PERIODIC POINTS FOR COMPACT ABSORBING CONTRACTIONS IN EXTENSION TYPE SPACES

DONAL O'REGAN

Department of Mathematics, National University of Ireland Galway, Ireland *E-mail:* donal.oregan@nuigalway.ie

ABSTRACT. Several new periodic point results are presented for self maps in extension type spaces. In particular we discuss compact absorbing contractions.

AMS (MOS) Subject Classification. 47H10

1. INTRODUCTION

Section 2 discusses extension type spaces and maps. In Sections 3 we present new periodic point results in extension type spaces. These results improve those in the literature; see [1–3, 5, 8–11, 14–15] and the references therein. Our results were motivated in part from ideas in [1, 2, 9, 12, 15].

For the remainder of this section we present some definitions and known results which will be needed throughout this paper. Suppose X and Y are topological spaces. Given a class \mathfrak{X} of maps, $\mathfrak{X}(X,Y)$ denotes the set of maps $F: X \to 2^Y$ (nonempty subsets of Y) belonging to \mathfrak{X} , and \mathfrak{X}_c the set of finite compositions of maps in \mathfrak{X} . We let

 $\mathfrak{F}(\mathfrak{X}) = \{ Z : \text{ Fix } F \neq \emptyset \text{ for all } F \in \mathfrak{X}(Z, Z) \}$

where Fix F denotes the set of fixed points of F.

The class \mathfrak{B} of maps is defined by the following properties:

- (i) \mathfrak{B} contains the class \mathfrak{C} of single valued continuous functions;
- (ii) each $F \in \mathfrak{B}_c$ is upper semicontinuous and closed valued; and

(iii) $B^n \in \mathfrak{F}(\mathfrak{B}_c)$ for all $n \in \{1, 2, \dots\}$; here $B^n = \{x \in \mathbf{R}^n : ||x|| \le 1\}$.

The class \mathfrak{B} is essentially due to Ben-El-Mechaiekh and Deguire [6]. \mathfrak{B} includes the class of maps \mathfrak{U} of Park (\mathfrak{U} is the class of maps defined by (i), (iii) and (iv). each $F \in \mathfrak{U}_c$ is upper semicontinuous and compact valued). Thus if each $F \in \mathfrak{B}_c$ is compact valued the class \mathfrak{B} and \mathfrak{U} coincide.

We also consider the class $\mathfrak{U}_c^{\kappa}(X,Y)$ (respectively $\mathfrak{B}_c^{\kappa}(X,Y)$) of maps $F: X \to 2^Y$ such that for each F and each nonempty compact subset K of X there exists a map $G \in \mathfrak{U}_c(K,Y)$ (respectively $G \in \mathfrak{B}_c(K,Y)$) such that $G(x) \subseteq F(x)$ for all $x \in K$.

Theorem 1.1. T (the Tychonoff cube) is in $\mathfrak{F}(\mathfrak{U}_c^{\kappa})$.

For a subset K of a topological space X, we denote by $Cov_X(K)$ the set of all coverings of K by open sets of X (usually we write $Cov(K) = Cov_X(K)$). Given a map $F: X \to 2^X$ and $\alpha \in Cov(X)$, a point $x \in X$ is said to be an α -fixed point of F if there exists a member $U \in \alpha$ such that $x \in U$ and $F(x) \cap U \neq \emptyset$. Given two maps single valued $f, g: X \to Y$ and $\alpha \in Cov(Y)$, f and g are said to be α -close if for any $x \in X$ there exists $U_x \in \alpha$ containing both f(x) and g(x). We say f and g are α -homotopic if there is a homotopy $h_h: X \to Y$ ($0 \leq t \leq 1$) joining f and g such that for each $x \in X$ the values $h_t(x)$ belong to a common $U_x \in \alpha$ for all $t \in [0, 1]$.

The following results can be found in [4, Lemma 1.2 and 4.7].

