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ABSTRACT. We study positive solutions of integral equations in C[0, 1] where the kernel (Green’s

function of the corresponding boundary value problem) is supposed to be non-negative on [0, 1]×[0, 1]

but may vanish at some interior points which prevents use of some standard cones. We prove

existence of one or two positive solution under some conditions which can be sharp.
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1. INTRODUCTION

In recent years there has been an extensive study of the existence of positive

solutions of boundary value problems (BVPs) for differential equations involving both

local and nonlocal boundary conditions (BCs). A typical example of local BCs is the

weakly singular second order problem

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), au(0) − bu′(0) = 0, cu(1) + du′(1) = 0. (1.1)

A standard method used to treat (1.1) is to find fixed points of the integral equation

Tu(t) =

∫ 1

0

G(t, s)g(s)f(s, u(s)) ds

in the space C[0, 1] of continuous functions, where G is the Green’s function of the

differential equation with the given BCs. To show existence of a positive solution

(when g, f ≥ 0), it is required that G(t, s) ≥ 0 and one seeks fixed points of T in the

cone P := {u ∈ C[0, 1] : u(t) ≥ 0}. For similar problems with periodic BCs, see for

example [6, 11], for nonlocal BCs, see for example [7, 12].
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It is convenient, especially when seeking multiple positive solutions, to work in a

smaller cone, namely the cone

K = {u ∈ P : min
t∈[a,b]

u(t) ≥ c‖u‖},

where [a, b] is some subset of [0, 1] and c > 0. The cone K is well-known, and may

be found in the books Krasnosel’skĭı, [4], and Guo and Lakshmikantham, [2], and has

been used by many authors in the study of multiple solutions of BVPs.

For the simple second order boundary value problem (with g, f non-negative),

u′′(t) + g(t)f(t, u(t)) = 0, u(0) = 0, u(1) = 0,

the property mint∈[a,b] u(t) ≥ c‖u‖ is an immediate consequence of concavity of pos-

sible solutions. However, the property holds for more general equations and BCs and

can be shown provided the Green’s function G satisfies a somewhat stronger posi-

tivity condition. A particulary suitable such assumption was given in [5], namely

that there exist a subinterval [a, b] ⊆ [0, 1], a measurable function Φ, and a constant

c = c(a, b) ∈ (0, 1] such that

G(t, s) ≤ Φ(s) for t ∈ [0, 1] and s ∈ [0, 1],

G(t, s) ≥ cΦ(s) for t ∈ [a, b] and s ∈ [0, 1].
(1.2)

This is often shown by proving that there exists a continuous function c ≥ 0 such

that

c(t)Φ(s) ≤ G(t, s) ≤ Φ(s), for 0 ≤ t, s ≤ 1, (1.3)

which establishes the required inequality when c(t) ≥ c > 0 on [a, b]. This can be

shown for very many problems, for example, rather general nonlocal BVPs for second

order equations are discussed in [12] and some fourth order problems are discussed

in [14]. The cone K, with suitable modifications, has been used in the study of some

singular periodic BVPs in [6].

In a recent paper [1], Graef, Kong and Wang studied a periodic BVP for

u′′(t) + a(t)u(t) = g(t)f(u(t)), t ∈ (0, 1), (1.4)

where the Green’s function is assumed to be non-negative on the square [0, 1]× [0, 1],

but can be zero at some interior points of the square, for example along the diagonal,

that is, G(s, s) = 0. (In fact they worked on the interval [0, 2π] but, since nothing

essential is changed, we consider [0, 1].) In such a case it is not possible to work in

the cone K. In fact, in [1], another larger cone was used and the authors proved the

existence of one positive solution under a sub-linear condition on f and also under a

super-linear condition on f provided that f was convex.

A key assumption made by the authors of [1] is that min0≤s≤1

∫ 1

0
G(t, s) dt > 0.

It was also assumed that the functions f, g are continuous and non-negative and that

mint∈[0,1] g(t) > 0.



BOUNDARY VALUE PROBLEMS 589

In the present paper we use fixed point index theory to prove the existence of

at least one positive solutions under conditions weaker than sub- and super-linearity,

and another result on the existence of at least two positive solutions. The important

new tool is the use of an open set which allows the idea of [1] to be fully exploited.

