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1. INTRODUCTION

Section 2 discusses extension type spaces and maps. In Sections 3 we present

new periodic point results in extension type spaces. These results improve those in

the literature; see [1–3, 5, 8–11, 14–15] and the references therein. Our results were

motivated in part from ideas in [1, 2, 9, 12, 15].

For the remainder of this section we present some definitions and known results

which will be needed throughout this paper. Suppose X and Y are topological spaces.

Given a class X of maps, X(X, Y ) denotes the set of maps F : X → 2Y (nonempty

subsets of Y ) belonging to X, and Xc the set of finite compositions of maps in X. We

let

F(X) = {Z : Fix F 6= ∅ for all F ∈ X(Z,Z)}

where Fix F denotes the set of fixed points of F .

The class B of maps is defined by the following properties:

(i) B contains the class C of single valued continuous functions;

(ii) each F ∈ Bc is upper semicontinuous and closed valued; and

(iii) Bn ∈ F(Bc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ R
n : ‖x‖ ≤ 1}.

The class B is essentially due to Ben-El-Mechaiekh and Deguire [6]. B includes the

class of maps U of Park (U is the class of maps defined by (i), (iii) and (iv). each

F ∈ Uc is upper semicontinuous and compact valued). Thus if each F ∈ Bc is

compact valued the class B and U coincide.
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We also consider the class Uκ
c (X, Y ) (respectively Bκ

c (X, Y )) of maps F : X → 2Y

such that for each F and each nonempty compact subset K of X there exists a map

G ∈ Uc(K, Y ) (respectively G ∈ Bc(K, Y )) such that G(x) ⊆ F (x) for all x ∈ K.

Theorem 1.1. T (the Tychonoff cube) is in F(Uκ
c ).

For a subset K of a topological space X, we denote by CovX(K) the set of all

coverings of K by open sets of X (usually we write Cov(K) = CovX(K)). Given a

map F : X → 2X and α ∈ Cov(X), a point x ∈ X is said to be an α–fixed point of

F if there exists a member U ∈ α such that x ∈ U and F (x) ∩ U 6= ∅. Given two

maps single valued f, g : X → Y and α ∈ Cov(Y ), f and g are said to be α–close if

for any x ∈ X there exists Ux ∈ α containing both f(x) and g(x). We say f and g

are α-homotopic if there is a homotopy hh : X → Y (0 ≤ t ≤ 1) joining f and g such

that for each x ∈ X the values ht(x) belong to a common Ux ∈ α for all t ∈ [0, 1].

The following results can be found in [4, Lemma 1.2 and 4.7].

Theorem 1.2. Let X be a regular topological space and F : X → 2X an upper semi-

continuous map with closed values. Suppose there exists a cofinal family of coverings

θ ⊆ CovX(F (X)) such that F has an α–fixed point for every α ∈ θ. Then F has a

fixed point.

From Theorem 1.2 in proving the existence of fixed points in uniform spaces for

upper semicontinuous compact maps with closed values it suffices [5 pp. 298] to prove

the existence of approximate fixed points (since open covers of a compact set A admit

refinements of the form {U [x] : x ∈ A} where U is a member of the uniformity [13

pp. 199] so such refinements form a cofinal family of open covers). Note also uniform

spaces are regular (in fact completely regular) [7 pp. 431] (see also [7 pp. 434]). Note

in Theorem 1.2 if F is compact valued then the assumption that X is regular can

be removed. For convenience in this paper we will apply Theorem 1.2 only when the

space is uniform.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map

p : Γ→ X is called a Vietoris map (written p : Γ⇒ X) if the following two conditions

are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic

(ii) p is a proper map i.e. for every compact A ⊆ X we have that p−1(A) is compact.