Theorem 1.2. Let X be a regular topological space and $F : X \to 2^X$ an upper semicontinuous map with closed values. Suppose there exists a cofinal family of coverings $\theta \subseteq Cov_X(\overline{F(X)})$ such that F has an α -fixed point for every $\alpha \in \theta$. Then F has a fixed point.

From Theorem 1.2 in proving the existence of fixed points in uniform spaces for upper semicontinuous compact maps with closed values it suffices [5 pp. 298] to prove the existence of approximate fixed points (since open covers of a compact set A admit refinements of the form $\{U[x] : x \in A\}$ where U is a member of the uniformity [13 pp. 199] so such refinements form a cofinal family of open covers). Note also uniform spaces are regular (in fact completely regular) [7 pp. 431] (see also [7 pp. 434]). Note in Theorem 1.2 if F is compact valued then the assumption that X is regular can be removed. For convenience in this paper we will apply Theorem 1.2 only when the space is uniform.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map $p: \Gamma \to X$ is called a Vietoris map (written $p: \Gamma \Rightarrow X$) if the following two conditions are satisfied:

(i) for each $x \in X$, the set $p^{-1}(x)$ is acyclic

(ii) p is a proper map i.e. for every compact $A \subseteq X$ we have that $p^{-1}(A)$ is compact.

Let D(X, Y) be the set of all pairs $X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\rightarrow} Y$ where p is a Vietoris map and q is continuous. We will denote every such diagram by (p,q). Given two diagrams (p,q)and (p',q'), where $X \stackrel{p'}{\leftarrow} \Gamma' \stackrel{q'}{\rightarrow} Y$, we write $(p,q) \sim (p',q')$ if there are maps $f : \Gamma \to \Gamma'$ and $g : \Gamma' \to \Gamma$ such that $q' \circ f = q$, $p' \circ f = p$, $q \circ g = q'$ and $p \circ g = p'$. The equivalence class of a diagram $(p,q) \in D(X,Y)$ with respect to \sim is denoted by

$$\phi = \{X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\rightarrow} Y\} : X \to Y$$

or $\phi = [(p,q)]$ and is called a morphism from X to Y. We let M(X,Y) be the set of all such morphisms. For any $\phi \in M(X,Y)$ a set $\phi(x) = qp^{-1}(x)$ where $\phi = [(p,q)]$ is called an image of x under a morphism ϕ . A multivalued map $\phi : X \to 2^Y$ is said to be determined by a morphism $\{X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\to} Y\}$ provided $\phi(x) = qp^{-1}(x)$ for each $x \in X$; the morphism which determines ϕ is also denoted by ϕ . Note a multivalued map determined by a morphism is upper semicontinuous and compact valued. Finally note every morphism determines a multivalued map but not conversely.

Consider vector spaces over a field K. Let E be a vector space and $f: E \to E$ an endomorphism. Now let $N(f) = \{x \in E : f^{(n)}(x) = 0 \text{ for some } n\}$ where $f^{(n)}$ is the n^{th} iterate of f, and let $\tilde{E} = E \setminus N(f)$. Since $f(N(f)) \subseteq N(f)$ we have the induced endomorphism $\tilde{f}: \tilde{E} \to \tilde{E}$. We call f admissible if $\dim \tilde{E} < \infty$; for such f we define the generalized trace Tr(f) of f by putting $Tr(f) = tr(\tilde{f})$ where tr stands for the ordinary trace.

