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via Ponte don Melillo, 84084 Fisciano (Sa), Italy.

E-mail: pcavaliere@unisa.it

2Dipartimento di Matematica e Applicazioni “R. Caccioppoli”,
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ABSTRACT. We are concerned with a wide class of non-additive functions, namely quasi -

triangular functions, defined on a Boolean ring and taking values into a topological space, where no

algebraic structure is required. The aim of the paper is twofold. First we prove that in some sense

this class is equivalent to that one of finitely additive functions valued into a topological Abelian

group. Secondly we show that a Vitali-Hahn-Saks theorem holds for exhaustive elements of it.

AMS Subject Classification. 28A12, 28A33.

1. INTRODUCTION

Given a non-negative extended real-valued function ϕ acting on a Boolean ring

R, for any pair of disjoint elements a, b of R one can consider the values ϕ(a), ϕ(b)

and ϕ(a ∨ b) and various possible relations between them.

Among all these ones, broadly speaking, here our interest relies on the following

two different conditions:

i) if any two of the values ϕ(a), ϕ(b) and ϕ(a ∨ b) are ‘small’, then the remaining

one has to be ‘small’;

ii) if ϕ(b) is ‘small’, then ϕ(a) and ϕ(a ∨ b) have to be ‘near’.

Both i) as ii) are clearly verified whenever ϕ is a finitely additive function. In this

paper, we point out that simply requiring ϕ to satisfy either i) or ii) leads to a

natural generalization of finitely additive assumption, with the further advantage

that no algebraic operation is needed. Our target space will be in fact an arbitrary
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Hausdorff topological space where no algebraic structure is required too. The class

of functions we are concerned with, namely quasi-triangular functions, constitutes a

generalization of classical finitely additive functions in which additivity assumption

is removed and no monotonicity is imposed as well. Moreover, as it will be clarified

in Sect. 2 through examples, such a class properly contains various families of non-

additive functions deeply studied in literature and this motivates our investigation.

As it is well-known the interest for a non-additive context goes back to G. Choquet

[3] as well as to L. Shapley [18]. We draw the reader attention to [6], [16] for a

comprehensive exposition of results and applications in measure theory and functional

analysis, whereas to [7], [14] and the references therein for the economic applications.

See also [15].

In a recent paper [1] we investigated quasi-triangular and exhaustive functions on

a Boolean ring satisfying the Subsequential Completeness Property and we established

a Cafiero theorem as well as a Brooks-Jewett theorem. In this paper we keep working

on the same class and there are two main contributions. One is that every quasi-

triangular function generates a Fréchet-Nikodým topology on the underlying ring (in

Sect. 3, Theorem 3.2). This result allows us to state that, in same sense (specified by

Definition 3.4 below), any quasi-triangular function is equivalent to a finitely additive

one, which is defined on the same ring and attains values in some topological Abelian

group. The second is a Vitali-Hahn-Saks theorem for quasi-triangular and exhaustive

functions on a Boolean ring satisfying the Subsequential Completeness Property in

Sect. 5. Our approach to its proof relies on an improvement of a result concerning

finitely additive functions due to T. Traynor in [19], that is formulated below as

Lemma 4.3. We begin by defining the basic concepts more precisely and fixing the

main notations.

2. BASIC DEFINITIONS AND EXAMPLES

Throughout this note we always consider a Boolean ring R, whose least point

is denoted by 0R or 0, and a nonempty set S, where a topology τ or a uniformity

U is given. About S, we assume that a point e ∈ S is arbitrary fixed and use the

notation τ [e] to denote one of its fundamental system of τ -neighbourhoods. When

the topology τ on S is generated by a uniformity U (briefly τ ≡ τ
U
), we shall write

U [e] in place of τ [e].

