POSITIVE SOLUTIONS FOR FIRST-ORDER BOUNDARY VALUE PROBLEMS AT RESONANCE

MIROSŁAWA ZIMA

Institute of Mathematics, University of Rzeszów Rejtana 16A, 35-310 Rzeszów, Poland *E-mail:* mzima@univ.rzeszow.pl

ABSTRACT. In the paper we obtain sufficient conditions for the existence of positive solutions for first-order boundary value problems. Our result is based on a Leggett-Williams norm-type theorem for coincidences due to O'Regan and Zima.

AMS (MOS) Subject Classification. 34B18, 47H11, 47A53.

1. INTRODUCTION

In the paper we study the existence of positive solution of the following first-order boundary value problem (BVP)

$$\begin{cases} x'(t) + a(t)x(t) = f(t, x(t)), & t \in [0, T], \\ x(0) = \alpha x(T), \end{cases}$$
(1.1)

where $\alpha > 0$ and T > 0. We are interested in the case when the problem (1.1) is at resonance, that is, the corresponding homogeneous problem

$$\begin{cases} x'(t) + a(t)x(t) = 0, & t \in [0, T], \\ x(0) = \alpha x(T), \end{cases}$$

has nontrivial solutions. Boundary value problems for first-order differential equations have been discussed for example in the papers [2], [3], [6], [7], [8], [9], [10], [13], [14], [17] and [18]. In particular, in [2], [6] and [7], the authors dealt with the nonlinear boundary condition g(x(0), x(T)) = 0. They obtained existence and uniqueness results by making use of the method of upper and lower solutions and of monotone iterative techniques. Note that (1.1) with $\alpha = 1$ becomes a periodic BVP. For some recent results on such problems we refer the reader to [11], [15], [19] and the references therein. The existence and multiplicity of *positive* solutions for first-order periodic BVPs have been studied for example in [3], [11], [14] and [15]. In particular, in order to prove the existence of a positive solution for the problem

$$\begin{cases} x'(t) + f(t, x(t)) = 0, & t \in [0, T], \\ x(0) = x(T), \end{cases}$$

Peng [15] applied the fixed point theorem on cone [4] to the equivalent non-resonant periodic BVP. A similar approach was used in [11]. In this paper we study a more general problem. Our method is based on the existence theorem for coincidence equations due to O'Regan and Zima [14]. Some results on coincidences and their applications to first and second order boundary value problems can be found for example in [1], [3], [5], [10], [12], [17] and [20]. In particular, Santanilla [17] applied his coincidence theorem of compression type for solutions in a cone to prove the existence of positive solutions for first-order periodic BVP. The key tool used in [10] to prove the existence result for first-order multi-point BVP is the well-known coincidence degree theory due to Mawhin (see for example [12]). The purpose of this paper is to extend some results from [14] and [17].

2. COINCIDENCE EQUATIONS

In this Section we recall some basic facts on Fredholm operators, coincidence equations and cones in Banach spaces. Let X and Y denote real Banach spaces. Consider a linear mapping $L : \operatorname{dom} L \subset X \to Y$ and a nonlinear operator $N : X \to Y$. We will assume that:

1° L is a Fredholm operator of index zero, that is, Im L is closed and dim Ker $L = \text{codim Im } L < \infty$.

This implies that there exist continuous projections

$$P: X \to X \text{ and } Q: Y \to Y$$

such that $\operatorname{Im} P = \operatorname{Ker} L$ and $\operatorname{Ker} Q = \operatorname{Im} L$ (see for example [3], [12]). Since $\dim \operatorname{Im} Q = \operatorname{codim} \operatorname{Im} L$, there exists an isomorphism

$$J: \operatorname{Im} Q \to \operatorname{Ker} L.$$

Denote by L_P the restriction of L to Ker $P \cap \text{dom } L$. Clearly, L_P is an isomorphism from Ker $P \cap \text{dom } L$ to Im L. Thus its inverse

$$K_P : \operatorname{Im} L \to \operatorname{Ker} P \cap \operatorname{dom} L$$

is defined. It is known (see [3], [12]) that the coincidence equation

$$Lx = Nx$$

is equivalent to

$$x = (P + JQN)x + K_P(I - Q)Nx.$$

Let C be a cone in X. It is well-known that C induces a partial order in X by

 $x \preceq y$ if and only if $y - x \in C$.