Let $f = \{f_q\} : E \to E$ be an endomorphism of degree zero of a graded vector space $E = \{E_q\}$. We call f a Leray endomorphism if (i). all f_q are admissible and (ii). almost all \tilde{E}_q are trivial. For such f we define the generalized Lefschetz number $\Lambda(f)$ by

$$\Lambda(f) = \sum_{q} (-1)^{q} Tr(f_q).$$

The Euler characteristic $\chi(f)$ is defined to be

$$\chi(f) = \sum_{q} (-1)^{q} dim(\tilde{E}_{q})$$

Let $Q\{x\}$ denote the integral domain consisting of all formal power series $\sum_{n=0}^{\infty} a_n x^n$ with coefficients $a_n \in Q$ (here Q is a fixed field). The Lefschetz power series L(f) of the Leray endomorphism $f = \{f_q\}$ is an element of $Q\{x\}$ defined by

$$L(f) = \chi(f) + \sum_{n=1}^{\infty} \Lambda(f^n) x^n$$

From [10, pp 325] (see also [12, pp 434]) we know L(f) admits a representation $L(f) = u \cdot v^{-1}$ where u and v are relatively prime polynomials with $\deg u < \deg v$ $(u \neq 0)$. We define

$$P(f) = \deg v.$$

Let H be the Čech homology functor with compact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus $H(X) = \{H_q(X)\}$ is a graded vector space, $H_q(X)$ being the qdimensional Čech homology group with compact carriers of X. For a continuous map $f: X \to X, H(f)$ is the induced linear map $f_{\star} = \{f_{\star q}\}$ where $f_{\star q}: H_q(X) \to H_q(X)$. With Čech homology functor extended to a category of morphisms (see [9, 10]) we have the following well known result (note the homology functor H extends over this category i.e. for a morphism

$$\phi = \{X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\rightarrow} Y\} : X \to Y$$

we define the induced map

$$H(\phi) = \phi_\star : H(X) \to H(Y)$$

by putting $\phi_{\star} = q_{\star} \circ p_{\star}^{-1}$).

Theorem 1.3. If $\phi : X \to Y$ and $\psi : Y \to Z$ are two morphisms (here X, Y and Z are Hausdorff topological spaces) then

$$(\psi \circ \phi)_{\star} = \psi_{\star} \circ \phi_{\star}.$$

Two morphisms $\phi, \psi \in M(X, Y)$ are homotopic (written $\phi \sim \psi$) provided there is a morphism $\chi \in M(X \times [0, 1], Y)$ such that $\chi(x, 0) = \phi(x), \chi(x, 1) = \psi(x)$ for every $x \in X$ (i.e. $\phi = \chi \circ i_0$ and $\psi = \chi \circ i_1$, where $i_0, i_1 : X \to X \times [0, 1]$ are defined by $i_0(x) = (x, 0), i_1(x) = (x, 1)$). Recall the following result [9, pp. 231]: If $\phi \sim \psi$ then $\phi_* = \psi_*$.

Let $\phi : X \to Y$ be a multivalued map (note for each $x \in X$ we assume $\phi(x)$ is a nonempty subset of Y). A pair (p,q) of single valued continuous maps of the form $X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\to} Y$ is called a selected pair of ϕ (written $(p,q) \subset \phi$) if the following two conditions hold:

(i). p is a Vietoris map

and

(ii). $q(p^{-1}(x)) \subset \phi(x)$ for any $x \in X$.

Definition 1.4. A upper semicontinuous map $\phi : X \to Y$ is said to be strongly admissible [9] (and we write $\phi \in Ads(X,Y)$) provided there exists a selected pair (p,q) of ϕ with $\phi(x) = q(p^{-1}(x))$ for $x \in X$.

Definition 1.5. A map $\phi \in Ads(X, X)$ is said to be a Lefschetz map if for each selected pair $(p,q) \subset \phi$ with $\phi(x) = q(p^{-1}(x))$ for $x \in X$ the linear map $q_*p_*^{-1}$: $H(X) \to H(X)$ (the existence of p_*^{-1} follows from the Vietoris Theorem) is a Leray endomorphism.