Hereafter we deal with the family of all functions ϕ : R → S such that ϕ(0) = e,

that we denote as M[e]. Formalizing conditions i) and ii) above, when ϕ ∈ M[e],

then



SOME NEW RESULTS IN NON-ADDITIVE MEASURE THEORY 537

i): ϕ is said to be quasi-triangular if for every U ∈ τ [e] there exists V = V (U) ∈

τ [e] such that for any disjoint pair (a, b) of elements of R it holds

ϕ(a) ∈ V, ϕ(b) ∈ V =⇒ ϕ(a ∨ b) ∈ U ;

ϕ(a) ∈ V, ϕ(a ∨ b) ∈ V =⇒ ϕ(b) ∈ U.

and, whenever τ ≡ τ
U
, following [12], we say that

ii): ϕ is said to be s-outer if for every U ∈ U there exists V = V (U) ∈ U such

that for any disjoint pair (a, b) of elements of R it holds

ϕ(b) ∈ V [e] =⇒
(

ϕ(a), ϕ(a ∨ b)
)

∈ U.

Since for any given subcollection Φ := (ϕi)i∈I of M[e], the uniform version of the

above definitions can be easily written down, we leave it to the reader. In the follow-

ing, we adopt the convention that U (0) denotes the intersection of the sets U ∩ V (U)

appearing in the previous definitions and then U (n) := U (n−1) ∩ V (U (n−1)), n ∈ N.

Besides for any function ϕ ∈ M[e], the notation ϕ([0, a]), or simply ϕ̃(a), represents

the set {ϕ(b) : b ∈ R, b ≤ a}, for each a ∈ R.

It is worth noting that condition i) is sharper than ii). In fact, for any disjoint

elements a, b ∈ R, condition i) requires a control on ϕ(a), ϕ(b) and ϕ(a∨b) for ‘small’

values of ϕ, where ‘small’ means ‘near enough’ to e = ϕ(0); whereas in ii), apart from

the uniformity structure needed on S, one asks that ϕ(a) and ϕ(a ∨ b) have to be

‘near’ whenever ϕ(b) is ‘small’. We show indeed

Proposition 2.1. If ϕ ∈ M[e] is s-outer, then it is quasi-triangular.

Proof. Given U ∈ U , pick a symmetric U1 ∈ U such that U1 ◦ U1 ⊆ U and put

W := U
(0)
1 . For every disjoint pair (a, b) of elements of R, since ϕ is s-outer, one

notes that if ϕ(a) ∈ W [e] and ϕ(b) ∈ W [e], then
(

ϕ(a ∨ b), e
)

∈ U1 ◦ U1 ⊆ U,

whereas if ϕ(a) ∈ W [e] and ϕ(a ∨ b) ∈ W [e], then
(

ϕ(b), e
)

∈ U1 ◦ U1 ⊆ U ;

therefore ϕ is quasi-triangular.

The converse fails, as shown by the following example.

Example 2.2. Let L denote the σ-algebra of the Lebesgue measurable subsets of R

and λ is the Lebesgue measure on L. The function ϕ defined by

ϕ(A) := λ(A) if λ(A) ≤ 1, ϕ(A) := 2 if λ(A) > 1,

is a non-negative increasing set function such that ϕ(∅) = 0. Such ϕ is clearly quasi-

triangular, but it is not s-outer. Indeed, for any δ ∈ ]0, 1[ and any disjoint sets

A,B ∈ L such that λ(A) = 1 and λ(B) < δ, one gets that

ϕ(B) < δ and ϕ(A ∪B) − ϕ(A) = 1.
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Now we emphasize through several examples that the family of quasi-triangular

functions (as well as that of s-outer ones) under investigation includes some classes

of non-additive functions widely studied in literature.

Example 2.3. A non-negative extended real-valued function ϕ defined on a Boolean

ring R is said to be a measuroid (see, e.g., [17], [21]) whenever ϕ(0R) = 0 and for

any disjoint pair (a, b) of elements of R it satisfies the following subadditive and

quasi-triangular conditions

ϕ(a ∨ b) ≤ ϕ(a) + ϕ(b), ϕ(a) ≤ ϕ(a ∨ b) + ϕ(b).

Hence every measuroid is a quasi-triangular function. As shown in [21], under the

convention that ∞−∞ = 0, the following assertions are equivalent:

• ϕ is a measuroid;

• ∀a, b ∈ R, a ∧ b = 0R, it holds: |ϕ(a) − ϕ(b)| ≤ ϕ(a ∨ b) ≤ ϕ(a) + ϕ(b);

• ∀a, b ∈ R, a ∧ b = 0R, it holds: |ϕ(a ∨ b) − ϕ(a)| ≤ ϕ(b).