Our conditions can be sharp, as we show in an example. We allow g to possibly be 0

at some points and we also treat weakly singular problems by allowing g to be an L1

function which may have some pointwise singularities.

2. EXISTENCE RESULTS

We shall give results for weakly singular (singular in the variable t) problems; we

do not cover some singular (in u) periodic problems which have been studied recently

by Torres [10]. We shall consider the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds. (2.1)

We make the following assumptions throughout the paper.

(H1) The kernel G is non-negative and is continuous on [0, 1]×[0, 1], with G(t, s) ≤ G0

for all t and s.

(H2) The function g is non-negative almost everywhere, g ∈ L1[0, 1], and satisfies

g1 :=
∫ 1

0
g(t) dt > 0.

(H3) There is a constant α > 0 such that
∫ 1

0
G(t, s)g(t) dt ≥ α for all s.

(H4) The nonlinearity f : [0,∞) → [0,∞) is continuous.

The assumption (H3) allows G(t, s) to vanish on part of [0, 1] × [0, 1] and can hold

when (1.2) is not satisfied, see Example 2.11 below.

Under these assumptions, it is well known that the integral operator T defined by

Tu(t) :=

∫ 1

0

G(t, s)g(s)f(u(s)) ds

is a compact map from P to C[0, 1], see for example Proposition V.3.1 of [8].

A closed subset K of a Banach space X is called a cone if x, y ∈ K and α ≥ 0

imply that x+ y ∈ K and αx ∈ K, and K ∩ (−K) = {0}. A cone K defines a partial

order by x ≤ y ⇐⇒ y− x ∈ K. The cone is called normal if there exists σ > 0 such

that for all 0 ≤ x ≤ y it follows that ‖x‖ ≤ σ ‖y‖. The cone is said to be reproducing

if X = K −K and to be total if X = K − K. It is well known that P is normal and

reproducing.

We let

K̃ :=
{
u ∈ P :

∫ 1

0

u(t)g(t) dt ≥
α

G0
‖u‖

}
. (2.2)

It is easily seen that this is a cone; it is a modification of the one used in [1] which

did not include the term g but assumed mint∈[0,1] g(t) > 0.



590 J. R. L. WEBB

Lemma 2.1. Under the above assumptions, T : P → K̃.

Proof. Let u ∈ P . Then we have
∫ 1

0

Tu(t)g(t) dt =

∫ 1

0

(∫ 1

0

G(t, s)g(s)f(u(s)) ds
)
g(t) dt

=

∫ 1

0

(∫ 1

0

G(t, s)g(t) dt
)
g(s)f(u(s)) ds

≥

∫ 1

0

αg(s)f(u(s)) ds

≥
α

G0

∫ 1

0

G(τ, s)g(s)f(u(s)) ds

for arbitrary τ ∈ [0, 1]. Thus we have
∫ 1

0
Tu(t)g(t) dt ≥ α

G0

‖Tu‖, that is Tu ∈ K̃.

In particular this shows that K̃ 6= {0} unless T is the zero operator on P .

We shall base our proof on some fixed point index results, see for example [2, 4]

for its properties. Three of these results relate to the principal eigenvalue of the

related linear operator

Lu(t) :=

∫ 1

0

G(t, s)g(s)u(s) ds. (2.3)

Then L is a compact linear operator in C[0, 1] and, by the same arguments as applied

to T , L(P ) ⊂ K̃. We suppose that the radius of its spectrum r(L) satisfies r(L) > 0.

By the Krein-Rutman theorem, L has an eigenfunction ϕ ∈ P \ {0} corresponding to

the principal eigenvalue r(L); we suppose that ‖ϕ‖ = 1. Since L : P → K̃, ϕ ∈ K̃.

We set µ1 := 1/r(L), and call it the principal characteristic value of L; it is often

called the principal eigenvalue of the corresponding BVP.

NOTATION.

f 0 = lim sup
u→0+

f(u)/u, f0 = lim inf
u→0+

f(u)/u;

f∞ = lim sup
u→∞

f(u)/u, f∞ = lim inf
u→∞

f(u)/u.

