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ABSTRACT. In this paper we introduce a sequence (Mn)n≥n0
of positive linear operators as a

modification of the Bernstein-Schnabl operators associated with a positive projection on C(K), where

K is a convex compact subset of a locally convex space; moreover we study its main approximation

and qualitative properties.

Furthermore, we establish an asymptotic formula for those operators, and we prove that to the

sequence (Mn)n≥n0
there corresponds a uniquely determined C0-semigroup (in some special case a

Feller one) which is representable as a limit of suitable powers of the operators.

AMS (MOS) Subject Classification. 47D03, 41A36, 41A65.

1. INTRODUCTION

In the last two decades, starting with the pioneer paper [2], F. Altomare and

successively his school have developed a branch of researches which enlightens the in-

terplay among suitable positive projections, sequences of positive linear operators and

Feller semigroups. The results of such studies, updated to 1994, are fully expounded

in the monograph [4], while more recent developments may be found in several suc-

cessive papers among which we mention, without any sake of completeness, [8], [9],

[10], [13], [14], [23], [24], [25], and the survey [7] with its numerous references.

Those kind of investigations have an application to a wide class of differential

problems arising from physics, genetics, financial mathematics and other fields.

In more details, given a positive projection T on the space C(K) of all continuous

real functions defined on a compact, convex and metrizable subset K of a locally
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convex space, it is possible to construct a related sequence (Bn)n≥1 of positive linear

operators on C(K), namely the Bernstein-Schnabl operators.

That sequence, first introduced by Schnabl in [26], and successively analyzed by

Grossmann [16] and Nishishiraho [18], [20], was intensively studied by F. Altomare

(see [2] and also [4, Ch. 6]) who showed that, under suitable assumptions on T ,

to (Bn)n≥1 there corresponds a uniquely determined Feller semigroup which, in its

turn, admits a representation in terms of iterates of the Bernstein-Schnabl operators

themselves.

Such a representation may be fruitfully employed in the study of several abstract

Cauchy problems and, in some finite-dimensional settings, it applies to many concrete

diffusion problems; in fact, it allows us to express the solutions by means of Bernstein-

Schnabl operators, and hence to infer some of their qualitative properties from the

corresponding ones held by the Bn’s.

In the finite dimensional case the theory now sketched has been deepened with

respect to differential problems governed by operators of the form

WT (u)(x) :=

p∑

i,j=1

αij(x)
∂2u

∂xixj

(x) (x ∈ K)

for suitable coefficients αij ∈ C(K) depending on the projection T and, apart from the

one-dimensional setting, only in few special cases (see [12], [14], [15]) by ”complete”

second-order differential operators as

VT (u)(x) :=

p∑

i,j=1

αij(x)
∂2u

∂xixj

(x) +

p∑

i=1

βi(x)
∂u

∂xi

(x) + γ(x)u(x), (x ∈ K) (1.1)

for some continuous function β : K → K and γ ∈ C(K). In the recent paper [5]

the authors, in collaboration with F. Altomare, focused their attention on differential

operators of the general type (1.1) in arbitrary compact convex subsets of Rp, p ≥ 2.

In the present work we investigate the more general case in which K is a convex

compact subset of a locally convex space, also because this framework seems to be of

some interest for possible applications to a wider class of problems.

The paper is organized as follows: after the basic notation and some preliminaries

about the Bernstein-Schnabl operators we introduce the so-called modified Bernstein-

Schnabl operators

Mn(f) := Bn

((
1 +

γ

n

)(
f ◦

(
e +

β

n

)))
(n ≥ n0, f ∈ C(K)),

where n0 is a suitable positive integer, e denotes the identity on K, β and γ are the

maps appearing in (1.1), and K is a convex, compact and metrizable subset of a

locally convex space.
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We prove that the sequence (Mn)n≥n0 is an approximation process on C(K), and

we estimate the rate of convergence of such approximation. Moreover, a Lipschitz

preservation property of the M ′
ns is analyzed.

The fourth section is mainly devoted to establish an asymptotic formula for the

sequence (Mn)n≥n0 on a suitable dense subspace of C(K). Such formula allows us

to prove that to the sequence (Mn)n≥n0 there corresponds a C0-semigroup (in some

special case a Feller semigroup) which is representable as a limit of iterates of the

Mn’s.

As a consequence, the solutions to the abstract Cauchy problems related to the

generator of the semigroup admit a representation by means of powers of the Mn’s,

so that we infer some regularity properties of the solutions by deriving them from the

analogous ones of the operators.

2. NOTATION AND PRELIMINARIES

In this section we set the main notation of the paper and we recall the definition

of the Bernstein-Schnabl operators associated with a positive projection (see [2], [4,

Section 6.1]), together with their main properties.

Let K be a metrizable convex compact subset of a locally convex space X such

that its interior K̊ is nonempty; we denote by M+(K) (resp., M+
1 (K)) the cone of all

regular Borel measures on K (resp., the cone of all regular Borel probability measures

on K). For any µ ∈ M+(K) the support of µ, i.e. the complement of the largest

open subset of K on which µ is zero, is denoted by supp(µ).

C(K) stands for the space of all real-valued continuous functions on K; it is a

Banach lattice when endowed with the sup-norm ‖ · ‖∞ and the natural (pointwise)

ordering. Furthermore, by C(K, K) we mean the space of all continuous functions

g : K → K.

From now on, A(K) denotes the space of all continuous affine functions on K,

and the symbols 0 and 1 stand for the constant functions on K taking value 0 and

1, respectively.

Finally, denote by X ′ the dual space of X and by

L(K) := {ϕ|K : ϕ ∈ X ′}. (2.1)

In order to introduce the Bernstein-Schnabl operators associated with a positive

projection we preliminarily set for every f ∈ C(K), z ∈ K and α ∈ [0, 1]

fz,α(x) := f(αx + (1 − α)z) (x ∈ K). (2.2)
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Consider further a positive projection T : C(K) → C(K), that is a positive linear

operator such that T ◦ T = T , and suppose that its range

H := T (C(K))

satisfies the assumptions

A(K) ⊂ H, (2.3)

i.e. T (h) = h for every h ∈ A(K), and

hz,α ∈ H for every z ∈ K, α ∈ [0, 1] and h ∈ H. (2.4)

By means of such a projection, it is possible to construct a sequence of positive

linear operators, as fully described in [2] (see also [4, Section 6.1]).