From the last condition one clearly infers that every measuroid is a s-outer function

with respect to the usual uniformity in [0,+∞].

Example 2.4. A non-negative real-valued function ϕ defined on a Boolean ring R

is said to be k-triangular, for k ∈ [1,+∞[ (see, e.g., [9], [8], [16], [20]), whenever

ϕ(0R) = 0 and

◦ ∀a, b ∈ R, a ∧ b = 0R, it holds: ϕ(a) − kϕ(b) ≤ ϕ(a ∨ b) ≤ ϕ(a) + kϕ(b).

One can easily check that every k-triangular function is s-outer.

Example 2.5. Let P : A → [0, 1] be a finitely additive probability defined on a

Boolean algebra A and let γ : [0, 1] → [0, 1] be an increasing function such that

γ(0A) = 0 and γ(1A) = 1. The composite function ϕ := γ ◦P is said to be a distorted

probability and the function γ is called its distortion (see, e.g., [6], [16]). It is easy

to verify that every distorted probability determined by a concave distortion is a

measuroid, thus it is a s-outer function.

Example 2.6. Given an internal composition law ⊕ on [0, 1], ⊕ is said to be a t-

conorm (see, for instance, [23], [16]) whenever ⊕ is commutative, associative and

satisfies the following condition

- if x, y ∈ [0, 1], x ≤ y, then x⊕ z ≤ y ⊕ z for all z ∈ [0, 1],

- x⊕ 0 = x for all x ∈ [0, 1],

i.e. ⊕ is monotone with neutral element 0.

The mappings ⊕
1
(x, y) := max {x, y}, ⊕

2
(x, y) := x+ y − xy, and

⊕
3
(x, y) :=







max{x, y} if min{x, y} = 0,

1 otherwise
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are standard examples of t-conorms.

A function ϕ : R → ([0, 1],⊕) is said to be ⊕-additive whenever ϕ(0R) = 0

and ϕ(a ∨ b) = ϕ(a) ⊕ ϕ(b) for all a, b ∈ R, a ∧ b = 0R. If the t-conorm ⊕ is

continuous at the point (0, 0), then every ⊕-additive function ϕ is quasi-triangular.

It is worth noting that the foregoing t-conorms ⊕
1

and ⊕
2

are both continuous at

(0, 0), differently from ⊕
3
.

We conclude with two explicit examples of s-outer functions which fail to be

k-triangular. The first one is shown in [2].

Example 2.7. Let S := Co([0, 1]) be the space of real-valued continuous functions

on [0, 1] with the sup norm ||f || := sup |f(x)| and e ≡ 0. In S consider the binary

operation ⊘ defined by f ⊘ g := f + g − f · g, for every f, g ∈ S.

A function ϕ, defined on a Boolean ring R and valued into {f ∈ Co([0, 1]) :

f([0, 1]) ⊆ [0, 1]}, is called ⊘-additive whenever ϕ(a ∨ b) = ϕ(a) ⊘ ϕ(b) for any

disjoint pair (a, b) of elements of R. Because of the following estimate

||ϕ(a ∨ b) − ϕ(a)|| ≤ ||ϕ(b)|| for every a, b ∈ R, a ∧ b = 0R,

every ⊘-additive function is s-outer.

Example 2.8. Let Lo denote the σ-algebra of the Lebesgue measurable subsets of

[0, 1] and λ is the Lebesgue measure on Lo. The set function ϕ : Lo → [0, 1] defined

by ϕ(A) := λ2(A), A ∈ Lo, is a s-outer function which is not k-triangular.

Indeed the uniform continuity of f(x) = x2 in [0, 1] easily implies that ϕ is s-outer.