If $\phi : X \to X$ is a Lefschetz map as described above then we define the Lefschetz number (see [9]) $\Lambda(\phi)$ (or $\Lambda_X(\phi)$) by

$$\Lambda(\phi) = \Lambda(q_\star p_\star^{-1}).$$

Also we define

$$\chi(\phi) = \chi(q_{\star}p_{\star}^{-1}), L(\phi) = L(q_{\star}p_{\star}^{-1}) \text{ and } P(\phi) = P(q_{\star}p_{\star}^{-1}).$$

Definition 1.6. A Hausdorff topological space X is said to be a Lefschetz space provided every compact $\phi \in Ads(X, X)$ is a Lefschetz map and $\Lambda(\phi) \neq 0$ implies ϕ has a fixed point.

Theorem 1.7 ([9, 12]). Let $\phi \in Ads(X, X)$ be a Lefschetz map. Then

- (a) $\chi(\phi) = 0$ implies $P(\phi) = 0$;
- (b) $P(\phi) = 0$ if and only if $\Lambda(\phi^n) = 0$ for some natural number n;
- (c) if $P(\phi) = k \neq 0$ then for any $m \in \{0, 1, 2, ...\}$ at least one of $\Lambda(\phi^{m+1}), \ldots, \Lambda(\phi^{m+k})$ is different from zero.

2. PRELIMINARY FIXED POINT THEORY

We note that some of the fixed point theory presented in this section can be found in [15, 16, 17]. In addition in this section we improve some of the results in [15, 16]. We also establish some new properties (see Remark 2.5 and Remark 2.8) which will be needed in Section 3.

By a space we mean a Hausdorff topological space. Let X and Y be spaces. A space Y is an neighborhood extension space for Q (written $Y \in NES(Q)$) if $\forall X \in Q$, $\forall K \subseteq X$ closed in X, and for any continuous function $f_0 : K \to Y$, there exists a continuous extension $f : U \to Y$ of f_0 over a neighbourhood U of K in X.

In [17] we established the following result.

Theorem 2.1. Let $X \in NES(compact)$ and $F \in Ads(X, X)$ a compact map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

A space Y is a strongly approximate neighborhood extension space for Q (written $Y \in SANES(Q)$) if $\forall \alpha \in Cov(Y), \forall X \in Q, \forall K \subseteq X$ closed in X, and any continuous function $f_0 : K \to Y$, there exists a neighborhood U_α of K in X and a continuous function $f_\alpha : U_\alpha \to Y$ such that $f_\alpha|_K$ and f_0 are α close and α -homotopic.

Theorem 2.2 ([17]). Let $X \in SANES(compact)$ be a uniform space and $F \in Ads(X, X)$ a compact map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

In fact we obtained a more general result in [17] which contains both Theorem 2.1 and Theorem 2.2.

Let X be a Hausdorff topological space. A map $F \in Ads(X, X)$ is said to be a compact absorbing contraction (written $F \in CACs(X, X)$) if there exists $Y \subseteq X$ such that

- (i) $F(Y) \subseteq Y$;
- (ii) $F|_Y \in Ads(Y, Y)$ (automatically satisfied) is a compact map with Y a Lefschetz space;

(iii) for every compact $K \subseteq X$ there is an integer n = n(K) such that $F^n(K) \subseteq Y$.

Remark 2.3. Examples of Lefschetz spaces Y are of course NES(compact) and SANES(compact) uniform spaces.

Remark 2.4. If Y = U is an open subset of X then (iii) could be changed to

(iii)' for every $x \in X$ there exists an integer n = n(x) such that $F^{n(x)}(x) \subseteq Y = U$.

Remark 2.5. Let $F \in CACs(X, X)$ and let Y be as above. Notice $F^2(Y) \subseteq F(Y) \subseteq Y$, $F^2|_Y \in Ads(Y,Y)$ (see [9, pp. 201]) and $F^2|_Y$ is a compact map. Let K be a compact subset of X and let n = n(K) be as described above. Then if n is even we have $(F^2)^{\frac{n}{2}}(K) \subseteq Y$ whereas in n is odd we have $(F^2)^{\frac{n+1}{2}} = F^{n+1}(K) = F(F^n(K)) \subseteq F(Y) \subseteq Y$. Thus $F^2 \in CACs(X, X)$. Similarly $F^m \in CACs(X, X)$ for every integer m.