Let D(X, Y ) be the set of all pairs X
p
⇐ Γ

q
→ Y where p is a Vietoris map and q is

continuous. We will denote every such diagram by (p, q). Given two diagrams (p, q)

and (p′, q′), where X
p′

⇐ Γ′
q′

→ Y , we write (p, q) ∼ (p′, q′) if there are maps f : Γ→ Γ′

and g : Γ′ → Γ such that q′ ◦ f = q, p′ ◦ f = p, q ◦ g = q′ and p ◦ g = p′. The

equivalence class of a diagram (p, q) ∈ D(X, Y ) with respect to ∼ is denoted by

φ = {X
p
⇐ Γ

q
→ Y } : X → Y
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or φ = [(p, q)] and is called a morphism from X to Y . We let M(X, Y ) be the set of

all such morphisms. For any φ ∈M(X, Y ) a set φ(x) = qp−1(x) where φ = [(p, q)] is

called an image of x under a morphism φ. A multivalued map φ : X → 2Y is said

to be determined by a morphism {X
p
⇐ Γ

q
→ Y } provided φ(x) = qp−1(x) for each

x ∈ X; the morphism which determines φ is also denoted by φ. Note a multivalued

map determined by a morphism is upper semicontinuous and compact valued. Finally

note every morphism determines a multivalued map but not conversely.

Consider vector spaces over a field K. Let E be a vector space and f : E → E an

endomorphism. Now let N(f) = {x ∈ E : f (n)(x) = 0 for some n} where f (n) is the

nth iterate of f , and let Ẽ = E\N(f). Since f(N(f)) ⊆ N(f) we have the induced

endomorphism f̃ : Ẽ → Ẽ. We call f admissible if dimẼ < ∞; for such f we define

the generalized trace Tr(f) of f by putting Tr(f) = tr(f̃) where tr stands for the

ordinary trace.

Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector

space E = {Eq}. We call f a Leray endomorphism if (i). all fq are admissible and

(ii). almost all Ẽq are trivial. For such f we define the generalized Lefschetz number

Λ(f) by

Λ(f) =
∑

q

(−1)qTr(fq).

The Euler characteristic χ(f) is defined to be

χ(f) =
∑

q

(−1)qdim(Ẽq).

Let Q{x} denote the integral domain consisting of all formal power series
∑

∞

n=0 anx
n

with coefficients an ∈ Q (here Q is a fixed field). The Lefschetz power series L(f) of

the Leray endomorphism f = {fq} is an element of Q{x} defined by

L(f) = χ(f) +
∞∑

n=1

Λ(fn)xn

From [10, pp 325] (see also [12, pp 434]) we know L(f) admits a representation

L(f) = u.v−1 where u and v are relatively prime polynomials with deg u < deg v

(u 6= 0). We define

P (f) = deg v.

Let H be the C̆ech homology functor with compact carriers and coefficients in

the field of rational numbers K from the category of Hausdorff topological spaces

and continuous maps to the category of graded vector spaces and linear maps of

degree zero. Thus H(X) = {Hq(X)} is a graded vector space, Hq(X) being the q–

dimensional C̆ech homology group with compact carriers of X. For a continuous map

f : X → X, H(f) is the induced linear map f⋆ = {f⋆q} where f⋆q : Hq(X)→ Hq(X).
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With C̆ech homology functor extended to a category of morphisms (see [9, 10])

we have the following well known result (note the homology functor H extends over

this category i.e. for a morphism

φ = {X
p
⇐ Γ

q
→ Y } : X → Y

we define the induced map

H(φ) = φ⋆ : H(X)→ H(Y )

by putting φ⋆ = q⋆ ◦ p
−1
⋆ ).

Theorem 1.3. If φ : X → Y and ψ : Y → Z are two morphisms (here X, Y and Z

are Hausdorff topological spaces) then

(ψ ◦ φ)⋆ = ψ⋆ ◦ φ⋆.