In fact, we remind that for every x ∈ K there exists a (unique) µT
x ∈ M+

1 (K)

satisfying

T (f)(x) =

∫

K

f dµT
x for every f ∈ C(K). (2.5)

Therefore, for any n ≥ 1, we consider the positive linear operator Bn : C(K) →

C(K) defined by setting for every f ∈ C(K) and x ∈ K

Bn(f)(x) :=

∫

K

. . .

∫

K

f

(
x1 + . . . + xn

n

)
dµT

x (x1) . . . dµT
x (xn). (2.6)

Bn is said to be the n-th Bernstein-Schnabl operator associated with the projec-

tion T .

It is easy to prove that ‖Bn‖ = 1 for every n ≥ 1; moreover, the sequence (Bn)n≥1

is an approximation process on C(K) (for a proof, see [4, Theorem 6.1.10]), i.e. for

every f ∈ C(K)

lim
n→+∞

Bn(f) = f (2.7)

uniformly on K.

Here we present some examples of projections satisfying (2.3) and (2.4) and

their associated Bernstein-Schnabl operators; other examples may be found in [2],

[4, Sect. 6.3].

Examples 2.1. 1. Let K be a metrizable Bauer simplex and consider the canonical

projection T : C(K) → C(K) associated with K defined for every f ∈ C(K) and

x ∈ K by

T (f)(x) :=

∫

K

f dµx, (2.8)

where µx ∈ M+
1 (K) is the unique probability Borel measure on K which is concen-

trated on the set ∂eK of all extreme points of K (i.e. such that supp(µx) ⊂ ∂eK),

and whose barycenter is x (see [4, Sect. 1.5]).

We recall that T is the unique positive projection on C(K) such that T (C(K)) =

A(K) (see [4, Cor. 1.5.9]) and, consequently, conditions (2.3) and (2.4) are satisfied,
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so that it is possible to associate with T the sequence of Bernstein-Schnabl operators

defined as in (2.6).

In particular, if K is the canonical simplex Kp in Rp

Kp :=

{
(x1, . . . , xp) ∈ Rp : xi ≥ 0 for every i = 1, . . . , p and

p∑

i=1

xi ≤ 1

}
,

then the positive projection in (2.8) is the canonical projection Tp : C(Kp) → C(Kp)

associated with Kp defined by

Tp(f)(x) :=

(
1 −

p∑

i=1

xi

)
f(0) +

p∑

i=1

xif(ei) (2.9)

(f ∈ C(Kp), x = (x1, . . . , xp) ∈ Kp) where, for every i = 1, . . . , p, ei := (δi,j)1≤j≤p,

and δi,j is the Kronecker symbol (see, for instance, [4, Section 6.3.3]).

Finally, the Bernstein-Schnabl operators associated with Tp are the classical Bern-

stein operators on C(Kp), i.e. for every f ∈ C(Kp), x = (x1, . . . , xp) ∈ Kp and n ≥ 1

Bn(f)(x) :=
∑

h1,...,hp=0,...,n

h1+...+hp≤n

f

(
h1

n
, . . . ,

hp

n

)
n!

h1! . . . hp!(n − h1 − . . . − hp)!

× xh1
1 . . . xhp

p

(
1 −

p∑

i=1

xi

)n−
pP

i=1
hi

. (2.10)

2. Let (Ki)1≤i≤p be a finite family of metrizable Bauer simplices and set K :=
p∏

i=1

Ki.

Consider the positive projection T : C(K) → C(K) such that, for every f ∈ C(K)

and x = (x1, . . . , xp) ∈ K

T (f)(x) :=

∫

K1

. . .

∫

Kp

f(y1, . . . , yp)dµx1(y1) . . . dµxp
(yp) (2.11)

where, for every i = 1, . . . p, µxi
∈ M+

1 (Ki) is the probability Borel measure defined

in (2.8).

The range H of the projection T is the space of all continuous functions on K

which are affine with respect to each variable (see [1]), so that (2.3) and (2.4) are

satisfied. Thus, it is possible to associate with the projection T the sequence of

Bernstein-Schnabl operators as in (2.6).

In particular, if K = [0, 1]p, then the projection in (2.11) is the positive projection

Sp : C(K) → C(K) defined by

Sp(f)(x) :=
1∑

h1,...,hp=0

f(δh1,1, . . . , δhp,1)x
h1
1 (1 − x1)

1−h1 . . . xhp

p (1 − xp)
1−hp

for every f ∈ C(K) and x = (x1, . . . , xp) ∈ K.
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Finally, the Bernstein-Schnabl operators associated with Sp are the Bernstein

operators on C([0, 1]p) defined by

Bn(f)(x) :=

n∑

h1,...,hp=0

(
n

h1

)
. . .

(
n

hp

)
f

(
h1

n
, . . . ,

hp

n

)
xh1

1 (1 − x1)
n−h1

. . . xhp

p (1 − xp)
n−hp (2.12)

for every f ∈ C([0, 1]p), x = (x1, . . . , xp) ∈ [0, 1]p and n ≥ 1.

3. If x0 ∈ Rp and r > 0, denote by Ω the open ball B(x0, r) of center x0 and radius

r and consider the Dirichlet operator T : C(Ω) → C(Ω), i.e., for every f ∈ C(Ω), T (f)

denotes the unique solution to the Dirichlet problem
{

∆v = 0 on Ω, v ∈ C(Ω) ∩ C2(Ω);

v|∂K = f |∂K .

More explicitly, for every f ∈ C(Ω) and x ∈ Ω

T (f)(x) =





r2−‖x−x0‖2
2

rσp

∫
∂Ω

f(z)
‖z−x‖p

2
dσ(z), if ‖x − x0‖2 < r;

f(x) if ‖x − x0‖2 = r,

where ‖ · ‖2 is the euclidean norm on Rp, and σp and σ denote the surface area of the

unit sphere in Rp and the surface measure of ∂Ω, respectively.

T is a positive projection satisfying (2.3) and (2.4) (see [4, Corollary 3.3.6]) and

the corresponding Bernstein-Schnabl operators are defined by

Bn(f)(x) =

(
r2 − ‖x − x0‖

2
2

rσp

)n ∫

∂Ω

. . .

∫

∂Ω

f
(

x1+...+xn

n

)

‖x1 − x‖p
2 . . . ‖xn − x‖p

2

dσ(x1) . . . dσ(xn),

for every f ∈ C(Ω), x ∈ Ω and n ≥ 1 (for more details, see [2], [4, Section 6.3.9],

[11]).