Assume by way of contradiction that ϕ is k-triangular, k ≥ 1. Thus, for any disjoint

A,B ∈ Lo with positive Lebesgue measure, the condition ϕ(A ∪B) ≤ ϕ(A) + kϕ(B)

implies that λ(A) ≤ k−1
2
λ(B) as well as k > 1. Hence it must hold that λ(B) ≥

2
k−1

λ(A), which clearly leads to a contradiction once fixed B of small measure. There-

fore ϕ is not a k-triangular function.

3. QUASI-TRIANGULARITY AND FINITE ADDITIVITY

First we show that every quasi-triangular function ϕ induces a topology Γ
ϕ

on the

Boolean ring on which is defined, which is described in terms of basic neighbourhoods.

This Γ
ϕ

will be referred to as the ϕ-topology on R.

Proposition 3.1. If ϕ ∈ M[e] is quasi-triangular and if B[e] is a neighbourhood

base at the point e ∈ S, then the family

Γ
ϕ
(a) :=

(

{x ∈ R : ϕ̃(x△ a) ⊆ U}
)

U ∈B[e]

is a neighbourhood base at a ∈ R for the ϕ-topology.



540 P. CAVALIERE AND P. DE LUCIA

Proof. Certainly each V ∈ Γ
ϕ
(a) contains a since each U ∈ B[e] contains ϕ(0) = e.

If V1 and V2 belong to Γ
ϕ
(a), determined by some U1 and U2 ∈ B[e], so easily does

V3 := {x ∈ R : ϕ̃(x△ a) ⊆ U3}, where U3 ∈ B[e] and U3 ⊆ U1 ∩ U2, and moreover

V3 ⊆ V1 ∩ V2. Next let U ∈ B[e] and V be the element of Γ
ϕ
(a) determined by U .

Taking into account the quasi-triangularity of ϕ, pick U1 ∈ B[e] such that U1 ⊆ V (U).

We claim that for every b ∈ V1 := {x ∈ R : ϕ̃(x △ a) ⊆ U1} then there exists

W ∈ Γ
ϕ
(b) such that W ⊆ V. Indeed, put W := {x ∈ R : ϕ̃(x△ b) ⊆ U1} ⊆ V1 ∩ V2,

then for every y ∈ W, one observes that

ϕ̃(y△a) = ϕ̃
(

(y△b)△(b△a)
)

=
{

ϕ
((

z\(y△b)∧(b△a)
)

∨
(

z\(b△a)∧(y△b)
))

: z ∈ R
}

;

since for each z ∈ R one gets

ϕ
(

z \ (y△ b) ∧ (b△ a)
)

∈ U1 and ϕ
(

z \ (b△ a) ∧ (y△ b)
)

∈ U1,

the quasi-triangularity of ϕ assures that ϕ̃(y△ a) ⊆ U . Thus W ⊆ V.

Now we prove

Theorem 3.2. If ϕ ∈ M[e] is quasi-triangular, then the ϕ-topology is a Fréchet-

Nikodým topology on the Abelian group (R,△).

Proof. Since a △ a = 0, for every a ∈ R, in order to check that (R,△,Γ
ϕ
) is a

topological group it suffices to prove that the symmetric difference operation △ is

continuous. Let ao, bo ∈ R and V ∈ Γ
ϕ
(ao△bo). Since V := {x ∈ R : ϕ̃(x△(ao△bo) ⊆

U}, for some U ∈ B[e], the quasi-triangularity of ϕ yields that there exists some

U1 ∈ B[e] such that U1 ⊆ V (U). Clearly

Vao
:= {x ∈ R : ϕ̃(x△ao) ⊆ U1} ∈ Γ

ϕ
(ao), Vbo

:= {x ∈ R : ϕ̃(x△bo) ⊆ U1} ∈ Γ
ϕ
(bo).

Moreover, by the quasi-triangularity of ϕ, using the same trick as in the proof of the

previous proposition, one easily gets that a △ b ∈ V, for every a ∈ Vao
and every

b ∈ Vbo
, that is the desired continuity of the symmetric difference operation △.