Two morphisms φ, ψ ∈ M(X, Y ) are homotopic (written φ ∼ ψ) provided there

is a morphism χ ∈M(X× [0, 1], Y ) such that χ(x, 0) = φ(x), χ(x, 1) = ψ(x) for every

x ∈ X (i.e. φ = χ ◦ i0 and ψ = χ ◦ i1, where i0, i1 : X → X × [0, 1] are defined by

i0(x) = (x, 0), i1(x) = (x, 1)). Recall the following result [9, pp. 231]: If φ ∼ ψ then

φ⋆ = ψ⋆.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is

a nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form

X
p
← Γ

q
→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two

conditions hold:

(i). p is a Vietoris map

and

(ii). q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Definition 1.4. A upper semicontinuous map φ : X → Y is said to be strongly

admissible [9] (and we write φ ∈ Ads(X, Y )) provided there exists a selected pair

(p, q) of φ with φ(x) = q(p−1(x)) for x ∈ X.

Definition 1.5. A map φ ∈ Ads(X,X) is said to be a Lefschetz map if for each

selected pair (p, q) ⊂ φ with φ(x) = q(p−1(x)) for x ∈ X the linear map q⋆p
−1
⋆ :

H(X) → H(X) (the existence of p−1
⋆ follows from the Vietoris Theorem) is a Leray

endomorphism.

If φ : X → X is a Lefschetz map as described above then we define the Lefschetz

number (see [9]) Λ(φ) (or ΛX(φ)) by

Λ(φ) = Λ(q⋆p
−1
⋆ ).

Also we define

χ(φ) = χ(q⋆p
−1
⋆ ), L(φ) = L(q⋆p

−1
⋆ ) and P (φ) = P (q⋆p

−1
⋆ ).
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Definition 1.6. A Hausdorff topological space X is said to be a Lefschetz space

provided every compact φ ∈ Ads(X,X) is a Lefschetz map and Λ(φ) 6= 0 implies φ

has a fixed point.

Theorem 1.7 ([9, 12]). Let φ ∈ Ads(X,X) be a Lefschetz map. Then

(a) χ(φ) = 0 implies P (φ) = 0;

(b) P (φ) = 0 if and only if Λ(φn) = 0 for some natural number n;

(c) if P (φ) = k 6= 0 then for any m ∈ {0, 1, 2, . . .} at least one of Λ(φm+1), . . . ,

Λ(φm+k) is different from zero.

2. PRELIMINARY FIXED POINT THEORY

We note that some of the fixed point theory presented in this section can be

found in [15, 16, 17]. In addition in this section we improve some of the results in [15,

16]. We also establish some new properties (see Remark 2.5 and Remark 2.8) which

will be needed in Section 3.

By a space we mean a Hausdorff topological space. Let X and Y be spaces. A

space Y is an neighborhood extension space for Q (written Y ∈ NES(Q)) if ∀X ∈ Q,

∀K ⊆ X closed in X, and for any continuous function f0 : K → Y , there exists a

continuous extension f : U → Y of f0 over a neighbourhood U of K in X.

In [17] we established the following result.

Theorem 2.1. Let X ∈ NES(compact) and F ∈ Ads(X,X) a compact map. Then

Λ(F ) is well defined and if Λ(F ) 6= 0 then F has a fixed point.

A space Y is a strongly approximate neighborhood extension space for Q (written

Y ∈ SANES(Q)) if ∀α ∈ Cov(Y ), ∀X ∈ Q, ∀K ⊆ X closed inX, and any continuous

function f0 : K → Y , there exists a neighborhood Uα of K in X and a continuous

function fα : Uα → Y such that fα|K and f0 are α close and α-homotopic.

Theorem 2.2 ([17]). Let X ∈ SANES(compact) be a uniform space and F ∈

Ads(X,X) a compact map. Then Λ(F ) is well defined and if Λ(F ) 6= 0 then F

has a fixed point.

In fact we obtained a more general result in [17] which contains both Theorem 2.1

and Theorem 2.2.