We will also make use of the following property.

Lemma 2.1. [16] For every $u \in C \setminus \{0\}$ there exists a positive number $\sigma(u)$ such that

$$||x+u|| \ge \sigma(u)||x||$$

for all $x \in C$.

Let $\gamma: X \to C$ be a retraction, that is, a continuous mapping such that $\gamma(x) = x$ for all $x \in C$. Put

$$\Psi = P + JQN + K_P(I - Q)N$$

and

$$\Psi_{\gamma} = \Psi \circ \gamma.$$

In order to prove the existence of positive solution of (1.1) we will apply the following result.

Theorem 2.2. [14] Let Ω_1 , Ω_2 be open bounded subsets of X with $\overline{\Omega}_1 \subset \Omega_2$ and $C \cap (\overline{\Omega}_2 \setminus \Omega_1) \neq \emptyset$. Assume that 1° is satisfied and:

- 2° $QN: X \to Y$ is continuous and bounded and $K_P(I-Q)N: X \to X$ is compact on every bounded subset of X,
- 3° $Lx \neq \lambda Nx$ for all $x \in C \cap \partial \Omega_2 \cap \text{dom } L$ and $\lambda \in (0, 1)$,
- $4^{\circ} \gamma$ maps subsets of $\overline{\Omega}_2$ into bounded subsets of C,
- 5° $d_B([I (P + JQN)\gamma]|_{\text{Ker }L}, \text{Ker }L \cap \Omega_2, 0) \neq 0$, where d_B stands for the Brouwer degree,
- 6° there exists $u_0 \in C \setminus \{0\}$ such that $||x|| \leq \sigma(u_0) ||\Psi x||$ for $x \in C(u_0) \cap \partial \Omega_1$, where

$$C(u_0) = \{ x \in C : \mu u_0 \preceq x \quad for \ some \ \mu > 0 \}$$

and $\sigma(u_0)$ is such that $||x + u_0|| \ge \sigma(u_0) ||x||$ for every $x \in C$,

 $7^{\circ} (P + JQN)\gamma(\partial\Omega_2) \subset C,$

$$8^{\circ} \Psi_{\gamma}(\Omega_2 \setminus \Omega_1) \subset C.$$

Then the equation Lx = Nx has a solution in the set $C \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

3. A FIRST ORDER PROBLEM

Now we state and prove the main result of the paper. Consider the problem (1.1), that is

$$\begin{cases} x'(t) + a(t)x(t) = f(t, x(t)), & t \in [0, T], \\ x(0) = \alpha x(T), \end{cases}$$

 \in

where $\alpha > 0$ and T > 0 with

$$\alpha e^{-\int_0^T a(s)ds} = 1. \tag{3.1}$$

Then (1.1) is at resonance. We set

$$\varphi(t) := e^{\int_0^t a(s)ds}, \quad t \in [0, T].$$

From (3.1) we get $\varphi(T) = \alpha$. Moreover, we use the following notations:

$$\begin{split} \psi(t) &:= \int_0^t \frac{ds}{\varphi(s)}, \quad t \in [0,T], \\ k(t,s) &:= \frac{\varphi(s)}{\varphi(t)} \begin{cases} 1 + \frac{\psi(s)}{\psi(T)}, & 0 \le s \le t \le T, \\ \frac{\psi(s)}{\psi(T)}, & 0 \le t < s \le T, \end{cases} \end{split}$$

and

$$G(t,s) = \frac{M\varphi(s)}{\varphi(t)\int_0^T \varphi(\tau)d\tau} + k(t,s) - \frac{\int_0^T k(t,\tau)d\tau}{\int_0^T \varphi(\tau)d\tau}\varphi(s), \quad t,s \in [0,T],$$

where M > 0.

Assume that:

(H1) $a: [0,T] \to [0,\infty)$ and $f: [0,T] \times \mathbb{R} \to \mathbb{R}$ are continuous functions.