To end the proof, it remains to verify that the function πb : a ∈ R 7→ a ∧ b ∈ R

is Γ
ϕ
- continuous, uniformly respect to b ∈ R. To this end, let ao ∈ R and V ∈

Γ
ϕ
(ao ∧ b). Since V := {x ∈ R : ϕ̃(x △ (ao ∧ b)) ⊆ U}, for some U ∈ B[e], and

(a ∧ b) △ (ao ∧ b) = (a△ ao) ∧ b, one clearly has

ϕ̃((a ∧ b) △ (ao ∧ b)) = ϕ̃
(

(a△ ao) ∧ b
)

⊆ ϕ̃(a△ ao) ⊆ U ∀a ∈ V,

uniformly respect to b ∈ R.

Remark 3.3. It is well-known (see, for instance, [5], [22]) that any Fréchet-Nikodým

topology Γ
F N

on a Boolean ring is the µ-topology on (R,△) for some group-valued

finitely additive function µ acting on R, i.e. Γ
F N

≡ Γ
µ
. In fact, once put G :=

(R,△,Γ
F N

) and denoted as µ the identity map on R, then Γ
F N

coincides with Γ
µ
.
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Mymic [11], [22], we can formulate the following

Definition 3.4. Let (So, τo) be a topological space and eo ∈ So be arbitrary fixed. If

ψ ∈ M[e] and ν ∈ M[eo], then ψ is said to be ν-continuous (ψ << ν, for short) if,

and only if, for every U ∈ τ [e] there exists some V ∈ τo[eo] such that ν([0, a]) ⊆ V

implies that ψ([0, a]) ⊆ U . Moreover, ψ is said to be equivalent to ν, in symbols

ψ ≍ ν, whenever both ψ << ν and ν << ψ.

The results of this section can be therefore summed up as

Corollary 3.5. If ϕ ∈ M[e] is quasi-triangular, then there exists a finitely additive

function µ, acting on the same Boolean ring R and valued in some topological Abelian

group (Go, τo), with µ(0) = eo, which is equivalent to ϕ, i.e. µ ≍ ϕ.

4. AUXILIARY RESULTS

In this section we show some properties fulfilled by families of uniformly quasi-

triangular and uniformly exhaustive functions. We recall that a function ϕ ∈ M[e]

is said to be e-exhaustive (exhaustive, for short) whenever limk ϕ(ak) = e for any

disjoint sequence (ak)k∈N in R, then for every subfamily Φ of M[e] the definition of

uniform exhaustivity can be immediately expressed.

The first lemma exhibits a good behaviour on finite disjoint union of quasi-

triangular functions. The proof can be easily determined by an inductive argument.

Lemma 4.1. Let a ∈ R be the supremum of a finite disjoint subset {a1, . . . , ak} of

R and U ∈ τ [e]. If ϕ is quasi-triangular, then

ϕ(ai) ∈ U (i) ∀i ∈ {1, . . . , k} =⇒ ϕ(a) ∈ U. (1)

Moreover, if Φ ⊆ M[e] is uniformly quasi-triangular, then (1) holds uniformly respect

to ϕ ∈ Φ.

The following result describes the action of uniformly exhaustive functions on

increasing sequences in R.

Lemma 4.2. Let (bk)k∈N be an increasing sequence in R. If Φ ⊆ M[e] is uniformly

exhaustive, then for every U ∈ τ [e] there exists some l ∈ N such that

ϕ([0, bk \ bl]) ⊆ U ∀k ≥ l, ∀ϕ ∈ Φ. (2)

Proof. Assume the contrary. Then there exist some Uo ∈ τ [e], a strictly increasing

sequence of index (kl)l∈N, two sequences (ϕl)l∈N and (yl)l∈N, in Φ and R respectively,

such that

ϕl

(

yl ∧ (bkl
\ bkl−1

)
)

/∈ Uo ∀l ∈ N, (3)

where bk0
:= b1. Since the sequence

(

yl ∧ (bkl
\ bkl−1

)
)

l∈N
is disjoint in R, the uniform

exhaustivity of Φ contradicts (3) and this concludes the proof.
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We are now in position to state the following extension to quasi-triangular func-

tions of a result concerning finitely additive functions due to T. Traynor in [19]. We

refer the reader also to (2.2) in Chap. IV of [5]. This result is one of the main

ingredient in the proof of the Vitali-Hahn-Saks theorem in next section.