There is a strong interplay between the sequence (Bn)n≥1 and certain Feller semi-

groups, in the sense that, by means of suitable iterates of the Bernstein-Schnabl

operators, it is possible to represent the semigroups themselves.

In order to show this link, we need some further notation.

For every m ≥ 1, let Am be the linear subspace generated by all products of m

affine functions, i.e.

Am := span

({
m∏

i=1

hi | h1, . . . , hm ∈ A(K)

})
.

The sequence (Am)m≥1 is increasing; therefore by the Stone-Weierstrass Theorem

A∞ :=
∞⋃

m=1

Am
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is a dense subalgebra of C(K).

For every h1, . . . , hm ∈ A(K) set

LT

(
m∏

i=1

hi

)
:=






0 if m = 1;

T (h1h2) − h1h2 if m = 2;

∑
1≤i<j≤m

(T (hihj) − hihj)
m∏

k=1
k 6=i,j

hk if m ≥ 3.

(2.13)

The mapping LT is involved in an asymptotic formula regarding the Bernstein-

Schnabl operators, as the following result states (for a proof, see [4, Th. 6.2.1]).

Theorem 2.2. The sequence (n(Bn(f) − f))n≥1 is uniformly convergent on K to a

function Z∗(f) ∈ C(K) for every f ∈ A∞.

Moreover, if h1, . . . , hm ∈ A(K), then

Z∗

(
m∏

i=1

hi

)
= LT

(
m∏

i=1

hi

)
.

The previous theorem also infers that LT may be extended to a linear operator

from A∞ into C(K) (see [4, Remark to Th. 6.2.1]) which, by an abuse of notation,

we shall continue to denote by LT .

In [4, Th. 6.2.6] it is shown that such an extension is closable and its closure,

which has A∞ as a core, is the generator of a Feller semigroup (T (t))t≥0 such that,

for any t ≥ 0 and f ∈ C(K)

T (t)(f) = lim
n→∞

B[nt]
n (f)

uniformly on K, where [nt] stands for the integer part of nt.

Finally, we remark that if K is a convex compact subset in Rp, then, as a matter

of fact, A∞ is the space of all polynomials on K; in this case, an asymptotic formula

for Bernstein-Schnabl operators holds true in the bigger subalgebra C2(K) of all

continuous real-valued functions on K which are twice continuously differentiable in

K̊ and whose partial derivatives up to the order 2 can be continuously extended to

K (see [4, Th. 6.2.5]).

3. THE SEQUENCE OF MODIFIED BERNSTEIN-SCHNABL

OPERATORS

This section is mainly devoted to the analysis of a modification of Bernstein-

Schnabl operators which was first introduced in [3] and successively treated in [5] in

finite-dimensional settings.
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Under the same assumptions of the previous section, we consider a convex com-

pact subset K of a locally convex space X and we fix β ∈ C(K, K) and γ ∈ C(K);

moreover, we assume that there exists n0 ≥ 1 such that

x +
β(x)

n
∈ K and 1 +

γ(x)

n
≥ 0 (3.1)

for every x ∈ K and n ≥ n0.

In what follows, we shall present some concrete settings in which (3.1) holds true.

Examples 3.1. 1. If β(x) := −ρx + ρc (x ∈ K), where ρ ≥ 0 and c ∈ K, then (3.1)

is satisfied for n ≥ max{‖γ‖∞, ρ}.

2. If K = [0, 1]p is the hypercube of Rp, β has components β1, . . . , βp and if for

every i = 1, . . . , p

θi := sup
x∈K

pri(x) 6=0

−βi(x)

pri(x)
< +∞ and ηi := sup

x∈K

pri(x) 6=1

βi(x)

1 − pri(x)
< +∞,

then (3.1) holds true provided that n ≥ max{−θ1, . . . ,−θp, η1, . . . , ηp, ‖γ‖∞}.

3. If K is the canonical simplex of Rp and β has components β1, . . . , βp, then

(3.1) is satisfied for n ≥ max{−θ1, . . . ,−θp, M, ‖γ‖∞}, where the θ′is are defined as

above and are supposed to be finite and

M := sup
x∈K

pr1(x)+...+prp(x)<1

β1(x) + . . . + βp(x)

1 − pr1(x) − . . . − prp(x)
< +∞.

For every n ≥ n0 let Mn : C(K) → C(K) be the positive linear operator defined

by

Mn(f) := Bn

((
1 +

γ

n

)(
f ◦

(
e +

β

n

)))
(3.2)

for every f ∈ C(K), where e(y) := y for every y ∈ K and Bn is the n-th Bernstein-

Schnabl operator associated with a fixed positive projection T on C(K) satisfying

(2.3) and (2.4).

More precisely, for every f ∈ C(K) and x ∈ K

Mn(f)(x) =

∫

K

. . .

∫

K

(
1 +

1

n
γ

(
x1 + . . . + xn

n

))

×f

(
x1 + . . . + xn

n
+

1

n
β

(
x1 + . . . + xn

n

))
dµT

x (x1) . . . dµT
x (xn).

It is also possible to write explicitly the operators Mn’s in the particular settings

of Examples 2.1 by simply replacing the term f
(

h1

n
, . . . ,

hp

n

)
with

(
1 +

1

n
γ

(
h1

n
, . . . ,

hp

n

))
f

(
h1

n
+

1

n
β1

(
h1

n
, . . . ,

hp

n

)
, . . . ,

hp

n
+

1

n
βp

(
h1

n
, . . . ,

hp

n

))

in (2.10) and (2.12), where β ∈ C(K, K) has components β1, . . . , βp.
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As an example, we express them for p = 1 and p = 2 (see [3, Section 3] and [10]);

in the case of the interval [0,1], for every f ∈ C([0, 1]) and 0 ≤ x ≤ 1,

Mn(f)(x) =
n∑

k=0

(
n

k

)(
1 +

1

n
γ

(
k

n

))
f

(
k

n
+

1

n
β1

(
k

n

))
xk(1 − x)n−k.

On the triangle K2 in R2, for every f ∈ C(K2) and (x, y) ∈ K2

Mn(f)(x, y) =
∑

h≥0,k≥0
h+k≤n

n!

h!k!(n − h − k)!