Theorem 2.6 ([17]). Let X be a Hausdorff topological space and $F \in CACs(X, X)$. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

In [15, 16] we considered a more general situation. Let X be a compact space. A map $F \in Ads(X, X)$ is said to be a NES(compact) map if for any compact pair (Z, A) and any homeomorphism $g: X \to A$ there exists a neighborhood U of A in Z and a $\Phi \in Ads(U, X)$ with $\Phi|_A = Fg^{-1}$.

Theorem 2.7 ([16]). Let X be a compact space and let $F \in Ads(X, X)$ be a NES (compact) map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

In fact in [15] we generalized this result. A map $F \in Ads(X, X)$ is said to be a compact absorbing contraction (written $F \in MCACs(X, X)$) if there exists $Y \subseteq X$ such that

- (i) $F(Y) \subseteq Y$;
- (ii) Y is a compact space and $F|_Y \in Ads(Y,Y)$ (automatically satisfied) is a NES (compact) map;
- (iii) for every compact $K \subseteq X$ there is a n = n(K) such that $F^n(K) \subseteq Y$.

Remark 2.8. Let $F \in MCACs(X, X)$ and let Y be as above. Consider any compact pair (Z, A) and any homeomorphism $g: Y \to A$. Now there exists a neighborhood U of A in Z and a $\Phi \in Ads(U, Y)$ with $\Phi|_A = Fg^{-1}$. Let $\Psi = F\Phi$. Notice $\Psi \in$ Ads(U, Y) and $\Psi|_A = F\Phi|_A = FFg^{-1} = F^2g^{-1}$. Thus (see also Remark 2.5) $F^2 \in$ MCACs(X, X). Similarly $F^m \in MCACs(X, X)$ for each integer m.

Theorem 2.9 ([15]). Let X be a Hausdorff topological space and $F \in MCACs(X, X)$. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point. Our next two results improve those in [15].

A map $F \in \mathfrak{U}_c^{\kappa}(X,Y)$ is called a ANES(compact) map if for any compact pair (Z,A) and any homeomorphism $g: X \to A$ the following holds: for each $\alpha \in Cov(Y)$ there exists a neighborhood U_{α} of A in Z and a $\Phi_{\alpha} \in \mathfrak{U}_c^{\kappa}(U_{\alpha},Y)$ such that for each $x \in A$ with $x \in j_{U_{\alpha}}g\Phi_{\alpha}(x)$ (here $j_{U_{\alpha}}: A \hookrightarrow U_{\alpha}$ is the natural imbedding) there exists $U_x \in \alpha$ such that $g^{-1}(x) \in U_x$ and $Fg^{-1}(x) \cap U_x \neq \emptyset$.

Let X be a compact space and $F \in \mathfrak{U}_c^{\kappa}(X, X)$ a ANES(compact) map. Let $\alpha \in Cov_X(X)$. X is compact so [12] X is homeomorphic to a closed subset of the Tychonoff cube T, so as a result X can be embedded as a closed subset K^* of T; let $s : X \to K^*$ be a homeomorphism. Now since $s^{-1} : K^* \to X$ and since F is a ANES(compact) map there exists a neighborhood U_{α} of K^* in T and a $\Phi_{\alpha} \in \mathfrak{U}_c^{\kappa}(U_{\alpha}, X)$ such that for each $x \in K^*$ with $x \in j_{U_{\alpha}}s, \Phi_{\alpha}(x)$ (here $j_{U_{\alpha}} : K^* \hookrightarrow U_{\alpha}$ is the natural imbedding) there exists $U_x \in \alpha$ such that $s^{-1}(x) \in U_x$ and $Fs^{-1}(x) \cap U_x \neq \emptyset$. Let $G_{\alpha} = j_{U_{\alpha}}s\Phi_{\alpha}$. Notice $G_{\alpha} \in \mathfrak{U}_c^{\kappa}(U_{\alpha}, U_{\alpha})$. We now assume

(2.1)
$$G_{\alpha} \in \mathfrak{U}_{c}^{\kappa}(U_{\alpha}, U_{\alpha})$$
 has a fixed point for each $\alpha \in Cov_{X}(X)$.