Let X be a Hausdorff topological space. A map F ∈ Ads(X,X) is said to be

a compact absorbing contraction (written F ∈ CACs(X,X)) if there exists Y ⊆ X

such that

(i) F (Y ) ⊆ Y ;

(ii) F |Y ∈ Ads(Y, Y ) (automatically satisfied) is a compact map with Y a Lefschetz

space;
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(iii) for every compact K ⊆ X there is an integer n = n(K) such that F n(K) ⊆ Y .

Remark 2.3. Examples of Lefschetz spaces Y are of course NES(compact) and

SANES(compact) uniform spaces.

Remark 2.4. If Y = U is an open subset of X then (iii) could be changed to

(iii)′ for every x ∈ X there exists an integer n = n(x) such that F n(x)(x) ⊆ Y = U .

Remark 2.5. Let F ∈ CACs(X,X) and let Y be as above. Notice F 2(Y ) ⊆ F (Y ) ⊆

Y , F 2|Y ∈ Ads(Y, Y ) (see [9, pp. 201]) and F 2|Y is a compact map. Let K be a

compact subset of X and let n = n(K) be as described above. Then if n is even we

have (F 2)
n

2 (K) ⊆ Y whereas in n is odd we have (F 2)
n+1

2 = F n+1(K) = F (F n(K)) ⊆

F (Y ) ⊆ Y . Thus F 2 ∈ CACs(X,X). Similarly Fm ∈ CACs(X,X) for every integer

m.

Theorem 2.6 ([17]). Let X be a Hausdorff topological space and F ∈ CACs(X,X).

Then Λ(F ) is well defined and if Λ(F ) 6= 0 then F has a fixed point.

In [15, 16] we considered a more general situation. Let X be a compact space.

A map F ∈ Ads(X,X) is said to be a NES(compact) map if for any compact pair

(Z,A) and any homeomorphism g : X → A there exists a neighborhood U of A in Z

and a Φ ∈ Ads(U,X) with Φ|A = Fg−1.

Theorem 2.7 ([16]). Let X be a compact space and let F ∈ Ads(X,X) be a NES

(compact) map. Then Λ(F ) is well defined and if Λ(F ) 6= 0 then F has a fixed point.

In fact in [15] we generalized this result. A map F ∈ Ads(X,X) is said to be a

compact absorbing contraction (written F ∈ MCACs(X,X)) if there exists Y ⊆ X

such that

(i) F (Y ) ⊆ Y ;

(ii) Y is a compact space and F |Y ∈ Ads(Y, Y ) (automatically satisfied) is a NES

(compact) map;

(iii) for every compact K ⊆ X there is a n = n(K) such that F n(K) ⊆ Y .

Remark 2.8. Let F ∈MCACs(X,X) and let Y be as above. Consider any compact

pair (Z,A) and any homeomorphism g : Y → A. Now there exists a neighborhood

U of A in Z and a Φ ∈ Ads(U, Y ) with Φ|A = Fg−1. Let Ψ = FΦ. Notice Ψ ∈

Ads(U, Y ) and Ψ|A = FΦ|A = FFg−1 = F 2g−1. Thus (see also Remark 2.5) F 2 ∈

MCACs(X,X). Similarly Fm ∈ MCACs(X,X) for each integer m.

Theorem 2.9 ([15]). Let X be a Hausdorff topological space and F ∈MCACs(X,X).

Then Λ(F ) is well defined and if Λ(F ) 6= 0 then F has a fixed point.
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Our next two results improve those in [15].

A map F ∈ Uκ
c (X, Y ) is called a ANES(compact) map if for any compact pair

(Z,A) and any homeomorphism g : X → A the following holds: for each α ∈ Cov(Y )

there exists a neighborhood Uα of A in Z and a Φα ∈ Uκ
c (Uα, Y ) such that for each

x ∈ A with x ∈ jUα
gΦα(x) (here jUα

: A →֒ Uα is the natural imbedding) there exists

Ux ∈ α such that g−1(x) ∈ Ux and Fg−1(x) ∩ Ux 6= ∅.

