and the elements λ ∈ σp(F ) are usually

called eigenvalues of F . However, in nonlinear spectral theory it is not reasonable to

compare the nonlinear operator F in (13) with the identity; instead, it is useful to

replace the identity with some “well-behaved” (but also nonlinear) operator J . This

amounts to replacing (13) by the point spectrum

(14) σp(F, J) = {λ ∈ K : F (u) = λJ(u) for some u 6= 0},

i.e., to considering eigenvalues of pairs of operators. This has two advantages: Firstly,

one may consider the operator F between different spaces X and Y , while (13) makes

sense only in case X = Y ; secondly, spectra of pairs of operators apply to much larger

classes of problems than spectra of single operators, see Section 8 below.

In some problems it is reasonable to replace the “global” point spectrum (14) by

the “asymptotic” point spectrum

(15) σ∞
ψ (F, J) := {λ ∈ K : lim inf

‖u‖→∞

‖F (u) − λJ(u)‖

ψ(‖u‖)
= 0},

which in the special case X = Y , J = I and ψ(t) = t goes back to Furi, Martelli

and Vignoli (see [65,66] or Chapter 6 in the book [15]), and was further developed

for other choices of ψ by Weber [76]. This concept of eigenvalue is different from

the classical one, but has interesting applications to nonlinear problems, where one is

interested only in the asymptotic behaviour of operators, i.e., their values “on large

spheres”.

8. A CLOSER LOOK AT NUMERICAL RANGES

As announced at the beginning, we will now discuss some recent contributions

(some of them due to or inspired by Espedito De Pascale) to the theory of numerical

ranges for nonlinear operators. More precisely, we will concentrate on the application

of so-called numerical ranges with gauge functions to nonlinear eigenvalue problems

involving the p-Laplace operator.

Let Ω be a bounded domain in R
N , N ≥ 2, with Lipschitz continuous boundary,

and 1 < p <∞. It is well known that the p-Laplace operator on the domain Ω defined
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by

∆pu = div (|∇u|p−2∇u)

acts from the Sobolev space X = W 1,p
0 (Ω) to its dual, X∗ = W−1,p′(Ω), where p′ =

p/(p− 1). The nonlinear eigenvalue problem with Dirichlet boundary condition

(16)







−∆pu(x) = µ|u(x)|p−2u(x) in Ω,

u(x) = 0 on ∂Ω,

for this operator consists in finding µ ∈ R for which (16) has a nontrivial solution u

and arises in many fields of applied mathematics and mechanics, see e.g. [70] and the

references therein. Of course, in case p = 2 this problem just reduces to the linear

eigenvalue problem −∆u = µu for the Laplace operator ∆ = ∆2 which has been

studied over and over in the last 150 years.

If we denote by J the differential operator defined by −∆p in the weak form, i.e.,

(17) 〈J(u), v〉 =

∫

Ω

|∇u(x)|p−2∇u(x)∇v(x) dx (u, v ∈W 1,p
0 (Ω)),

and by F the Nemytskij operator (11) generated by the nonlinearity f(x, u) = |u|p−2u

on the right hand side of (16), also in weak form, i.e.,

(18) 〈F (u), v〉 =

∫

Ω

|u(x)|p−2u(x)v(x) dx (u, v ∈ W 1,p
0 (Ω)),

we obtain two operators acting simultaneously from X to its dual X∗. Here the norm

we consider on X is

‖u‖ =

(
∫

Ω

|∇u(x)|p dx

)1/p

which is, by the classical Poincaré inequality, equivalent to the usual norm on X

which also involves the Lp-norm of u.

In this way, the eigenvalue problem (16) may be rewritten, for µ 6= 0 and λ = 1/µ,

equivalently as the operator equation

(19) F (u) = λJ(u)

which is nothing else but the nonlinear eigenvalue problem for the operator pair (F, J)

in the sense of (14). A survey of methods and results for such eigenvalue problems

may be found in Chapter 10 of the monograph [15].

Now, since spectra are intimately related to numerical ranges, it seems reasonable

to connect the study of equation (19) (or, equivalently, of the set (14)) to some

numerical range for operator pairs (F, J) from a Banach space X to its dual X∗, like

those given in (17) and (18). To this end, we make the following general hypotheses.
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In what follows, X is a reflexive real Banach space, and X∗ denotes its dual.

Let J : X → X∗ and F : Y → Y ∗ be two hemicontinuous operators such that

F (0) = J(0) = 0 and J is strictly monotone, i.e.,

(20) 〈J(u) − J(v), u− v〉 > 0 (u, v ∈ X, u 6= v),

where 〈·, ·〉 denotes the usual pairing between X∗ and X.