We will prove the following result which is a sharper version of the result of [1].

Theorem 2.2. Assume that (H1) − (H4) hold and that r(L) > 0. Then the integral

equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, (2.4)

has at least one positive solution, that is, a nonzero solution in the cone K̃ if either

of the following conditions (S1), (S2) hold.

(S1) f0 > µ1 and f∞ < µ1.
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(S2) f 0 < µ1 and there exists R > 0 such that f(R)/R > 1/α and f is convex on[
0, G0g1R

α

]
.

The equation (2.4) has at least two positive solutions if

(D) f 0 < µ1, there exists R > 0 such that f(R)/R > 1/α and f is convex on[
0, G0g1R

α

]
, and f∞ < µ1.

Remark 2.3. This results extends Theorem 2.1 of [1] who ask that f0 = ∞ and

f∞ = 0 (sub-linear case) be satisfied in place of (S1), and require f 0 = 0 and f∞ = ∞

(super-linear case) and that f be convex on [0,∞) in place of (S2). They also assume

g is continuous and mint∈[0,1] g(t) > 0. Our result using (S1) is sharp and the result

using (S2) can be sharp (see Example 2.11 below). The result (D) for the existence of

two nonzero solutions in K̃ is new. In fact, when (S2) holds there are two solutions in

K̃ but the second one is zero; when (D) holds there are three solutions in K̃ including

the zero solution. In case (D) it is important not to assume that f is convex on [0,∞)

since f(0) = 0 and f(u)/u is then increasing for all u ≥ 0 and the third condition

cannot be satisfied.

We will prove this result using the well known fixed point index theory for com-

pact maps, see for example [2, 4]. For the proofs of some of the fixed point index

lemmas it is convenient to recall the following well known result, whose simple proof

is given for completeness.

Lemma 2.4. Let K be a cone in a Banach space X and let L : X → X be a bounded

linear operator with L(K) ⊆ K and r(L) < 1. Then (I−L)−1(K) ⊆ K. In particular,

if u, w ∈ X and u ≤ Lu + w, then u ≤ (I − L)−1w.

Proof. Since r(L) < 1, (I − L)−1 exists and is given by the Neumann series

(I − L)−1 = I + L + L2 + . . . .

Since K is closed and L(K) ⊆ K, it follows that (I−L)−1(K) ⊆ K. Then u ≤ Lu+w

is equivalent to w − (I − L)u ∈ K which gives (I − L)−1w − u ∈ K.

In fact, it is known ([9], Proposition 2), that if K is a normal, total cone and L

is a bounded linear operator with L(K) ⊆ K then (I −L)−1 is bounded and maps K

into K if and only if r(L) < 1. We only use the easy part of this result given above,

which is valid in all cones.

For r > 0 we will use the following open (relative to K̃) subsets of K̃; use of the

second open set is the key to obtaining the sharp results of this paper.

K̃r := {u ∈ K̃ : ‖u‖ < r}, Wr := {u ∈ K̃ : ug :=

∫ 1

0

u(t)g(t)/g1 dt < r}.
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We write ∂K̃r and ∂Wr for the boundaries of these sets relative to K̃. Here, ug is a

weighted average of u. Note that if u ∈ W r, then rg1 ≥
∫ 1

0
u(t)g(t) dt ≥ α

G0

‖u‖ which

shows that Wr is bounded.

Lemma 2.5. Suppose there exists r0 > 0 such that f(u) < µ1u for 0 < u ≤ r0. Then

i eK(T, K̃r0
) = 1.

Proof. Let ε > 0 be chosen so that f(u) ≤ (µ1 − ε)u for 0 ≤ u ≤ r0. We show that

Tu 6= βu for all β ≥ 1 and all u ∈ ∂K̃r0
which implies the result. In fact, in the

contrary case, there exist u ∈ K̃ with ‖u‖ = r0 and β ≥ 1 such that

βu = Tu ≤ (µ1 − ε)Lu; (here the ordering is that of P ).