(
1 +

1

n
γ

(
h

n
,
k

n

))

×f

(
h

n
+

1

n
β1

(
h

n
,
k

n

)
,
k

n
+

1

n
β2

(
h

n
,
k

n

))
xhyk(1 − x − y)n−h−k;

on the square Q2 in R2, for every f ∈ C(Q2) and (x, y) ∈ Q2

Mn(f)(x, y) =
n∑

h,k=0

(
n

h

)(
n

k

)(
1 +

1

n
γ

(
h

n
,
k

n

))

×f

(
h

n
+

1

n
β1

(
h

n
,
k

n

)
,
k

n
+

1

n
β2

(
h

n
,
k

n

))
xh(1 − x)n−hyk(1 − y)n−k.

Finally, for all x0 ∈ Rp and r > 0, if Ω denotes the open ball B(x0, r) of center

x0 and radius r, the modified Bernstein-Schnabl operators on C(Ω) associated with

the Dirichlet operator are defined as

Mn(f)(x) =

(
r2 − ‖x − x0‖

2
2

rσp

)n ∫

∂Ω

. . .

∫

∂Ω

(
1 +

1

n
γ

(
x1 + . . . + xn

n

))

×
f
(

x1+...+xn

n
+ 1

n
β
(

x1+...+xn

n

))

‖x1 − x‖p
2 . . . ‖xn − x‖p

2

dσ(x1) . . . dσ(xn),

for every f ∈ C(Ω) and x ∈ Ω (see (1.14)).

We now investigate some qualitative properties of modified Bernstein-Schnabl

operators.

First of all we recall the following definitions.

A function f ∈ C(K) is said to be T -convex if

fz,α ≤ T (fz,α) for every z ∈ K and α ∈ [0, 1],

where fz,α is defined as in (2.2) (see [4, p. 404]); it is easy to prove that any convex

function f ∈ C(K) is T -convex.

Moreover, for every x ∈ K set

Dx := {(u, v) ∈ K2 | there exist β ≥ 0 and p, q ∈ supp(µT
x ) such that u−v = β(p−q)},

where µT
x is defined in (2.5); we say that f ∈ C(K) is axially convex (see [4, p. 406])

whenever it is convex on Dx for any x ∈ K. In other words, a function is axially

convex if it is convex on each segment parallel to a segment joining two points of

supp(µT
x ) for every x ∈ K.
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We also point out that, if K a Bauer simplex, then f ∈ C(K) is T -convex with

respect to the projection T defined in (2.8) if and only if it is axially convex (see [4,

Th. 6.3.2] or [23]).

For other examples of T -convex functions on particular finite-dimensional settings

see [5, Sect. 3] and the references quoted therein.

In case K is an arbitrary convex compact subset of a locally convex space X, the

sequence of Bernstein-Schnabl operators (Bn)n≥1 satisfies the inequalities

f ≤ Bn(f) ≤ T (f) (n ≥ 1)

for every T -convex function f ∈ C(K) ([23]; see also [4, Theorem 6.1.13]).

Hence, we obtain the following result, whose proof runs straightforwardly.

Proposition 3.2. Under condition (3.1), assume further that γ is constant. If f ∈

C(K) and if f ◦
(
e + β

n

)
is T -convex for every n ≥ n0, then

(
1 +

γ

n

)(
f ◦

(
e +

β

n

))
≤ Mn(f) ≤

(
1 +

γ

n

)
T

(
f ◦

(
e +

β

n

))
. (3.3)

Remark 3.3. In the special case in which K is a metrizable Bauer simplex, if β is of

the form β(x) = −ρx + ρc (x ∈ K) for some ρ ≥ 0 and c ∈ K, for any axially convex

function f ∈ C(K) also f ◦
(
e + β

n

)
is T -convex, and hence formula (3.3) holds true

for every constant function γ. Moreover, each Mn(f) is axially convex, too (n ≥ n0).

The proof of those assertions runs analogously as in [5, Corollary 3.4, (1)], to which

we refer for some further results concerning the behavior of the operators Mn’s on

T -convex functions in finite-dimensional settings.

It is easy to show that the sequence (Mn)n≥n0 is equibounded, in fact ‖Mn‖ ≤

1 + ‖γ‖∞
n

for every n ≥ n0.

Moreover, (Mn)n≥n0 is an approximation process on C(K), as the following result

shows.

Proposition 3.4. For every f ∈ C(K)

lim
n→+∞

Mn(f) = f

uniformly on K.

Proof. First, we observe that {1} ∪ L(K) ∪ L2(K) (see (2.1)) is a Korovkin set

for C(K), where L2(K) := {h2 : h ∈ L(K)}, (see [6, Th. 5.3 and the comments

before it]). Then, it is sufficient to show that Mn(1) → 1 uniformly on K and that

lim
n→+∞

Mn(h) = h and lim
n→+∞

Mn(h2) = h2

uniformly on K for every h ∈ L(K).
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Indeed, taking (2.7) into account, and since

Mn(1) = 1 +
1

n
Bn(γ),

and, for every h ∈ L(K)

Mn(h) = Bn(h) +
1

n2
Bn(γ(h ◦ β)) +

1

n
Bn(h ◦ β + γh)

and

Mn(h2) = Bn(h2) +
1

n
Bn(2h(h ◦ β) + γh2) +

1

n2
Bn(h2 ◦ β + 2γh(h ◦ β))

+
1

n3
Bn(γ(h2 ◦ β)),

the previous assertion easily follows. �

In order to provide a rate of the pointwise as well as the uniform convergence of

the approximating sequence (Mn)n≥n0, we first introduce the following notation and

assumptions.

For every δ > 0 and f ∈ C(K)

ω(f, δ) := sup{|f(x) − f(y)| : x, y ∈ K, d(x, y) ≤ δ} (3.4)

stands for the first modulus of continuity of f with argument δ > 0, where d is a

distance on K inducing its topology.

Moreover, up to the end of this section we shall assume that

d is induced by some distance d0 on X such that

for every x, y, z ∈ X and k ∈ [0, 1] (3.5)

d0(x + z, y + z) = d0(x, y) and d0(kx, 0) ≤ kd0(x, 0).

We explicitly notice that from the previous properties we deduce

d0(kx, ky) ≤ kd0(x, y) (3.6)

for every k ∈ [0, 1] and x, y ∈ X.

For some details and examples of locally convex spaces satisfying such properties

we refer the interested reader to [19] and [22].

Finally, we set

Mβ := max
x∈K

d0(β(x), 0),

where by 0 we mean the neutral element of X.

Thus we state the following result.