Lemma 4.3. If Φ ⊆ M[e] is uniformly exhaustive and uniformly quasi-triangular,

then for every U ∈ τ [e] there exist some W ∈ τ [e] and a finite subset Φf ⊆ Φ such

that for any a ∈ R

ψ([0, a]) ⊆ W ∀ψ ∈ Φf =⇒ ϕ(a) ∈ U ∀ϕ ∈ Φ. (4)

Proof. Arguing by contradiction, then there exists some Uo ∈ τ [e] such that for every

W ∈ τ [e] and every finite Φf ⊆ Φ there are an element ao ∈ R and a function ϕ ∈ Φ

verifying

ψ([0, ao]) ⊆ W ∀ψ ∈ Φf , ϕ(ao) /∈ Uo. (5)

Because Φ is uniformly quasi-triangular, starting from Uo ∈ τ [e], one can consider

the decreasing sequence (U
(k)
o )k∈No

in τ [e] and then, by induction in (5), determine

two sequences (ak)k∈N in R and (ψk)k∈N in Φ such that for every k ∈ N it holds

ψi([0, ak]) ⊆ U (k+1)
o ∀i ∈ {1, . . . , k}, ψk+1(ak) /∈ Uo. (6)

Now fix h ∈ N, and define bk := ∨k
j=h+1 aj , k > h. Since (bk)k∈N is increasing and

ak ≤ bk, Lemma 4.2 guarantees the existence of an index l ∈ N with l ≥ h + 1, such

that

ϕ([0, ak \ bl]) = ϕ̃(ak \ ∨l
j=h+1 aj) ⊆ U (h+1)

o ∀k ≥ l, ∀ϕ ∈ Φ. (7)

Therefore, going on by induction, one can determine a strictly increasing sequence of

index (ln)n∈N such that for every n ∈ N one has that

ϕ̃(ak \ ∨ln+1

j=ln+1 aj) ⊆ U (ln+1)
o ∀k ≥ ln+1, ∀ϕ ∈ Φ. (8)

We claim that there exists an index no ∈ N such that ψln+1
(aln) ∈ Uo, ∀n ≥ no.

To prove this, for every n ∈ N, write aln as disjoint union of cn := aln∧
(

∨
ln+1

j=ln+1 aj

)

and

dn := aln \ ∨ln+1

j=ln+1 aj; moreover define d′n := dn \ ∨n−1
m=1 dm and d′′n := dn ∧ (∨n−1

m=1 dm).

Therefore each aln is the pairwise disjoint union of cn, d′n and d′′n, that is

aln = cn ∨ d′n ∨ d′′n ∀n ∈ N. (9)

Since

cn := aln ∧
(

∨
ln+1

j=ln+1 aj

)

= ∨
ln+1

j=ln+1

(

yj ∧ aj

)

∀n ∈ N, (10)

where yj’s are suitable elements in R such that the yj ∧ aj ’s are mutually disjoint,

from (6) one deduces that

ψln+1([0, yj ∧ aj ]) ⊆ U (j+1)
o ∀j ∈ {ln + 1, . . . , ln+1},
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thus, Lemma 4.1 and (10) imply that

ψln+1([0, cn]) ⊆ U (ln+1)
o ⊆ U (2)

o ∀n ∈ N. (11)

Corresponding to the neighbourhood U
(2)
o , since (d′n)n∈N is disjoint as well as Φ is

uniformly exhaustive, then there exists an index no ∈ N such that

ϕ(d′n) ∈ U (2)
o ∀n ≥ no, ∀ϕ ∈ Φ. (12)

Accordingly to (11) and (12), as {ψln : n ∈ N} ⊆ Φ is uniformly quasi-triangular and

cn ∧ d′n = 0, one obtains that

ψln+1(cn ∨ d′n) ∈ U (1)
o ∀n ≥ no. (13)

Let us now observe that

d′′n := dn ∧ (∨n−1
m=1 dm) = ∨n−1

m=1

(

(

dn \ ∨m−1
s=1 ds

)