Let X be a compact space and F ∈ Uκ
c (X,X) a ANES(compact) map. Let

α ∈ CovX(X). X is compact so [12] X is homeomorphic to a closed subset of the

Tychonoff cube T , so as a result X can be embedded as a closed subset K⋆ of T ;

let s : X → K⋆ be a homeomorphism. Now since s−1 : K⋆ → X and since F is

a ANES(compact) map there exists a neighborhood Uα of K⋆ in T and a Φα ∈

Uκ
c (Uα, X) such that for each x ∈ K⋆ with x ∈ jUα

s,Φα(x) (here jUα
: K⋆ →֒ Uα is the

natural imbedding) there exists Ux ∈ α such that s−1(x) ∈ Ux and Fs−1(x)∩Ux 6= ∅.

Let Gα = jUα
sΦα. Notice Gα ∈ Uκ

c (Uα, Uα). We now assume

(2.1) Gα ∈ Uκ
c (Uα, Uα) has a fixed point for each α ∈ CovX(X).

Thus there exists x ∈ Uα with x ∈ Gαx. Then there exists y ∈ Φα(x) with x =

jUα
s(y). Note s(y) ∈ K⋆. Now there exists a U ∈ α with s−1(x) ∈ U and Fs−1(x) ∩

U 6= ∅. Since x = jUα
s(y) we have y ∈ U and F (y) ∩ U 6= ∅. As a result F has

an α–fixed point. Now apply Theorem 1.2 and we have the following result which

improves a result in [15].

Theorem 2.10. Let X be a uniform compact space and let F ∈ Uκ
c (X,X) be a

ANES(compact) map. In addition assume F is a upper semicontinuous map with

compact values. Also assume (2.1) holds with K, s, Uα, Φα and jUα
as described

above. Then F has a fixed point.

We now discuss Theorem 2.10 for the class Ads(X,X). Let X be a uniform

compact space. A map F ∈ Ads(X,X) is said to be a weakly ANES(compact) map

if for any compact pair (Z,A) and any homeomorphism g : X → A the following two

conditions hold for each α ∈ CovX(X):

(1) there exists a neighborhood Uα of A in Z and a Φα ∈ Ads(Uα, X) such that for

each x ∈ A with x ∈ jUα
gΦα(x) there exists Ux ∈ α such that g−1(x) ∈ Ux and

Fg−1(x) ∩ Ux 6= ∅,

(2) if (p, q) is any selected pair for F with qp−1(x) = F (x) for x ∈ X then there

exists a selected pair (p′′α, q
′′

α) of ΦαjUα
g with q′′α(p′′α)−1(x) = ΦαjUα

g(x) for x ∈ X

and with (q′′α)⋆(p
′′

α)−1
⋆ = q⋆p

−1
⋆ ; here jUα

: A →֒ Uα is the natural embedding.

Remark 2.11. Let X be a compact space and F ∈ Ads(X,X) be such that for

any compact pair (Z,A) and any homeomorphism g : X → A we have for each
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α ∈ CovX(X) that there exists a neighborhood Uα of A in Z and a continuous

function hα : Uα → X of g−1 such that hα|A and g−1 are α-homotopic. Then (2)

above holds with Φα = Fhα. To see this let (p, q) be any selected pair for F with

qp−1(x) = F (x) for x ∈ X. Then [9, Theorem 40.6, pp. 201] guarantees that there

exists a selected pair (p′′′α , q
′′′

α ) of FhαjUα
g with q′′′α (p′′′α )−1(x) = FhαjUα

g(x) for x ∈ X

and with

(q′′′α )⋆(p
′′′

α )−1
⋆ = q⋆p

−1
⋆ (hα)⋆(jUα

)⋆g⋆.

