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1. INTRODUCTION

In the paper we study the existence of positive solution of the following first-order

boundary value problem (BVP)

{

x′(t) + a(t)x(t) = f(t, x(t)), t ∈ [0, T ],

x(0) = αx(T ),
(1.1)

where α > 0 and T > 0. We are interested in the case when the problem (1.1) is at

resonance, that is, the corresponding homogeneous problem

{

x′(t) + a(t)x(t) = 0, t ∈ [0, T ],

x(0) = αx(T ),

has nontrivial solutions. Boundary value problems for first-order differential equa-

tions have been discussed for example in the papers [2], [3], [6], [7], [8], [9], [10], [13],

[14], [17] and [18]. In particular, in [2], [6] and [7], the authors dealt with the nonlin-

ear boundary condition g(x(0), x(T )) = 0. They obtained existence and uniqueness

results by making use of the method of upper and lower solutions and of monotone

iterative techniques. Note that (1.1) with α = 1 becomes a periodic BVP. For some

recent results on such problems we refer the reader to [11], [15], [19] and the references

therein. The existence and multiplicity of positive solutions for first-order periodic

BVPs have been studied for example in [3], [11], [14] and [15]. In particular, in order
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to prove the existence of a positive solution for the problem
{

x′(t) + f(t, x(t)) = 0, t ∈ [0, T ],

x(0) = x(T ),

Peng [15] applied the fixed point theorem on cone [4] to the equivalent non-resonant

periodic BVP. A similar approach was used in [11]. In this paper we study a more

general problem. Our method is based on the existence theorem for coincidence

equations due to O’Regan and Zima [14]. Some results on coincidences and their

applications to first and second order boundary value problems can be found for

example in [1], [3], [5], [10], [12], [17] and [20]. In particular, Santanilla [17] applied

his coincidence theorem of compression type for solutions in a cone to prove the

existence of positive solutions for first-order periodic BVP. The key tool used in

[10] to prove the existence result for first-order multi-point BVP is the well-known

coincidence degree theory due to Mawhin (see for example [12]). The purpose of this

paper is to extend some results from [14] and [17].

2. COINCIDENCE EQUATIONS

In this Section we recall some basic facts on Fredholm operators, coincidence

equations and cones in Banach spaces. Let X and Y denote real Banach spaces.

Consider a linear mapping L : domL ⊂ X → Y and a nonlinear operator N : X → Y .

We will assume that:

1◦ L is a Fredholm operator of index zero, that is, ImL is closed and dim KerL =

codim ImL <∞.

This implies that there exist continuous projections

P : X → X and Q : Y → Y

such that ImP = KerL and KerQ = ImL (see for example [3], [12]). Since

dim ImQ = codim ImL, there exists an isomorphism

J : ImQ→ KerL.

Denote by LP the restriction of L to KerP ∩ domL. Clearly, LP is an isomorphism

from KerP ∩ domL to ImL. Thus its inverse

KP : ImL→ KerP ∩ domL

is defined. It is known (see [3], [12]) that the coincidence equation

Lx = Nx

is equivalent to

x = (P + JQN)x +KP (I −Q)Nx.



FIRST ORDER PROBLEM 673

Let C be a cone in X. It is well-known that C induces a partial order in X by

x � y if and only if y − x ∈ C.

We will also make use of the following property.

Lemma 2.1. [16] For every u ∈ C \{0} there exists a positive number σ(u) such that

‖x+ u‖ ≥ σ(u)‖x‖

for all x ∈ C.

Let γ : X → C be a retraction, that is, a continuous mapping such that γ(x) = x

for all x ∈ C. Put

Ψ = P + JQN +KP (I −Q)N

and

Ψγ = Ψ ◦ γ.

In order to prove the existence of positive solution of (1.1) we will apply the

following result.

Theorem 2.2. [14] Let Ω1, Ω2 be open bounded subsets of X with Ω1 ⊂ Ω2 and

C ∩ (Ω2 \ Ω1) 6= ∅. Assume that 1◦ is satisfied and:

2◦ QN : X → Y is continuous and bounded and KP (I −Q)N : X → X is compact

on every bounded subset of X,

3◦ Lx 6= λNx for all x ∈ C ∩ ∂Ω2 ∩ domL and λ ∈ (0, 1),

4◦ γ maps subsets of Ω2 into bounded subsets of C,

5◦ dB( [I − (P + JQN)γ]|KerL ,KerL∩Ω2, 0) 6= 0, where dB stands for the Brouwer

degree,

6◦ there exists u0 ∈ C \{0} such that ‖x‖ ≤ σ(u0)‖Ψx‖ for x ∈ C(u0)∩∂Ω1, where

C(u0) = {x ∈ C : µu0 � x for some µ > 0}

and σ(u0) is such that ‖x+ u0‖ ≥ σ(u0)‖x‖ for every x ∈ C,

7◦ (P + JQN)γ(∂Ω2) ⊂ C,

8◦ Ψγ(Ω2 \ Ω1) ⊂ C.