It is clear that (3.1) and (H1) imply $\alpha \geq 1$.

Moreover, assume that there exist positive constants κ , M and R such that:

(H2)
$$\kappa M \leq \frac{1}{\alpha\psi(T)} \int_0^T \varphi(s) ds$$
,
(H3) $G(t,s) \geq 0$ and $\frac{1}{\varphi(t)\psi(T)} - \kappa G(t,s) \geq 0$ for $t, s \in [0,T]$,
(H4) $f(t,R) < 0$ and $f(t,\frac{R}{\varphi(t)}) < 0$ for $t \in [0,T]$,
(H5) $f(t,x) > -\kappa x$ for $(t,x) \in [0,T] \times [0,R]$,
(H6) there exist $t_0 \in [0,T], r \in (0, R/\alpha), \beta > 0, m \in (0,1)$ and continuous functions
 $g: [0,T] \to [0,\infty), h: (0,r] \to [0,\infty)$ such that $f(t,x) \geq g(t)h(x)$ for $(t,x) \in [0,T] \times (0,r], h(x)/x^\beta$ is non-increasing on $(0,r]$ with

$$\frac{h(r)}{r}m^{\beta}\int_{0}^{T}G(t_{0},s)g(s)ds \ge 1 - \frac{mT}{\varphi(t_{0})\psi(T)}$$

Theorem 3.1. Under the assumptions (H1)-(H6), the problem (1.1) has at least one solution, positive on [0, T].

Proof. Consider the Banach spaces

$$X = Y = C[0, T]$$

with

$$||x|| = \max_{t \in [0,T]} |x(t)|.$$

Let $L : \operatorname{dom} L \to Y$ and $N : X \to Y$ with

dom
$$L = \{x \in X : x' \in C[0, T], x(0) = \alpha x(T)\}$$

be given by

$$(Lx)(t) = x'(t) + a(t)x(t)$$

and

$$(Nx)(t) = f(t, x(t)), \quad t \in [0, T].$$

Then

$$\operatorname{Ker} L = \{ x \in \operatorname{dom} L : x(t) = \frac{c}{\varphi(t)}, \ c \in \mathbb{R}, \ t \in [0, T] \}$$

and

$$\operatorname{Im} L = \{ y \in Y : \int_0^T \varphi(s) y(s) ds = 0 \}.$$

Define the projections $P: X \to X$ by

$$Px(t) = \frac{1}{\varphi(t)\psi(T)} \int_0^T x(s)ds, \quad t \in [0,T],$$

and $Q: Y \to Y$ by

$$Qy = \frac{\int_0^T \varphi(s)y(s)ds}{\int_0^T \varphi(s)ds}.$$

Then $\operatorname{Im} P = \operatorname{Ker} L$, $\operatorname{Ker} Q = \operatorname{Im} L$ and

Ker
$$P = \{x \in X : \int_0^T x(s)ds = 0\}.$$

Clearly, $\operatorname{Im} L$ is closed. Note that $Y = Y_1 \oplus \operatorname{Im} L$, where

$$Y_1 = \left\{ y_1 \in Y : y_1 = \frac{\int_0^T \varphi(s) z(s) ds}{\int_0^T \varphi(s) ds}, \ z \in Y \right\}.$$

As a result, L is Fredholm of index zero, so 1° is fulfilled. For $y \in \text{Im } L$ the inverse K_P of L_P is given by

$$K_P y(t) = \int_0^T k(t,s) y(s) ds.$$

Indeed, for $y \in \operatorname{Im} L$ we have

$$L_P K_P y(t) = (K_P y)'(t) + a(t) K_P y(t) = y(t) - a(t) \int_0^t \frac{\varphi(s)}{\varphi(t)} \left(1 + \frac{\psi(s)}{\psi(T)}\right) y(s) ds$$
$$- a(t) \int_t^T \frac{\varphi(s)}{\varphi(t)} \frac{\psi(s)}{\psi(T)} y(s) ds + a(t) K_P y(t) = y(t).$$