Suppose that ϕ : [0,∞) → [0,∞) is a continuous strictly increasing function

such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Such a function will be called a gauge

function in what follows; typical examples are ϕ(t) = tp−1 for 1 < p <∞ (polynomial

growth), ϕ(t) = et−1 (superpolynomial growth), or ϕ(t) = log(1+ t) (subpolynomial

growth). We say that an operator A : X → X∗ is ϕ-coercive if

lim
‖u‖→∞

〈A(u), u〉

ϕ(‖u‖)
= ∞,

and ϕ-monotone if there is some C1 > 0 such that

〈A(u) −A(v), u− v〉 ≥ C1ϕ(‖u− v‖)‖u− v‖ (u, v ∈ X).

Moreover, we say that an operator A : X → X∗ satisfies a ϕ-Hölder condition if there

is some C2 > 0 such that

‖A(u) − A(v)‖ ≤ C2ϕ(‖u− v‖) (u, v ∈ X).

For example (see, e.g., [80]), the operator (17) satisfies for p ≥ 2 in the space X =

W 1,p
0 (Ω) the estimate

(21) 〈J(u) − J(v), u− v〉 ≥ C‖u− v‖p (u, v ∈ X)

which means that J is ϕ-monotone for ϕ(t) = tp−1. Putting v = 0 in (21) yields

(22)
〈J(u), u〉

‖u‖p−1
≥ C‖u‖ → ∞ (‖u‖ → ∞)

which shows that J is, again for ϕ(t) = tp−1, also ϕ-coercive. Clearly, any ϕ-monotone

operator is also strictly monotone in the sense of (20), and hence injective. In partic-

ular, the operator (17) is invertible on its range, and (21) immediately implies that

its inverse satisfies the global Hölder condition

(23) ‖J−1(f) − J−1(g)‖ ≤
1

C1/(p−1)
‖f − g‖1/(p−1)

in case p ≥ 2. For 1 < p < 2, however, the situation is far more delicate. In fact, it

was shown in [25] by means of a highly nontrivial computation that in this case (23)

has to be replaced by

‖J−1(f) − J−1(g)‖ ≤
22−p

C
(‖f‖ + ‖g‖)(2−p)(p−1)‖f − g‖,

i.e., a local Lipschitz condition for J−1, where the Lipschitz constant depends on the

size of ‖f‖ and ‖g‖. This gives some kind of homeomorphism result like that of G.
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Minty ([74], see also [80]) for classical monotone hemicontinuous coercive operators

from a reflexive Banach space into its dual.

From standard estimates of scalar functions it follows that the operator (18)

satisfies, again for ϕ(t) = tp−1, a ϕ-Hölder condition of type

(24) ‖F (u) − F (v)‖ ≤







ϕ(‖u− v‖) if 1 < p ≤ 2,

2p−2ϕ(‖u− v‖) if 2 ≤ p <∞.

We consider now the numerical range [2]

(25) W0(F, J) =

{

〈F (u), u〉

〈J(u), u〉
: u ∈ X, 〈J(u), u〉 6= 0

}

.

In the special case when X is a Hilbert space, Y = X, J = I, and F is continuous,

the numerical range (25) reduces to the numerical range in the sense of Wenying

Feng [63]. Moreover, Věra Burýšková [23] considered the numerical range (25) for

continuous positively homogeneous operators (of the same degree) F and J , which is

of course motivated by the eigenvalue problem (16).

The importance of the conditions (21), (22) and (24) is illustrated by the following

proposition whose proof with additional remarks may be found in [2].

Proposition. Suppose that J : X → X∗ is ϕ-monotone, and F : X → X∗

satisfies a ϕ-Hölder condition. Then the following holds.

(a) The numerical range (25) is bounded.

(b) The inclusion

(26) σp(F, J) ⊆W0(F, J)

holds, where σp(F, J) denotes the classical point spectrum (14).

(c) If, in addition, F is compact, and both J and F are odd, then the operator

λJ − F is surjective for any λ ∈ R \ (W0(F, J) ∪ {0}).

(d) If the map ψ defined by ψ(t) = ϕ(t)/t is also a gauge function and

(27) lim inf
‖u‖→∞

‖J(u)‖

ϕ(‖u‖)
> 0,

then

(28) σ∞
ψ (F, J) ⊆W0(F, J),

where σ∞
ψ (F, J) denotes the asymptotic point spectrum (15).