Then the equation Lx = Nx has a solution in the set C ∩ (Ω2 \ Ω1).

3. A FIRST ORDER PROBLEM

Now we state and prove the main result of the paper. Consider the problem (1.1),

that is
{

x′(t) + a(t)x(t) = f(t, x(t)), t ∈ [0, T ],

x(0) = αx(T ),
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where α > 0 and T > 0 with

αe−
R

T

0
a(s)ds = 1. (3.1)

Then (1.1) is at resonance. We set

ϕ(t) := e
R

t

0
a(s)ds, t ∈ [0, T ].

¿From (3.1) we get ϕ(T ) = α. Moreover, we use the following notations:

ψ(t) :=

∫ t

0

ds

ϕ(s)
, t ∈ [0, T ],

k(t, s) :=
ϕ(s)

ϕ(t)















1 +
ψ(s)

ψ(T )
, 0 ≤ s ≤ t ≤ T,

ψ(s)

ψ(T )
, 0 ≤ t < s ≤ T,

and

G(t, s) =
Mϕ(s)

ϕ(t)
∫ T

0
ϕ(τ)dτ

+ k(t, s) −

∫ T

0
k(t, τ)dτ

∫ T

0
ϕ(τ)dτ

ϕ(s), t, s ∈ [0, T ],

where M > 0.

Assume that:

(H1) a : [0, T ] → [0,∞) and f : [0, T ] × R → R are continuous functions.

It is clear that (3.1) and (H1) imply α ≥ 1.

Moreover, assume that there exist positive constants κ, M and R such that:

(H2) κM ≤ 1
αψ(T )

∫ T

0
ϕ(s)ds,

(H3) G(t, s) ≥ 0 and 1
ϕ(t)ψ(T )

− κG(t, s) ≥ 0 for t, s ∈ [0, T ],

(H4) f(t, R) < 0 and f(t, R
ϕ(t)

) < 0 for t ∈ [0, T ],

(H5) f(t, x) > −κx for (t, x) ∈ [0, T ] × [0, R],

(H6) there exist t0 ∈ [0, T ], r ∈ (0, R/α), β > 0, m ∈ (0, 1) and continuous functions

g : [0, T ] → [0,∞), h : (0, r] → [0,∞) such that f(t, x) ≥ g(t)h(x) for (t, x) ∈

[0, T ] × (0, r], h(x)/xβ is non-increasing on (0, r] with

h(r)

r
mβ

∫ T

0

G(t0, s)g(s)ds ≥ 1 −
mT

ϕ(t0)ψ(T )
.

Theorem 3.1. Under the assumptions (H1)-(H6), the problem (1.1) has at least one

solution, positive on [0, T ].

Proof. Consider the Banach spaces

X = Y = C[0, T ]

with

‖x‖ = max
t∈[0,T ]

|x(t)|.
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Let L : domL→ Y and N : X → Y with

domL = {x ∈ X : x′ ∈ C[0, T ], x(0) = αx(T )}

be given by

(Lx)(t) = x′(t) + a(t)x(t)

and

(Nx)(t) = f(t, x(t)), t ∈ [0, T ].

Then

KerL = {x ∈ domL : x(t) =
c

ϕ(t)
, c ∈ R, t ∈ [0, T ]}

and

ImL = {y ∈ Y :

∫ T

0

ϕ(s)y(s)ds = 0}.

Define the projections P : X → X by

Px(t) =
1

ϕ(t)ψ(T )

∫ T

0

x(s)ds, t ∈ [0, T ],

and Q : Y → Y by

Qy =

∫ T

0
ϕ(s)y(s)ds

∫ T

0
ϕ(s)ds

.

Then ImP = KerL, KerQ = ImL and

KerP = {x ∈ X :

∫ T

0

x(s)ds = 0}.

Clearly, ImL is closed. Note that Y = Y1 ⊕ ImL, where

Y1 =
{

y1 ∈ Y : y1 =

∫ T

0
ϕ(s)z(s)ds

∫ T

0
ϕ(s)ds

, z ∈ Y
}

.