On the other hand, for $x \in \operatorname{Ker} P$ we obtain

$$\int_0^T \varphi(s)\psi(s)x'(s)ds = \varphi(T)\psi(T)x(T) - \int_0^T [a(s)\varphi(s)\psi(s) + 1]x(s)ds$$
$$= \alpha\psi(T)x(T) - \int_0^T a(s)\varphi(s)\psi(s)x(s)ds.$$

Hence

$$K_P L_P x(t) = \int_0^T k(t,s)(x'(s) + a(s)x(s))ds$$

= $\int_0^T \frac{\varphi(s)\psi(s)}{\varphi(t)\psi(T)}x'(s)ds + \int_0^t \frac{\varphi(s)}{\varphi(t)}x'(s)ds + \int_0^T k(t,s)a(s)x(s)ds$
= $\frac{1}{\varphi(t)\psi(T)} \left(\alpha\psi(T)x(T) - \int_0^T a(s)\varphi(s)\psi(s)x(s)ds\right)$
+ $x(t) - \frac{1}{\varphi(t)}x(0) - \int_0^t \frac{\varphi(s)}{\varphi(t)}a(s)x(s)ds + \int_0^T k(t,s)a(s)x(s)ds = x(t).$

It follows from (H1) that 2° is satisfied. Now define an isomorphism between $\operatorname{Im} Q$ and $\operatorname{Ker} L$ by

$$J(c)(t) = \frac{Mc}{\varphi(t)}, \quad t \in [0, T],$$

and consider the sets

$$C = \{ x \in X : x(t) \ge 0 \text{ on } [0,1] \},$$
$$\Omega_1 = \{ x \in X : r > |x(t)| > m ||x||, \ t \in [0,1] \}$$

and

$$\Omega_2 = \{ x \in X : \|x\| < R \}$$

Clearly, C is a cone in X, Ω_1 and Ω_2 are open and bounded and (see [14])

$$\overline{\Omega}_1 = \{ x \in X : r \ge |x(t)| \ge m \|x\|, \ t \in [0,1] \} \subset \Omega_2.$$

Note that $C \cap (\overline{\Omega}_2 \setminus \Omega_1) \neq \emptyset$. To show that 3° holds suppose that there exist $x_0 \in C \cap \partial \Omega_2 \cap \text{dom } L$ and $\lambda_0 \in (0, 1)$ such that $Lx_0 = \lambda_0 N x_0$. Then

$$x'_0(t) + a(t)x_0(t) = \lambda_0 f(t, x_0(t)), \quad t \in [0, T].$$

Let $t^* \in [0,T]$ be such that $x_0(t^*) = R$. Then in view of (H1) and (H4) we have

$$0 \le a(t^*)R = \lambda_0 f(t^*, R) < 0,$$

a contradiction. Let $(\gamma x)(t) = |x(t)|$ for $x \in X$. Then γ is a retraction and maps subsets of $\overline{\Omega}_2$ into bounded subsets of C. Next we show that 5° is satisfied. In order to do this, for $x \in \text{Ker } L \cap \Omega_2$, $\lambda \in [0, 1]$ and $t \in [0, T]$ define

$$H(x,\lambda)(t) = x(t) - \frac{\lambda}{\varphi(t)} \Big[\frac{1}{\psi(T)} \int_0^T |x(s)| ds + \frac{M}{\int_0^T \varphi(s) ds} \int_0^T f(s, |x(s)|) \varphi(s) ds \Big].$$

676

Suppose that $H(x, \lambda) = 0$ for $x \in \text{Ker } L \cap \partial \Omega_2$, that is, for $x(t) = \frac{c}{\varphi(t)}$ with ||x|| = R. By (H2) and (H5) we get

$$\begin{aligned} c &= \lambda \Big[\frac{1}{\psi(T)} \int_0^T \frac{|c|}{\varphi(s)} ds + \frac{M}{\int_0^T \varphi(s) ds} \int_0^T f(s, \frac{|c|}{\varphi(s)}) \varphi(s) ds \Big] \\ &\geq \lambda \Big[\frac{1}{\psi(T)} \int_0^T \frac{|c|}{\varphi(s)} ds - \frac{\kappa M}{\int_0^T \varphi(s) ds} \int_0^T \frac{|c|}{\varphi(s)} \varphi(s) ds \Big] \\ &= \lambda |c| \Big[1 - \frac{\kappa M T}{\int_0^T \varphi(s) ds} \Big] \ge 0. \end{aligned}$$