As a result (q′′′α )⋆(p
′′′

α )−1
⋆ = q⋆p

−1
⋆ since hαjUα

g is α-homotopic to i (note hα|A and g−1

are α-homotopic).

Remark 2.12. Let X be a compact space and F ∈ Ads(X,X) be such that for

any compact pair (Z,A) and any homeomorphism g : X → A we have for each

α ∈ CovX(X) that there exists a neighborhood Uα of A in Z and a continuous

function hα : Uα → X of g−1 such that hα|A and g−1 are α-close. In addition assume

for each x ∈ A with x ∈ jUα
gΦα(x) and hα(x) ∈ Ux, F (hα(x)) ∩ Ux 6= ∅ for some

Ux ∈ α there exists a U ∈ α with g−1(x) ∈ U and F (g−1(x))∩U 6= ∅. Then (1) above

holds with Φα = Fhα. To see this suppose x ∈ A with x ∈ jUα
gΦα(x). Let y = hα(x)

so y ∈ hαjUα
gF (y) i.e. y = hαjUα

g(q) for some q ∈ F (y). Now since hαjUα
g and

i are α–close there exists U ∈ α with hαjUα
g(q) ∈ U and i(q) ∈ U i.e. q ∈ U and

y = hαjUα
g(q) ∈ U . Thus y ∈ U and F (y) ∩ U 6= ∅ since q ∈ F (y). As a result

hα(x) ∈ U and F (hα(x)) ∩ U 6= ∅.

By assumption there exists Ux ∈ α with g−1(x) ∈ Ux and F (g−1(x)) ∩ Ux 6= ∅.

Exactly the same proof as in [15, Theorem 2.2] (except here we use Theorem 2.10

above) gives the following result.

Theorem 2.13. Let X be a uniform compact space and let F ∈ Ads(X,X) be a

weakly ANES(compact) map. Then Λ(F ) is well defined and if Λ(F ) 6= 0 then F has

a fixed point.

A map F ∈ Ads(X,X) is said to be a approximate compact absorbing contraction

(written F ∈ ACACs(X,X)) if there exists Y ⊆ X such that

(i) F (Y ) ⊆ Y ;

(ii) Y is a compact uniform space and F |Y ∈ Ads(Y, Y ) (automatically satisfied) is

a weakly ANES(compact) map;

(iii) for every compact K ⊆ X there is a n = n(K) such that F n(K) ⊆ Y .

Theorem 2.14 ([15]). Let X be a Hausdorff topological space and assume F ∈

ACACs(X,X). Then Λ(F ) is well defined and if Λ(F ) 6= 0 then F has a fixed

point.
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Remark 2.15. As above we can generalize the definition of strongerANES(compact)

map in [15] and obtain a stronger Theorem 2.3 in [15] for the class Ad. Let X be

a compact space and we say F ∈ Ad(X,X) is a strongly ANES(compact) map if

for any compact pair (Z,A) and any homeomorphism g : X → A the following two

conditions hold for each α ∈ CovX(X):

(3) there exists a neighborhood Uα of A in Z and a Φα ∈ Ad(Uα, X) such that for

each x ∈ A with x ∈ jUα
gΦα(x) there exists Ux ∈ α such that s−1(x) ∈ Ux and

Fg−1(x) ∩ Ux 6= ∅,

(4) if (p, q) is any selected pair for F then there exists a selected pair (p′α, q
′

α) of Φα

with (q′α)⋆(p
′

α)−1
⋆ (jUα

)⋆g⋆ = q⋆p
−1
⋆ ; here jUα

: A →֒ Uα is the natural embedding.

It is worth mentioning here also that we can also improve Theorem 2.2 in [16].