Since r((µ1 − ε)L) < 1, Lemma 2.4 implies that u ≤ 0, contradicting u ∈ K̃ with

‖u‖ = r0.

Note that this result applies when f 0 < µ1.

Lemma 2.6. Suppose there exist ε > 0 and R0 > 0 such that f(u) ≤ (µ1 − ε) u for

all u ≥ R0. Then there exists R1 ≥ R0 such that i eK
(T, K̃R1

) = 1.

Proof. We note that P is a normal cone with normality constant σ = 1 so that

u ≤ v implies ‖u‖ ≤ ‖v‖. As f is continuous on [0, R0], there exists C0 > 0 such

that f(u) ≤ (µ1 − ε) u + C0 for all u ≥ 0. Let w(t) :=
∫ 1

0
G(t, s)g(s)C0 ds, hence

‖w‖ ≤ G0C0g1. Let R1 ≥ R0 be so large that R1 > ‖(I − (µ1 − ε)L)−1‖ ‖w‖. We

show that Tu 6= βu for all β ≥ 1 and all u ∈ ∂K̃R1
which yields the result. Indeed,

if βu = Tu for some β ≥ 1 and some u ∈ ∂K̃R1
, then u ≤ βu ≤ (µ1 − ε)Lu + w

(the ordering of P ) and by Lemma 2.4 this yields u ≤ (I − (µ1 − ε)L)−1w. Hence we

obtain

R1 = ‖u‖ ≤
∥∥(I − (µ1 − ε)L)−1w

∥∥ ≤
∥∥(I − (µ1 − ε)L)−1

∥∥ ‖w‖ < R1,

a contradiction.

Note that this result applies when f∞ < µ1.

The above two results are essentially well known. They are valid in any sub-cone

of P . The use of Lemma 2.4 in the proof of Lemma 2.6 is essentially the same as

would be the use of Lemma 33.2 of [4].

The next two lemmas are new because we work in the cone K̃ and use the open

set Wr. We refer to [13] for cases when we can use the cone K and other open sets

to obtain stronger conclusions.

Lemma 2.7. Suppose there exists r1 > 0 such that f(u) > µ1u for 0 < u ≤ r1. Then

if u 6= Tu on ∂Wr1
we have i eK(T, Wr1

) = 0.
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Proof. Let ϕ be the eigenfunction of L in P of norm 1, so that µ1Lϕ = ϕ and note

that ϕ ∈ K̃ since L : P → K̃. We show that u 6= Tu+βϕ for all β ≥ 0 and u ∈ ∂Wr1
,

which shows that the required index is zero. If there exist u with u = Tu + βϕ then

β > 0 and we have (the ordering is that of P ),

u ≥ µ1Lu + βϕ. (2.5)

Since u ≥ βϕ and L : P → P , it follows that Lu ≥ βLϕ = (β/µ1)ϕ. Substituting into

(2.5) gives u ≥ 2βϕ. Repeating this argument gives u ≥ nβϕ for arbitrary n ∈ N.

This yields ∫ 1

0

u(t)g(t) dt ≥ nβ

∫ 1

0

ϕ(t)g(t) dt ≥ nβ
α

G0
‖ϕ‖ .

Taking n sufficiently large, the preceding inequality contradicts
∫ 1

0
u(t)g(t) dt = r1g1.

We recall Jensen’s inequality in the form we shall use here, see for example [3].

Lemma 2.8 (Jensen’s inequality). Let m be a (positive) measure and let Ω be a

measurable set with m(Ω) = 1. Let I be an interval and suppose that u is a real

function in L1(dm) with u(t) ∈ I for all t ∈ Ω. If f is convex on I, then

f
(∫

Ω

u(t) dm(t)
)
≤

∫

Ω

f(u(t)) dm(t). (2.6)

The fourth fixed point index result is the one where we use convexity of f , in a

more precise form than in [1].

Lemma 2.9. Suppose there exists R2 > 0 such that f(R2)/R2 > 1/α and that f is

convex on
[
0, G0g1R2

α

]
. Then we have i eK

(T, WR2
) = 0.