Therefore c = R. This gives

$$R = \lambda \Big[\frac{1}{\psi(T)} \int_0^T \frac{R}{\varphi(s)} ds + \frac{M}{\int_0^T \varphi(s) ds} \int_0^T f(s, \frac{R}{\varphi(s)}) \varphi(s) ds \Big]$$
$$= \lambda R + \frac{\lambda M}{\int_0^T \varphi(s) ds} \int_0^T f(s, \frac{R}{\varphi(s)}) \varphi(s) ds.$$

Hence

$$0 \le R(1-\lambda) = \frac{\lambda M}{\int_0^T \varphi(s) ds} \int_0^T f(s, \frac{R}{\varphi(s)}) \varphi(s) ds,$$

contrary to (H4). This gives $H(x, \lambda) \neq 0$ for $x \in \partial \Omega_2$ and $\lambda \in [0, 1]$. As a consequence we have,

$$d_B(H(x,0),\operatorname{Ker} L \cap \Omega_2, 0) = d_B(H(x,1),\operatorname{Ker} L \cap \Omega_2, 0).$$

This implies

$$d_B([I - (P + JQN)\gamma]|_{\operatorname{Ker} L}, \operatorname{Ker} L \cap \Omega_2, 0) \neq 0.$$

To show that 6° is fulfilled, set $u_0(t) \equiv 1$ on [0, T]. Then $u_0 \in C \setminus \{0\}$, $C(u_0) = \{x \in C : x(t) > 0$ on $[0, T]\}$ and we can choose $\sigma(u_0) = 1$. For $x \in C(u_0) \cap \partial \Omega_1$ we have x(t) > 0 on [0, T], $0 < ||x|| \le r$ and $x(t) \ge m ||x||$ on [0, T]. Hence, by (H6), we get for all $x \in C(u_0) \cap \partial \Omega_1$

$$\begin{aligned} (\Psi x)(t_0) &= \frac{1}{\varphi(t_0)\psi(T)} \int_0^T x(s)ds + \int_0^T G(t_0,s)f(s,x(s))ds \\ &\ge \frac{1}{\varphi(t_0)\psi(T)} \int_0^T m \|x\| ds + \int_0^T G(t_0,s)g(s)h(x(s))ds \\ &\ge \frac{1}{\varphi(t_0)\psi(T)} Tm \|x\| + \int_0^T G(t_0,s)g(s)\frac{h(x(s))}{x^\beta(s)}x^\beta(s)ds \\ &\ge \frac{1}{\varphi(t_0)\psi(T)} Tm \|x\| + \int_0^T G(t_0,s)g(s)\frac{h(r)}{r^\beta}m^\beta \|x\|^\beta ds \\ &= \frac{1}{\varphi(t_0)\psi(T)} Tmr + h(r)m^\beta \int_0^T G(t_0,s)g(s)ds \ge r = \|x\|. \end{aligned}$$

¿From (H2) and (H5) we have for $x \in \partial \Omega_2$

$$(P + JQN)\gamma x(t) = \frac{1}{\varphi(t)\psi(T)} \int_0^T |x(s)| ds + \frac{M}{\varphi(t) \int_0^T \varphi(s) ds} \int_0^T f(s, |x(s)|)\varphi(s) ds$$

$$\geq \frac{1}{\varphi(t)} \Big[\frac{1}{\psi(T)} \int_0^T |x(s)| ds - \frac{\kappa M}{\int_0^T \varphi(s) ds} \int_0^T |x(s)|\varphi(s) ds \Big]$$

$$\geq \frac{1}{\varphi(t)} \int_0^T \Big[\frac{1}{\psi(T)} - \frac{\kappa M\alpha}{\int_0^T \varphi(\tau) d\tau} \Big] |x(s)| ds \ge 0.$$

This means that 7° holds.