∧ dm

)

∀n ∈ N; (14)

moreover for each m ∈ {1, . . . , n− 1} one also has

(

dn \ ∨m−1
s=1 ds

)

∧ dm =
(

aln \ ∨lm+1

j=lm+1 aj

)

∧
(

alm \ ∨m−1
s=1 ds

)

∧
(

\ ∨ln+1

j=ln+1 aj

)

(15)

as well as lm ≤ ln. But, from (8),

ϕ̃(aln \ ∨
lm+1

j=lm+1 aj) ⊆ U (lm+1)
o ⊆ U (m+1)

o ∀m ∈ {1, . . . , n− 1}, ∀ϕ ∈ Φ,

hence (15) yields in particular that

ϕ
(

(

dn \ ∨m−1
s=1 ds

)

∧ dm

)

∈ U (m+1)
o ∀m ∈ {1, . . . , n− 1}, ∀ϕ ∈ Φ.

Then, from Lemma 4.1 and (14) one infers that

ϕ(d′′n) ∈ U (1)
o ∀n ∈ N, ∀ϕ ∈ Φ. (16)

Thus, by (13),(16) and (9), the uniform quasi-triangularity of Φ assures that

ψln+1(cn ∨ d′n ∨ d′′n) = ψln+1(an) ∈ Uo ∀n ≥ no.

This proves the claim and obviously contradicts (6). This contradiction completes

the proof.

5. CONVERGENCE THEOREMS

In this section we always assume that (S, τ) is a Hausdorff topological space and

the ring R verifies the Subsequential Completeness Property (briefly SCP), i.e. for

every disjoint sequence (ak)k∈N in R then there exists an infinite subset M of N such

that the supremum of the set {ak : k ∈ M} exists. We refer the reader to [4], [10],

[21] for more details.

In a previous paper [1] we have proved the following two results
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Theorem 5.1 (Cafiero). If (ϕn)n∈N is a sequence of exhaustive and uniformly quasi-

triangular elements of M[e], then (ϕn)n∈N is uniformly exhaustive if, and only if, the

following condition holds

(⋆): for every U ∈ τ [e] and every disjoint sequence (ak)k∈N in R there exist some

ko, no ∈ N such that ϕn(ako
) ∈ U for every n ≥ no.

Theorem 5.2 (Brooks-Jewett). Let (ϕn)n∈N be a sequence of exhaustive and uni-

formly quasi-triangular elements of M[e]. If (ϕn)n∈N converges pointwise in R to a

exhaustive element ϕ of M[e] , i.e.

lim
n→+∞

ϕn(a) = ϕ(a), a ∈ R, (17)

then (ϕn)n∈N is uniformly exhaustive.

Here, combining the previous theorem with Lemma 4.3, we are able to state the

following

Theorem 5.3 (Vitali-Hahn-Saks). Let (ϕn)n∈N be a sequence of exhaustive and uni-

formly quasi-triangular elements of M[e] converging pointwise in R to a exhaustive

element ϕ of M[e]. If every ϕn is ν-continuous, where ν belongs to M[eo] and eo is

an arbitrary fixed point in some topological space (So, τo), then the sequence (ϕn)n∈N

is ν-equicontinuous.

Proof. First, by Theorem 5.2, Φ := {ϕn : n ∈ N} is uniformly exhaustive and uni-

formly quasi-triangular. Next, let U ∈ τ [e] be given. Then Lemma 4.3 assures that

there are some W ∈ τ [e] and a finite subset Φf ⊆ Φ such that for any a ∈ R

condition (4) holds, i.e.

ψ([0, a]) ⊆ W ∀ψ ∈ Φf =⇒ ϕ(a) ∈ U ∀ϕ ∈ Φ.

Since every ψ ∈ Φf is ν-continuous, then corresponding to W ∈ τ [e] there exists

some V ∈ τo[eo] such that

ν([0, a]) ⊆ V =⇒ ψ([0, a]) ⊆ W ∀ψ ∈ Φf .

Hence the sequence (ϕn)n∈N is ν-equicontinuous and the proof is complete.
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