A map F ∈ Uκ
c (X, Y ) is called a AES(compact) map if for any compact pair (Z,A)

and any homeomorphism g : X → A for each α ∈ Cov(Y ) there exists Φα ∈ Uκ
c (Z, Y )

such that for each x ∈ A with x ∈ jgΦα(x) (here j : A →֒ Z is the natural imbedding)

there exists Ux ∈ α such that s−1(x) ∈ Ux and Fg−1(x) ∩ Ux 6= ∅.

Theorem 2.16. Let X be a uniform compact space and suppose F ∈ Uκ
c (X,X) is

a AES(compact) map. In addition assume F is upper semicontinuous map with

compact values. Then F has a fixed point.

Proof. Let α ∈ CovX(X). From Theorem 1.2 it suffices to show F has an α–fixed

point. We know [12] that X can be embedded as a closed subset K⋆ of T ; let

s : X → K⋆ be a homeomorphism. Let j : K⋆ →֒ T be an inclusion. Now since

s−1 : K⋆ → X and since F is a AES(compact) map there exists Φα ∈ Uκ
c (T,X) such

that for each x ∈ K⋆ with x ∈ jsΦα(x) there exists Ux ∈ α such that s−1(x) ∈ Ux and

Fs−1(x)∩Ux 6= ∅. Let Gα = jsΦα and note Gα ∈ Uκ
c (T, T ) so Theorem 1.1 guarantees

that there exists x ∈ T with x ∈ Gαx. Then there exists y ∈ Φα(x) with x = js(y).

Note s(y) ∈ K⋆. Now there exists a U ∈ α with s−1(x) ∈ U and Fs−1(x) ∩ U 6= ∅.

Since x = js(y) we have y ∈ U and F (y) ∩ U 6= ∅. As a result F has an α–fixed

point.

3. PERIODIC POINTS

Let X be a Hausdorff topological space. A point x ∈ X is said to be a periodic

point for a map F : X → 2X with period n if x ∈ F n(x).

Theorem 3.1. Let X be a Hausdorff topological space and F ∈ CACs(X,X). Sup-

pose χ(F ) 6= 0 or P (F ) 6= 0. Fix m ∈ {0, 1, . . .}. Then F has a periodic point with

period n where m+ 1 ≤ n ≤ m+ P (F ).

Proof. We know for Theorem 2.6 that F is a Lefschetz map. Now P (F ) 6= 0 (see

Theorem 1.7 (a)). We now know for Theorem 1.7 (c) that there exists a n, m+ 1 ≤
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n ≤ m+ P (F ) with Λ(F n) 6= 0. From Remark 2.5 we have F n ∈ CACs(X,X). As a

result Theorem 2.6 guarantees that F n has a fixed point.

Theorem 3.2. Let X be a Hausdorff topological space and F ∈ MCACs(X,X).

Suppose χ(F ) 6= 0 or P (F ) 6= 0. Fix m ∈ {0, 1, . . .}. Then F has a periodic point

with period n where m+ 1 ≤ n ≤ m+ P (F ).

Proof. We know for Theorem 2.9 that F is a Lefschetz map and also we know that

Λ(F n) 6= 0 for some n where m + 1 ≤ n ≤ m + P (F ). From Remark 2.8 we have

F n ∈ MCACs(X,X). As a result Theorem 2.9 guarantees that F n has a fixed

point.

Theorem 3.3. Let X be a Hausdorff topological space and F ∈ ACACs(X,X).

Suppose χ(F ) 6= 0 or P (F ) 6= 0. Fix m ∈ {0, 1, . . .} and suppose F n ∈ ACACs(X,X)

for any n with m + 1 ≤ n ≤ m + P (F ). Then F has a periodic point with period n

where m+ 1 ≤ n ≤ m+ P (F ).

Proof. We know for Theorem 2.14 that F is a Lefschetz map and also we know that

Λ(F n) 6= 0 for some n where m + 1 ≤ n ≤ m + P (F ). By assumption we have

F n ∈ ACACs(X,X). As a result Theorem 2.14 guarantees that F n has a fixed

point.
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