As a result, L is Fredholm of index zero, so 1◦ is fulfilled. For y ∈ ImL the inverse

KP of LP is given by

KPy(t) =

∫ T

0

k(t, s)y(s)ds.

Indeed, for y ∈ ImL we have

LPKPy(t) = (KPy)
′(t) + a(t)KPy(t) = y(t) − a(t)

∫ t

0

ϕ(s)

ϕ(t)

(

1 +
ψ(s)

ψ(T )

)

y(s)ds

− a(t)

∫ T

t

ϕ(s)

ϕ(t)

ψ(s)

ψ(T )
y(s)ds+ a(t)KPy(t) = y(t).

On the other hand, for x ∈ KerP we obtain
∫ T

0

ϕ(s)ψ(s)x′(s)ds = ϕ(T )ψ(T )x(T ) −

∫ T

0

[a(s)ϕ(s)ψ(s) + 1] x(s)ds

= αψ(T )x(T ) −

∫ T

0

a(s)ϕ(s)ψ(s)x(s)ds.
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Hence

KPLPx(t) =

∫ T

0

k(t, s)(x′(s) + a(s)x(s))ds

=

∫ T

0

ϕ(s)ψ(s)

ϕ(t)ψ(T )
x′(s)ds+

∫ t

0

ϕ(s)

ϕ(t)
x′(s)ds+

∫ T

0

k(t, s)a(s)x(s)ds

=
1

ϕ(t)ψ(T )

(

αψ(T )x(T ) −

∫ T

0

a(s)ϕ(s)ψ(s)x(s)ds

)

+ x(t) −
1

ϕ(t)
x(0) −

∫ t

0

ϕ(s)

ϕ(t)
a(s)x(s)ds+

∫ T

0

k(t, s)a(s)x(s)ds = x(t).

It follows from (H1) that 2◦ is satisfied. Now define an isomorphism between ImQ

and KerL by

J(c)(t) =
Mc

ϕ(t)
, t ∈ [0, T ],

and consider the sets

C = {x ∈ X : x(t) ≥ 0 on [0, 1]},

Ω1 = {x ∈ X : r > |x(t)| > m‖x‖, t ∈ [0, 1]}

and

Ω2 = {x ∈ X : ‖x‖ < R}.

Clearly, C is a cone in X, Ω1 and Ω2 are open and bounded and (see [14])

Ω1 = {x ∈ X : r ≥ |x(t)| ≥ m‖x‖, t ∈ [0, 1]} ⊂ Ω2.

Note that C ∩ (Ω2 \ Ω1) 6= ∅. To show that 3◦ holds suppose that there exist x0 ∈

C ∩ ∂Ω2 ∩ domL and λ0 ∈ (0, 1) such that Lx0 = λ0Nx0. Then

x′0(t) + a(t)x0(t) = λ0f(t, x0(t)), t ∈ [0, T ].

Let t∗ ∈ [0, T ] be such that x0(t
∗) = R. Then in view of (H1) and (H4) we have

0 ≤ a(t∗)R = λ0f(t∗, R) < 0,

a contradiction. Let (γx)(t) = |x(t)| for x ∈ X. Then γ is a retraction and maps

subsets of Ω2 into bounded subsets of C. Next we show that 5◦ is satisfied. In order

to do this, for x ∈ KerL ∩ Ω2, λ ∈ [0, 1] and t ∈ [0, T ] define

H(x, λ)(t) = x(t) −
λ

ϕ(t)

[ 1

ψ(T )

∫ T

0

|x(s)|ds+
M

∫ T

0
ϕ(s)ds

∫ T

0

f(s, |x(s)|)ϕ(s)ds
]

.
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Suppose that H(x, λ) = 0 for x ∈ KerL∩∂Ω2, that is, for x(t) =
c

ϕ(t)
with ‖x‖ = R.

By (H2) and (H5) we get

c = λ
[ 1

ψ(T )

∫ T

0

|c|

ϕ(s)
ds+

M
∫ T

0
ϕ(s)ds

∫ T

0

f(s,
|c|

ϕ(s)
)ϕ(s)ds

]

≥ λ
[ 1

ψ(T )

∫ T

0

|c|

ϕ(s)
ds−

κM
∫ T

0
ϕ(s)ds

∫ T

0

|c|

ϕ(s)
ϕ(s)ds

]

= λ|c|
[

1 −
κMT

∫ T

0
ϕ(s)ds

]

≥ 0.