Proof. We note that u ∈ W R2
implies that ug :=

∫ 1

0
u(t)g(t)/g1 dt ≤ R2 which gives

‖u‖ ≤ G0g1R2

α
. We show that u 6= Tu + βe for all β ≥ 0 and u ∈ ∂WR2

, where

e ∈ K̃ \ {0}. In fact, if we have u(t) = Tu(t) + βe(t), then
∫ 1

0

u(t)g(t) dt ≥

∫ 1

0

Tu(t)g(t) dt

≥ α

∫ 1

0

f(u(s))g(s) ds (as in Lemma 2.1)

= αg1

∫ 1

0

f(u(s))g(s)/g1 ds

≥ αg1f
(∫ 1

0

u(s)g(s)/g1 ds
)
,

using convexity of f and Jensens’s inequality with the measure dm(s) := g(s)ds

g1

so

that m([0, 1]) = 1. We have shown that ug ≥ αf(ug). Since ug = R2 on ∂WR2
this

contradicts f(R2)/R2 > 1/α.
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Remark 2.10. In the proof of the corresponding result in [1] some factors 2π were

omitted in the application of Jensen’s inequality. Since they assume f(u)/u → ∞ as

u → ∞, this does not affect their conclusion.

Proof of Theorem 2.2. This is a standard application of the additivity property of

fixed point index. In case (S1), we take r1 small and R1 sufficiently large, with

R1 > G0r1g1/α so Wr1
⊂ K̃R1

. If there is a fixed point in ∂Wr1
we are finished.

Otherwise we apply Lemmas 2.6, 2.7 and the additivity property to get

i eK
(T, K̃R1

\ W r1
) = i eK

(T, K̃R1
) − i eK

(T, Wr1
) = 1 − 0 = 1,

so T has a fixed point in K̃R1
\ W r1

.

In case (S2) we take r0 sufficiently small and r0 < R so K̃r0
⊂ WR; we apply

Lemmas 2.5, 2.9 and similarly we obtain a fixed point of T in WR \ K̃r0
, (and a fixed

point in K̃r0
, which may be zero).

For the case (D), we take r0 small with r0 < R, and R1 > G0Rg1/α sufficiently

large so that Lemma 2.6 applies. This gives one solution in WR \ K̃r0
and another in

K̃R1
\ W R.

Example 2.11. We consider the periodic BVP given as a motivation in [1],

u′′(t) + ω2u(t) = f(u(t)), t ∈ (0, 1); u(0) = u(1), u′(0) = u′(1), (2.7)

where ω > 0 is a constant, and, for simplicity, we take g(t) ≡ 1.

It is known that if ω 6= 2nπ (n a positive integer) then the Green’s function for

(2.7) is given by

G(t, s) =





sin(ω(t − s)) + sin(ω(1 − t + s))

2ω(1 − cos(ω))
, s ≤ t,

sin(ω(s − t)) + sin(ω(1 − s + t))

2ω(1 − cos(ω))
, s > t.

By some standard trigonometric formulae we have the equivalent form

G(t, s) =






cos(ω(1/2 − t + s))

2ω sin(ω/2)
, s ≤ t,

cos(ω(1/2 − s + t))

2ω sin(ω/2)
, s > t.

We see that to have G(t, s) ≥ 0 we must have ω ≤ π. Also when ω = π we see

that G(s, s) = 0 for all s ∈ [0, 1], which therefore fits the case studied in this paper

but (1.2) does not hold. In the case ω = π, we see that G(t, s) ≤ 1/2π and, by a

calculation, we obtain
∫ 1

0
G(t, s) dt = 1/π2; thus α = 1/π2 and G0 = 1/2π. Also,

µ1 = π2 with a constant eigenfunction. Therefore Theorem 2.2 gives the following

conclusions, in which the constants are sharp.
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When ω = π, the BVP (2.7) has at least one positive solution (that is, a nonzero

solution in K̃) if

either f0 > π2 and f∞ < π2, or f is convex, f 0 < π2 and f∞ > π2.

The BVP (2.7) has at least two positive solutions if

f 0 < π2, there exists R > 0 such that f(R)/R > π2 and f is convex on [0, πR/2],

and f∞ < π2.
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