Thus there exists $x \in U_{\alpha}$ with $x \in G_{\alpha}x$. Then there exists $y \in \Phi_{\alpha}(x)$ with $x = j_{U_{\alpha}}s(y)$. Note $s(y) \in K^*$. Now there exists a $U \in \alpha$ with $s^{-1}(x) \in U$ and $Fs^{-1}(x) \cap U \neq \emptyset$. Since $x = j_{U_{\alpha}}s(y)$ we have $y \in U$ and $F(y) \cap U \neq \emptyset$. As a result F has an α -fixed point. Now apply Theorem 1.2 and we have the following result which improves a result in [15].

Theorem 2.10. Let X be a uniform compact space and let $F \in \mathfrak{U}_c^{\kappa}(X,X)$ be a ANES(compact) map. In addition assume F is a upper semicontinuous map with compact values. Also assume (2.1) holds with K, s, U_{α} , Φ_{α} and $j_{U_{\alpha}}$ as described above. Then F has a fixed point.

We now discuss Theorem 2.10 for the class Ads(X, X). Let X be a uniform compact space. A map $F \in Ads(X, X)$ is said to be a weakly ANES(compact) map if for any compact pair (Z, A) and any homeomorphism $g: X \to A$ the following two conditions hold for each $\alpha \in Cov_X(X)$:

- (1) there exists a neighborhood U_{α} of A in Z and a $\Phi_{\alpha} \in Ads(U_{\alpha}, X)$ such that for each $x \in A$ with $x \in j_{U_{\alpha}}g\Phi_{\alpha}(x)$ there exists $U_x \in \alpha$ such that $g^{-1}(x) \in U_x$ and $Fg^{-1}(x) \cap U_x \neq \emptyset$,
- (2) if (p,q) is any selected pair for F with $qp^{-1}(x) = F(x)$ for $x \in X$ then there exists a selected pair $(p''_{\alpha}, q''_{\alpha})$ of $\Phi_{\alpha} j_{U_{\alpha}} g$ with $q''_{\alpha} (p''_{\alpha})^{-1}(x) = \Phi_{\alpha} j_{U_{\alpha}} g(x)$ for $x \in X$ and with $(q''_{\alpha})_{\star} (p''_{\alpha})_{\star}^{-1} = q_{\star} p_{\star}^{-1}$; here $j_{U_{\alpha}} : A \hookrightarrow U_{\alpha}$ is the natural embedding.

Remark 2.11. Let X be a compact space and $F \in Ads(X, X)$ be such that for any compact pair (Z, A) and any homeomorphism $g : X \to A$ we have for each $\alpha \in Cov_X(X)$ that there exists a neighborhood U_{α} of A in Z and a continuous function $h_{\alpha}: U_{\alpha} \to X$ of g^{-1} such that $h_{\alpha}|_A$ and g^{-1} are α -homotopic. Then (2) above holds with $\Phi_{\alpha} = Fh_{\alpha}$. To see this let (p,q) be any selected pair for F with $qp^{-1}(x) = F(x)$ for $x \in X$. Then [9, Theorem 40.6, pp. 201] guarantees that there exists a selected pair $(p''_{\alpha}, q''_{\alpha})$ of $Fh_{\alpha}j_{U_{\alpha}}g$ with $q''_{\alpha}(p''_{\alpha})^{-1}(x) = Fh_{\alpha}j_{U_{\alpha}}g(x)$ for $x \in X$ and with

$$(q_{\alpha}''')_{\star}(p_{\alpha}''')_{\star}^{-1} = q_{\star}p_{\star}^{-1}(h_{\alpha})_{\star}(j_{U_{\alpha}})_{\star}g_{\star}.$$

As a result $(q_{\alpha}^{\prime\prime\prime})_{\star}(p_{\alpha}^{\prime\prime\prime})_{\star}^{-1} = q_{\star}p_{\star}^{-1}$ since $h_{\alpha}j_{U_{\alpha}}g$ is α -homotopic to i (note $h_{\alpha}|_{A}$ and g^{-1} are α -homotopic).