620 M. CAPPELLETTI MONTANO AND S. DIOMEDE

Proposition 3.5. Let f ∈ C(K); then, for every n ≥ n0 and x ∈ K

|Mn(f)(x) − f(x)| ≤ 2Ω

((
1 +

γ

n

)
f ◦

(
e +

β

n

)
,

√
1

n

)

+ ω

(
f,

Mβ

n

)
+

1

n

∣∣∣∣γ(x)f

(
x +

β(x)

n

)∣∣∣∣ ,

where Ω(g, δ) is defined as in [4, (5.1.10)] for every δ > 0 and g ∈ C(K). In particular,

for every n ≥ n0

‖Mn(f) − f‖∞ ≤ 2Ω

((
1 +

γ

n

)
f ◦

(
e +

β

n

)
,

√
1

n

)
+ ω

(
f,

Mβ

n

)
+

1

n
‖γ‖∞‖f‖∞.

Proof. We show the pointwise estimation. Fix f ∈ C(K) and preliminarily

notice that, by virtue of (3.5), for any n ≥ n0 and x ∈ K
∣∣∣∣f ◦

(
e +

β

n

)
(x) − f(x)

∣∣∣∣ ≤ ω

(
f,

Mβ

n

)
;

thus, for every n ≥ n0 and x ∈ K,

|Mn(f)(x) − f(x)|

≤

∣∣∣∣Bn

((
1 +

γ

n

)
f ◦

(
e +

β

n

))
(x) −

(
1 +

γ

n

)
f ◦

(
e +

β

n

)
(x)

∣∣∣∣

+

∣∣∣∣
(
1 +

γ

n

)
f ◦

(
e +

β

n

)
(x) − f(x)

∣∣∣∣

≤

∣∣∣∣Bn

((
1 +

γ

n

)
f ◦

(
e +

β

n

))
(x) −

(
1 +

γ

n

)
f ◦

(
e +

β

n

)
(x)

∣∣∣∣

+ω

(
f,

Mβ

n

)
+

1

n
|γ(x)|

∣∣∣∣f
(

x +
β(x)

n

)∣∣∣∣ .

Hence, taking estimate (6.1.58) of [4] into account, the result easily follows. �

We now pass to analyze some Lipschitz preservation properties of the Mn’s, and

to this purpose we set, for any M ≥ 0 and 0 < α ≤ 1

Lip(M, α) := {f ∈ C(K) : |f(x) − f(y)| ≤ Md(x, y)α for every x, y ∈ K}

and, similarly,

LipK(M, α) := {g ∈ C(K, K) : d(g(x), g(y)) ≤ Md(x, y)α for every x, y ∈ K}.

In what follows we shall assume that the distance d verifies (3.5), and that for

some c ≥ 0

T (f) ∈ Lip(c, 1) for every f ∈ Lip(1, 1). (3.7)

We recall that, under condition (3.7), it was shown in [23] (see also [4, Theorem

6.1.21]) that

Bn(f) ∈ Lip(cM, 1) (3.8)
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for every f ∈ Lip(M, 1) and n ≥ 1. Moreover (see [23] or [4, Corollary 6.1.22]),

ω(Bn(f), δ) ≤ (1 + c)ω(f, δ) (3.9)

for every n ≥ 1, f ∈ C(K) and δ > 0 (see (3.4)).

We are now ready to state next result.

Proposition 3.6. Suppose that condition (3.7) is satisfied, and that β ∈ LipK (C, 1)

and γ ∈ Lip(N, 1) for some C, N ≥ 0. Then, for every f ∈ Lip(M, 1) and n ≥ n0

Mn(f) ∈ Lip

(
cM

(
1 +

‖γ‖∞
n

)(
1 +

C

n

)
+ c‖f‖∞

N

n
, 1

)
.

Moreover, if γ is constant, for any n ≥ n0

Mn(f) ∈ Lip

(
cM

(
1 +

|γ|

n

)(
1 +

C

n

)
, 1

)
.

In particular, if γ = 0 and β is constant, then for every n ≥ n0

Mn(f) ∈ Lip (cM, 1) .

Proof. By an easy calculation, and also taking (3.6) into account, we obtain for

any n ≥ n0

(
1 +

γ

n

)
f ◦

(
e +

β

n

)
∈ Lip

(
M

(
1 +

‖γ‖∞
n

)(
1 +

C

n

)
+ ‖f‖∞

N

n
, 1

)

and hence, by applying (3.8), the statement follows. �

Finally, by (3.9) we easily deduce next proposition.

Proposition 3.7. Under assumption (3.7), suppose further that β ∈ LipK (C, 1) for

some C ≥ 0. Then, for every f ∈ C(K), δ > 0 and n ≥ n0

ω(Mn(f), δ) ≤ (1 + c)

(
1 +

‖γ‖∞
n

)
ω

(
f,

(
1 +

C

n

)
δ

)
+

(1 + c)‖f‖∞
n

ω(γ, δ).

Moreover, if γ is constant, for any n ≥ n0

ω(Mn(f), δ) ≤ (1 + c)

(
1 +

|γ|

n

)
ω

(
f,

(
1 +

C

n

)
δ

)
.

In particular, if γ = 0 and β is a constant function, then for every n ≥ n0

ω(Mn(f), δ) ≤ (1 + c) ω (f, δ) .
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4. AN ASYMPTOTIC FORMULA FOR MODIFIED

BERNSTEIN-SCHNABL OPERATORS

In this section we establish an asymptotic formula for modified Bernstein-Schnabl

operators which extends Theorem 2.2. To this end, we prove some preliminary results.

Proposition 4.1. For any f ∈ C(K)

lim
n→+∞

f ◦

(
e +

β

n

)
= f uniformly on K.

Proof. For any n ≥ n0, consider the positive linear operator Cn : C(K) → C(K)

defined by setting, for every f ∈ C(K),

Cn(f) := f ◦

(
e +

β

n

)
.

As Cn(1) = 1, Cn(h) = h + 1
n
(h ◦ β) and Cn(h

2) = h2 + 2
n
h(h ◦ β) + 1

n2 h
2 ◦ β for

every h ∈ L(K), and since {1} ∪ L(K) ∪ L2(K) is a Korovkin set for C(K) (see the

proof of Proposition 3.4), we obtain the required assertion. �

From now on, for every m ≥ 1 we shall denote by

L1(K) := L(K) ∪ {1},

and

Lm(K) :=

{
m∏

i=1

hi : h1, . . . , hm ∈ L1(K)

}
.

Moreover, set

Lm(K) := span(Lm(K))

the linear space generated by Lm(K) and

L∞(K) :=

∞⋃

m=1

Lm(K).