We point out that the inclusions (26) and (28) are certain analogues to Zaran-

tonello’s localization theorems [77,78] for the spectrum of Lipschitz continuous non-

linear operators which has been studied in detail in [73]. We also remark that the
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assertion (c) contains a nonlinear Fredholm alternative: If λ does not belong to the

numerical range (25) (and so, by (26), it does not belong to the point spectrum (14)

either), then λJ−F is not only injective, but also surjective. Thus, uniqueness implies

existence.

To apply the mentioned Proposition, we put X = W 1,p
0 (Ω), X∗ = W−1,p′(Ω), and

ϕ(t) = tp−1. As we have seen, the operator J defined by (17) is then ϕ-monotone and

ϕ-coercive, and the Nemytskij operator F defined by (18) satisfies the ϕ-Hölder condi-

tion (24). Clearly, both J and F are odd and satisfy J(0) = F (0) = 0. Moreover, from

Krasnosel’skij’s classical theorem on Nemytskij operators between Lebesgue spaces

[69] it follows immediately that F is both bounded and continuous from Lp(Ω) into

Lp′(Ω), and so even compact fromX toX∗, by standard embedding theorems between

Sobolev spaces. Finally, from (22) and the Cauchy-Schwarz inequality it follows that

lim inf
‖u‖→∞

‖J(u)‖

ϕ(‖u‖)
= lim inf

‖u‖→∞

‖J(u)‖

‖u‖p−1
≥ lim inf

‖u‖→∞

〈J(u), u〉

‖u‖p
≥ C,

which shows that (27) is satisfied as well. So the localization results (26) and (28)

apply to the eigenvalue problem (16) and the numerical range (25).

There is another interesting point about nonstandard numerical ranges for the

operator pair given by (17) and (18). The extension of numerical ranges from the

Hilbert space case to the Banach space case is usually done by means of either semi-

inner products (in the sense of Lumer, see again Chapter 11 of [15]) or, equivalently,

duality maps. Recall that the duality map D : X → X∗ of a Banach space is defined

by

(29) D(u) = {ℓu ∈ X∗ : 〈u, ℓu〉 = ‖u‖2, ‖ℓu‖ = ‖u‖}.

More generally, given a gauge function ϕ as before, one may define a duality map with

gauge function Dϕ : X → X∗ by

(30) Dϕ(u) = {ℓϕu ∈ X∗ : 〈u, ℓϕu〉 = ϕ(‖u‖)‖u‖, ‖ℓϕu‖ = ϕ(‖u‖)}.

As far as we know, the generalized duality map (30) was considered first by J. L.

Lions [71] and has useful applications in the theory of partial differential equations.

In general, the duality maps (29) and (30) may be multivalued; in special spaces,

however, they are singlevalued. For example, the map (29) is singlevalued if and

only if the underlying space X is smooth (i.e., its norm is Gâteaux differentiable on

X \ {0}).

Obviously, (29) is a special case of (30) for ϕ(t) = t, so there is some interest

in asking for the explicit form of (30) for other choices of ϕ. In particular, if we

take ϕ(t) = tp−1 as in our preceding discussion, the answer comes as a very pleasant

surprise: In this case the duality map (30) in X = W 1,p
0 (Ω) is precisely the operator

(17), while in X = Lp(Ω) it is precisely the operator (18). This gives yet another
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approach to the p-Laplace operator through numerical ranges and nonlinear spectra;

for details we refer to [2].
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developments and problems in the theory of numerical ranges.

REFERENCES

[1] A. K. Abdulazizov, E. De Pascale, P. P. Zabrejko, Bohl’s theorem on bounded solutions: Infinite

systems of ordinary differential equations, Rend. Sci. Math. Appl. A 128 (1995), 37-52.
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[65] M. Furi, M. Martelli, A. Vignoli, Contributions to the spectral theory for nonlinear operators

in Banach spaces, Annali Mat. Pura Appl. 128 (1978), 229-294.

[66] M. Furi, A. Vignoli, A nonlinear spectral approach to surjectivity in Banach spaces, J. Funct.

Anal. 20 (1975), 304-318.

[67] G. Infante, J. R. L. Webb, A finite-dimensional approach to nonlinear spectral theory, Nonlin.

Anal. TMA 51, 1 (2002), 171-188.

[68] J. R. Isbell, Three remarks on injective envelopes, J. Math. Anal. Appl. 27, (1969), 516-518.

[69] M. A. Krasnosel’skij, On the continuity of the operator Fu(x) = f(x, u(x)) [in Russian], Doklady

Akad. Nauk SSSR 77, 2 (1951), 185-188.

[70] P. Lindqvist, On the equation div (|∇u|p−2∇u) + λ|u|p−2u = 0, Proc. Amer. Math. Soc. 109,

2 (1990), 157-163.
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