Therefore c = R. This gives

R = λ
[ 1

ψ(T )

∫ T

0

R

ϕ(s)
ds+

M
∫ T

0
ϕ(s)ds

∫ T

0

f(s,
R

ϕ(s)
)ϕ(s)ds

]

= λR +
λM

∫ T

0
ϕ(s)ds

∫ T

0

f(s,
R

ϕ(s)
)ϕ(s)ds.

Hence

0 ≤ R(1 − λ) =
λM

∫ T

0
ϕ(s)ds

∫ T

0

f(s,
R

ϕ(s)
)ϕ(s)ds,

contrary to (H4). This gives H(x, λ) 6= 0 for x ∈ ∂Ω2 and λ ∈ [0, 1]. As a consequence

we have,

dB(H(x, 0),KerL ∩ Ω2, 0) = dB(H(x, 1),KerL ∩ Ω2, 0).

This implies

dB
(

[I − (P + JQN)γ]
∣

∣

KerL
,KerL ∩ Ω2, 0

)

6= 0.

To show that 6◦ is fulfilled, set u0(t) ≡ 1 on [0, T ]. Then u0 ∈ C \ {0}, C(u0) = {x ∈

C : x(t) > 0 on [0, T ]} and we can choose σ(u0) = 1. For x ∈ C(u0) ∩ ∂Ω1 we have

x(t) > 0 on [0, T ], 0 < ‖x‖ ≤ r and x(t) ≥ m‖x‖ on [0, T ]. Hence, by (H6), we get

for all x ∈ C(u0) ∩ ∂Ω1

(Ψx)(t0) =
1

ϕ(t0)ψ(T )

∫ T

0

x(s)ds+

∫ T

0

G(t0, s)f(s, x(s))ds

≥
1

ϕ(t0)ψ(T )

∫ T

0

m‖x‖ds+

∫ T

0

G(t0, s)g(s)h(x(s))ds

≥
1

ϕ(t0)ψ(T )
Tm‖x‖ +

∫ T

0

G(t0, s)g(s)
h(x(s))

xβ(s)
xβ(s)ds

≥
1

ϕ(t0)ψ(T )
Tm‖x‖ +

∫ T

0

G(t0, s)g(s)
h(r)

rβ
mβ‖x‖βds

=
1

ϕ(t0)ψ(T )
Tmr + h(r)mβ

∫ T

0

G(t0, s)g(s)ds ≥ r = ‖x‖.
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¿From (H2) and (H5) we have for x ∈ ∂Ω2

(P + JQN)γx(t) =
1

ϕ(t)ψ(T )

∫ T

0

|x(s)|ds+
M

ϕ(t)
∫ T

0
ϕ(s)ds

∫ T

0

f(s, |x(s)|)ϕ(s)ds

≥
1

ϕ(t)

[ 1

ψ(T )

∫ T

0

|x(s)|ds−
κM

∫ T

0
ϕ(s)ds

∫ T

0

|x(s)|ϕ(s)ds
]

≥
1

ϕ(t)

∫ T

0

[ 1

ψ(T )
−

κMα
∫ T

0
ϕ(τ)dτ

]

|x(s)|ds ≥ 0.

This means that 7◦ holds.

Finally, from (H3) and (H5) we obtain for all x ∈ Ω2 \ Ω1 and t ∈ [0, T ],

Ψγx(t) =
1

ϕ(t)ψ(T )

∫ T

0

|x(s)|ds+

∫ T

0

G(t, s)f(s, |x(s)|)ds

≥
1

ϕ(t)ψ(T )

∫ T

0

|x(s)|ds− κ

∫ T

0

G(t, s)|x(s)|ds ≥ 0,

which implies 8◦. This completes the proof.

Remark 3.2. Observe that the assumption (H4) is fulfilled if the function f satisfies

the following condition

(H4’) f(t, x) < 0 for (t, x) ∈ [0, T ] × [R/α,R].

Remark 3.3. It is to be noted that for T = 1, α = 1 and a(t) ≡ 0 on [0, 1],

Theorem 3.1 extends the existence results for the problem
{

x′(t) = f(t, x(t)), t ∈ [0, 1],

x(0) = x(1),

obtained in [14] and [17]. In this case the assumption (H4) reduces to one condition

f(t, R) < 0 for t ∈ [0, 1]. The use of the constants M and m allows us to relax the

conditions imposed on κ and f .
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