Observe that, since for every m ≥ 1 Lm(K) ⊂ Lm+1(K), L∞(K) is a linear subspace

of C(K); moreover it is also a subalgebra which, by the Stone-Weierstrass theorem,

is dense in C(K).

We now pass to define the following mapping

B(f) :=






0 if f = 1;

f ◦ β if f ∈ L(K);
m∑

i=1

(hi ◦ β)
m∏

j=1
j 6=i

hj if f =
m∏

i=1

hi, m ≥ 2, h1, . . . , hm ∈ L(K),
(4.1)

and we introduce some further notation.

For every m, p ≥ 1, 1 ≤ p ≤ m, set

Nm(p) := {(i1, . . . , ip) ∈ {1, . . . , m}p | ir 6= is for r 6= s}
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and

Ñm := {((i1, . . . , ip), (j1, . . . , jm−p)) ∈ Nm(p) × Nm(m − p) | ih 6= jk

for every h = 1, . . . , p, and k = 1, . . . , m − p}.

Then, the following result holds true.

Proposition 4.2. The sequence (n
(
f ◦
(
e + β

n

)
− f

)
)n≥n0 is uniformly convergent on

K for every f ∈ L∞(K). In particular, if m ≥ 1 is an integer such that f ∈ Lm(K),

then

lim
n→+∞

n

(
f ◦

(
e +

β

n

)
− f

)
= B(f).

Proof. Without loss of generality, we may assume that f ∈ Lm(K), m ≥ 1. The

result is trivial if f ∈ L1(K) as well as if f = h1h2 with h1, h2 ∈ L(K); otherwise,

suppose that, for some m ≥ 3 and h1, . . . , hm ∈ L(K), f =
m∏

i=1

hi.

Since for any n ≥ n0

m∏

i=1

hi ◦

(
e +

β

n

)
=

m∏

i=1

(
hi +

hi ◦ β

n

)
=

m∏

i=1

hi +
1

n

m∑

i=1

(hi ◦ β)

m∏

i=1
i6=j

hj

+
m−2∑

p=1

1

nm−p

∑

((i1,...,ip),(j1,...,jm−p))∈ eNm

hi1 . . . hip(hj1 ◦ β) . . . (hjm−p
◦ β)

+
1

nm

m∏

i=1

(hi ◦ β),

we obtain

n

[(
m∏

i=1

hi

)
◦

(
e +

β

n

)
−

m∏

i=1

hi

]
= B

(
m∏

i=1

hi

)

+
m−2∑

p=1

1

nm−p−1

∑

((i1,...,ip),(j1,...,jm−p))∈ eNm

hi1 . . . hip(hj1 ◦ β) . . . (hjm−p
◦ β)

+
1

nm−1

m∏

i=1

(hi ◦ β).

Therefore, the result easily follows. �

Remark 4.3. By virtue of the previous proposition, the mapping B defined in (4.1)

may be extended to a linear operator from L∞(K) into C(K). Accordingly, by an

abuse of notation, we shall still denote such an extension by B.

We are now ready to state the preannounced asymptotic formula on L∞(K) for

the modified Bernstein-Schnabl operators.
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Theorem 4.4. The sequence (n(Mn(f)−f))n≥n0 converges uniformly on K for every

f ∈ L∞(K).

In particular, if f ∈ Lm(K) for some m ≥ 1, then

lim
n→+∞

n(Mn(f) − f) = LT (f) + B(f) + γf,

where LT is defined in (2.13) and B in (4.1).

Proof. Without loss of generality we limit ourselves to prove that for any f ∈

Lm(K) (m ≥ 1) the sequence (n(Mn(f) − f))n≥n0 is uniformly convergent on K.

The result is straightforward if f ∈ L1(K). Assume, instead, that f =
m∏

i=1

hi, for some

m ≥ 2 and h1, . . . , hm ∈ L(K). We preliminarily show that

lim
n→+∞

n

(
Bn

(
f ◦

(
e +

β

n

))
− f ◦

(
e +

β

n

))
= LT (f), (1)

lim
n→+∞

(
Bn

(
γf ◦

(
e +

β

n

))
− γf ◦

(
e +

β

n

))
= 0, (2)

and

lim
n→+∞

n

((
1 +

γ

n

)
f ◦

(
e +

β

n

)
− f

)
= B(f) + γf, (3)

the three convergences being uniform on K.

In fact, starting with (1), the calculation made for the previous proposition leads

to

n

(
Bn

(
f ◦

(
e +

β

n

))
− f ◦

(
e +

β

n

))
= n

[
Bn

(
m∏

i=1

hi

)
−

m∏

i=1

hi

]

+
m−1∑

p=1

1

nm−p−1

∑

((i1,...,ip),(j1,...,jm−p))∈ eNm

[
Bn(hi1 . . . hip(hj1 ◦ β) . . . (hjm−p

◦ β))

− hi1 . . . hip(hj1 ◦ β) . . . (hjm−p
◦ β)

]
+

1

nm−1

[
Bn

(
m∏

i=1

(hi ◦ β)

)
−

m∏

i=1

(hi ◦ β)

]
;

taking Theorem 2.2 and (2.7) into account, the result easily follows.

To prove (2), simply observe that

Bn

(
γf ◦

(
e +

β

n

))
− γf ◦

(
e +

β

n

)

= Bn

(
γf ◦

(
e +

β

n

)
− γf

)
+ (Bn(γf) − γf) +

(
γf − γf ◦

(
e +

β

n

))

where each term tends uniformly to zero by virtue of Proposition 4.1 and (2.7).

Finally from Propositions 4.1 and 4.2 we obtain (3).
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Hence, by writing

n(Mn(f) − f) = n

(
Bn

((
1 +

γ

n

)(
f ◦

(
e +

β

n

)))
− f

)

= n

(
Bn

(
f ◦

(
e +

β

n

))
− f ◦

(
e +

β

n

))

+

(
Bn

(
γf ◦

(
e +

β

n

))
− γf ◦

(
e +

β

n

))

+ n

((
1 +

γ

n

)
f ◦

(
e +

β

n

)
− f

)

and by using (1), (2) and (3), we get the required assertion. �

Remark 4.5. In the following section we shall often refer to the mapping f ∈ L∞ 7→

LT (f)+B(f)+γf ∈ C(K) as to the linear operator defined by means of the extensions

of the functions LT and B to L∞(K) (to this regard see comments after formula (2.13)

and Remark 4.3).