Finally, from (H3) and (H5) we obtain for all $x \in \overline{\Omega}_2 \setminus \Omega_1$ and $t \in [0, T]$,

$$\Psi_{\gamma}x(t) = \frac{1}{\varphi(t)\psi(T)} \int_0^T |x(s)|ds + \int_0^T G(t,s)f(s,|x(s)|)ds$$
$$\geq \frac{1}{\varphi(t)\psi(T)} \int_0^T |x(s)|ds - \kappa \int_0^T G(t,s)|x(s)|ds \ge 0,$$

which implies 8° . This completes the proof.

Remark 3.2. Observe that the assumption (H4) is fulfilled if the function f satisfies the following condition

(H4')
$$f(t,x) < 0$$
 for $(t,x) \in [0,T] \times [R/\alpha, R]$

Remark 3.3. It is to be noted that for T = 1, $\alpha = 1$ and $a(t) \equiv 0$ on [0, 1], Theorem 3.1 extends the existence results for the problem

$$\begin{cases} x'(t) = f(t, x(t)), & t \in [0, 1], \\ x(0) = x(1), \end{cases}$$

obtained in [14] and [17]. In this case the assumption (H4) reduces to one condition f(t, R) < 0 for $t \in [0, 1]$. The use of the constants M and m allows us to relax the conditions imposed on κ and f.

REFERENCES

- C. T. Cremins, Existence theorems for semilinear equations in cones, J. Math. Anal. Appl. 265 (2002), 447–457.
- [2] D. Franco, J. J. Nieto, D. O'Regan, Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions, *Appl. Math. Comput.* 153, 793–802.
- [3] R. E. Gaines, J. Santanilla, A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations, *Rocky Mountain J. Math.* 12 (1982), 669–678.
- [4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- [5] G. Infante, M. Zima, Positive solutions of multi-point boundary value problems at resonance, *Nonlinear Anal.* 69 (2008), 2458–2465.

- [6] T. Jankowski, Quadratic approximation of solutions for differential equations with nonlinear boundary conditions, *Comput. Math. Appl.* 47 (2004), 1619–1626.
- [7] T. Jankowski, Boundary value problems for first order differential equations of mixed type, Nonlinear Anal. 64 (2006), 1984–1997.
- [8] T. Jankowski, Existence of solutions of boundary value problems for differential equations in which deviated arguments depend on the unknown solution, *Comput. Math. Appl.* 54 (2007), 357–363.
- [9] V. Lakshmikantham, S. Leela, Existence and monotone method for periodic solutions of first order differential equations, J. Math. Anal. Appl. 91 (1983), 237–243.
- [10] B. Liu, Existence and uniqueess of solutions to first-order multipoint boundary value problems, *Appl. Math. Lett.* **17** (2004), 1307–1316.
- [11] Y. Liu, Multiple solutions of periodic boundary value problems for first order differential equations, *Comput. Math. Appl.* 54 (2007), 1–8.
- [12] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610–636.
- [13] M. N. Nkashama, J. Santanilla, Existence of multiple solutions for some nonlinear boundary value problems, J. Diff. Equat. 84 (1990), 148–164.
- [14] D. O'Regan, M. Zima, Leggett-Williams norm-type theorems for coincidences, Arch. Math. 87 (2006), 233–244.
- [15] S. Peng, Positive solutions for first order periodic boundary value problem, Appl. Math. Comput. 158 (2004), 345–351.
- [16] W. V. Petryshyn, On the solvability of $x \in Tx + \lambda Fx$ in quasinormal cones with T and F k-set contractive, Nonlinear Anal. 5 (1981), 585–591.
- [17] J. Santanilla, Some coincidence theorems in wedges, cones, and convex sets, J. Math. Anal. Appl. 105 (1985), 357–371.
- [18] J. Santanilla, Nonnegative solutions to boundary value problems for nonlinear first and second order differential equations, J. Math. Anal. Appl. 126 (1987), 397–408.
- [19] C. C. Tisdell, Existence of solutions to first-order periodic boundary value problems, J. Math. Anal. Appl. 323 (2006), 1325–1332.
- [20] J. R. L. Webb, Solutions of semilinear equations in cones and wedges, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, (1996), 137–147.