We finally point out that if K is a convex compact subset of Rp, then an asymp-

totic formula involving a complete second-order differential operator holds for func-

tions belonging to a bigger space, namely C2(K). More precisely, if β = (β1, . . . , βp),

for every u ∈ C2(K) and x = (x1, . . . , xp) ∈ K

lim
n→+∞

n(Mn(u) − u)(x) =
1

2

p∑

i,j=1

αi,j(x)
∂2u

∂xi∂xj

(x) +

p∑

i=1

βi(x)
∂u

∂xi

(x) + γ(x)u(x)

uniformly w.r.t. x ∈ K, where

αi,j(x) = T (priprj)(x) − xixj ,

pri being the ith coordinate function on K.

Hence, if K is a convex compact subset of Rp, for every f ∈ L∞(K)

LT (f) + B(f) + γf =
1

2

p∑

i,j=1

αi,j

∂2f

∂xi∂xj

+

p∑

i=1

βi

∂f

∂xi

+ γf.

To this regard, we refer the interested reader to [5, Th. 3.7] for more details.

5. C0-SEMIGROUPS ASSOCIATED WITH MODIFIED

BERNSTEIN-SCHNABL OPERATORS

We show that, under suitable assumptions on the projection T and the function

β, an operator arising from the asymptotic formula of Theorem 4.4 is the generator

of a C0-semigroup on C(K). In its turn, that semigroup may be approximated by

iterates of the modified Bernstein-Schnabl operators Mn’s.
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To this purpose we remark that, by the iterate of Mn of order k ≥ 1 we mean

Mk
n :=

{
Mn if k = 1

Mn ◦ Mk−1
n if k ≥ 2.

From now on, we assume that there exist a, b ∈ R and z ∈ K such that

ax + bz ∈ K for every x ∈ K (5.1)

and we define β : K → K by setting

β(x) := ax + bz (x ∈ K). (5.2)

To this regard we observe that (5.1) occurs for any z ∈ K whenever a, b ≥ 0 and

a + b ≤ 1.

We also recall that a core for a linear operator L : D(L) ⊂ C(K) → C(K) is a

linear subspace D0 of D(L) which is dense in D(L) with respect to the graph norm

‖u‖L := ‖L(u)‖∞ + ‖u‖∞ (u ∈ D(L)). If M is a bounded operator on C(K) and D0

is a core for L, then D0 is a core also for L + M , since ‖ · ‖L+M ≤ (1 + ‖M‖)‖ · ‖L.

Denote by I the identity operator on C(K); if (L, D(L)) is closed and λI − L is

invertible for some λ ∈ R, then a subspace D0 of D(L) is a core for L if and only if

(λI − L)(D0) is dense in C(K).

We now state the following

Theorem 5.1. Let T : C(K) → C(K) be a positive projection such that (2.3) and

(2.4) hold true, and assume that

T (h1h2) ∈ L(K) for every h1, h2 ∈ L(K). (5.3)

Consider β ∈ C(K, K) defined as in (5.2), γ ∈ C(K) satisfying (3.1), and the

sequence (Mn)n≥n0 of modified Bernstein-Schnabl operators associated with T intro-

duced in (3.2). Then

(1) there exists a positive C0-semigroup (T (t))t≥0 on C(K) such that

‖T (t)‖ ≤ exp(‖γ‖∞t) for every t ≥ 0; (5.4)

moreover, if γ ≤ 0, (T (t))t≥0 is a Feller semigroup, i.e.

‖T (t)‖ ≤ 1 for every t ≥ 0.

(2) If t ≥ 0 and (ρn)n≥1 is a sequence of positive integers such that lim
n→+∞

ρn

n
= t,

then

lim
n→+∞

Mρn

n (f) = T (t)(f) (f ∈ C(K)) (5.5)

uniformly on K, where each Mρn
n denotes the iterate of Mn of order ρn. In

particular, for every f ∈ C(K),

lim
n→+∞

M [nt]
n (f) = T (t)(f)
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uniformly on K, where [nt] denotes the integer part of nt.

(3) The generator (A, D(A)) of the semigroup (T (t))t≥0 is the closure of the linear

operator Z : D(Z) → C(K) defined by

Z(f) := lim
n→+∞

n(Mn(f) − f)

for every f ∈ D(Z), where

D(Z) :=

{
g ∈ C(K) | lim

n→+∞
n(Mn(g) − g) exists in C(K)

}
;

(4) L∞(K) is a core for (A, D(A)) and

A(f) = LT (f) + B(f) + γf

for every f ∈ L∞(K), where LT and B are the extensions to L∞ of the operators

defined by (2.13) and (4.1), respectively (see also Remark (4.5)).

Proof. Let us consider the positive linear contractions Ln : C(K) → C(K) defined

by setting

Ln(f) := Bn

(
f ◦

(
e +

β

n

))
(f ∈ C(K), n ≥ n0).

Moreover we introduce the linear operator (V, D(V )) with domain

D(V ) :=

{
g ∈ C(K) | lim

n→+∞
n(Ln(g) − g) exists in C(K)

}
,

and such that

V (f) := lim
n→+∞

n(Ln(f) − f)

for every f ∈ D(V ).

By virtue of Theorem 4.4, L∞(K) ⊂ D(V ).

We pass to prove that there exists λ > 0 such that the range R(λI−V ) of λI−V

is dense in C(K); since L∞(K) is dense in C(K) it suffices to show that

(λI − V )(L∞(K)) = C(K). (1)

To this purpose consider λ > 0 such that λ 6= −m(m−1)
2

+ am for every m ≥ 1, and

fix an arbitrary continuous linear functional µ : C(K) → R such that µ = 0 on

(λI − V )(L∞(K)), i.e.

µ(f) =
1

λ
µ(V (f)) =

1

λ
(µ(LT (f)) + µ(B(f)))

for every f ∈ L∞(K); by a consequence of Hahn-Banach theorem, (1) will be proved

if we show that µ = 0.

If f = 1, then

µ(1) =
1

λ
(µ(LT (1)) + µ(B(1))) = 0

(see (2.13) and (4.1)).
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Observe that, if f ∈ L(K), then

f ◦ β = af + bf(z)1,

and thus

µ(f) =
1

λ
(µ(LT (f)) + µ(B(f))) =

1

λ
(aµ((f)) + bf(z)µ(1)) =

a

λ
µ(f),

so that, also in this case, µ(f) = 0.

In order to examine the case in which f is the finite product of continuous linear

functions, observe that for every m ≥ 2 and h1, . . . , hm ∈ L(K),

B

(
m∏

i=1

hi

)
=

m∑

i=1

(ahi + bhi(z)1)

m∏

j=1
j 6=i

hj = ma

m∏

i=1

hi + b

m∑

i=1

hi(z)

m∏

j=1
j 6=i

hj. (2)

Hence, if f = h1h2, with h1, h2 ∈ L(K) then, taking (2.13), (5.3) and (2) into account,

we have that

µ(f) =
1

λ
(µ(T (f) − µ(f) + µ(B(f)))

=
1

λ
(−µ(f) + 2aµ(f) + bh1(z)µ(h2) + bh2(z)µ(h1))

=
1

λ
(−µ(f) + 2aµ(f)),

and therefore µ(f) = 0.

Let us now fix m > 2 and suppose that µ = 0 on Lm(K); we shall prove that

µ = 0 on Lm+1(K). To this end, consider h1, . . . , hm+1 ∈ L(K) and set f =
m+1∏
i=1

hi;

then, by virtue of (2.13), (5.3) and (2),

µ(f) =
1

λ
(µ(LT (f)) + µ(B(f)))

=
1

λ
µ




∑

1≤i<j≤m+1

T (hihj)

m+1∏

k=1
k 6=i,j

hk −

(
m + 1

2

)
f




+
1

λ


(m + 1)aµ(f) + b

m+1∑

i=1

hi(z)µ




m+1∏

j=1
j 6=i

hj







=
1

λ

(
−

m(m + 1)

2
+ a(m + 1)

)
µ(f).

Accordingly, µ(f) = 0; hence, by induction, µ = 0 on each Lm(K), m ≥ 1, and

thus, by the linearity of µ, on every Lm(K) and therefore µ = 0 on L∞(K). Since

L∞(K) = C(K), we conclude that µ = 0, so that (1) holds true.

By virtue of a Trotter’s theorem ([28]; see also [21, Chapter 3, Theorem 6.7])

there exists a strongly continuous positive contraction semigroup (S(t))t≥0 on C(K)
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such that for every t ≥ 0 and f ∈ C(K)

S(t)(f) = lim
n→+∞

Lρn

n (f)

uniformly on K for every sequence (ρn)n≥1 of positive integers such that lim
n→+∞

ρn

n
= t,

and the generator (W, D(W )) of (S(t))t≥0 is the closure of (V, D(V )).

Moreover, W = V = LT + B on L∞(K).

Consequently, by (1) it follows that

(I − λW )(L∞(K)) = (I − λV )(L∞(K)) = C(K),

and thus L∞(K) is a core for (W, D(W )).

Consider now the bounded operator Γ on C(K) defined by Γ(f) := γf (f ∈ C(K))

and set

A := W + Γ

defined on D(A) := D(W ). Then, by virtue of a perturbation result (see [21, Corollary

1.3]) the operator A generates a C0-semigroup (T (t))t≥0 of operators such that

‖T (t)‖ ≤ exp(‖γ‖∞t) (t ≥ 0).

If γ ≤ 0, then Γ, as well as W , satisfies the positive maximum principle (see, e.g.,

[27, Theorem 9.3.3]). Hence also A satisfies the positive maximum principle, so that

‖T (t)‖ ≤ 1 for every t ≥ 0 (see, e.g., [27, Corollary 9.3.6]).

Moreover L∞(K) is a core for A and hence (λI − A)(L∞(K)) is dense in C(K) for

any λ > ‖γ‖∞.

Therefore, as

Z(f) = V (f) + γf = W (f) + γf = A(f) (3)

for every f ∈ L∞(K), also (λI − Z)(L∞(K)) is dense in C(K) for any λ > ‖γ‖∞.

Furthermore, as ‖Mn‖ ≤ 1 + ‖γ‖∞
n

≤ exp
(

‖γ‖∞
n

)
for every n ≥ n0,

‖Mk
n‖ ≤ exp

(
‖γ‖∞k

n

)
(k ≥ 1).

By applying again Trotter’s theorem we deduce that the operator (Z, D(Z))

is closable and its closure (Ã, D(Ã)) generates a C0-semigroup (T̃ (t))t≥0 on C(K)

satisfying (5.4) and (5.5).

Finally, the statement will be completely proved once we recognize that T̃ (t) =

T (t) for every t ≥ 0 or, equivalently, that (Ã, D(Ã)) = (A, D(A)).

From (3) it follows that D(Ã) ⊂ D(A) and A = Ã on D(Ã). Conversely, since

L∞(K) is a core for A, for every u ∈ D(A) there exists a sequence (un)n≥1 in L∞(K) ⊂

D(Ã) such that un → u and A(un) → A(u). Since A(un) = Ã(un) (n ≥ 1) and Ã is

closed, u ∈ D(Ã) and Ã(u) = A(u). �
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We remark that an example of projection satisfying (5.3) is provided by the

canonical projection on the p-dimensional simplex introduced by (2.9).

Moreover, other generation and approximation results obtained in finite dimen-

sional settings, together with some applications of theirs, may be found in [5, Sec-

tions 4 and 5].

As a consequence of Theorem 5.1 let us now consider the abstract Cauchy problem

related to (A, D(A))
{

∂u
∂t

(x, t) = A(u(·, t))(x) x ∈ K, t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(A), x ∈ K.

As (A, D(A)) is the generator of a C0-semigroup, the Cauchy problem admits a

unique solution u : K × [0, +∞[→ R given by u(x, t) = T (t)(u0)(x) for every x ∈ K

and t ≥ 0 (see, e.g., [17, Chapter A-II]). Hence, it is possible to approximate such

solution by means of iterates of the modified Bernstein-Schnabl operators as follows:

u(x, t) = T (t)(u0)(x) = lim
n→+∞

M [nt]
n (u0)(x), (5.6)

the limit being uniform with respect to x ∈ K.

This latter allows us to infer some regularity properties for the solution u(x, t);

in fact, assuming that γ is constant, β ∈ LipK (C, 1) , for some C ≥ 0 and (3.5) holds

true, if T (Lip(1, 1)) ⊂ Lip(1, 1) and u0 ∈ Lip(M, 1) for some M ≥ 0, then

u(·, t) ∈ Lip(M exp(|γ| + C)t, 1) for every t ≥ 0. (5.7)

To show (5.7) it suffices to make use of Proposition 3.6, and argue as done below

formula (4.16) in [5].

Finally we observe that β is Lipschitz-continuous in case (3.5) holds true and

a ∈ [0, 1].
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Verlag, Basel, 1999.
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