Remark 2.12. Let X be a compact space and $F \in Ads(X, X)$ be such that for any compact pair (Z, A) and any homeomorphism $g: X \to A$ we have for each $\alpha \in Cov_X(X)$ that there exists a neighborhood U_α of A in Z and a continuous function $h_\alpha: U_\alpha \to X$ of g^{-1} such that $h_\alpha|_A$ and g^{-1} are α -close. In addition assume for each $x \in A$ with $x \in j_{U_\alpha}g\Phi_\alpha(x)$ and $h_\alpha(x) \in U_x$, $F(h_\alpha(x)) \cap U_x \neq \emptyset$ for some $U_x \in \alpha$ there exists a $U \in \alpha$ with $g^{-1}(x) \in U$ and $F(g^{-1}(x)) \cap U \neq \emptyset$. Then (1) above holds with $\Phi_\alpha = Fh_\alpha$. To see this suppose $x \in A$ with $x \in j_{U_\alpha}g\Phi_\alpha(x)$. Let $y = h_\alpha(x)$ so $y \in h_\alpha j_{U_\alpha}gF(y)$ i.e. $y = h_\alpha j_{U_\alpha}g(q)$ for some $q \in F(y)$. Now since $h_\alpha j_{U_\alpha}g$ and i are α -close there exists $U \in \alpha$ with $h_\alpha j_{U_\alpha}g(q) \in U$ and $i(q) \in U$ i.e. $q \in U$ and $y = h_\alpha j_{U_\alpha}g(q) \in U$. Thus $y \in U$ and $F(y) \cap U \neq \emptyset$ since $q \in F(y)$. As a result

$$h_{\alpha}(x) \in U$$
 and $F(h_{\alpha}(x)) \cap U \neq \emptyset$.

By assumption there exists $U_x \in \alpha$ with $g^{-1}(x) \in U_x$ and $F(g^{-1}(x)) \cap U_x \neq \emptyset$.

Exactly the same proof as in [15, Theorem 2.2] (except here we use Theorem 2.10 above) gives the following result.

Theorem 2.13. Let X be a uniform compact space and let $F \in Ads(X, X)$ be a weakly ANES(compact) map. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

A map $F \in Ads(X, X)$ is said to be a approximate compact absorbing contraction (written $F \in ACACs(X, X)$) if there exists $Y \subseteq X$ such that

- (i) $F(Y) \subseteq Y$;
- (ii) Y is a compact uniform space and $F|_Y \in Ads(Y, Y)$ (automatically satisfied) is a weakly ANES(compact) map;
- (iii) for every compact $K \subseteq X$ there is a n = n(K) such that $F^n(K) \subseteq Y$.

Theorem 2.14 ([15]). Let X be a Hausdorff topological space and assume $F \in ACACs(X, X)$. Then $\Lambda(F)$ is well defined and if $\Lambda(F) \neq 0$ then F has a fixed point.

Remark 2.15. As above we can generalize the definition of stronger ANES(compact)map in [15] and obtain a stronger Theorem 2.3 in [15] for the class Ad. Let X be a compact space and we say $F \in Ad(X, X)$ is a strongly ANES(compact) map if for any compact pair (Z, A) and any homeomorphism $g : X \to A$ the following two conditions hold for each $\alpha \in Cov_X(X)$:

- (3) there exists a neighborhood U_{α} of A in Z and a $\Phi_{\alpha} \in Ad(U_{\alpha}, X)$ such that for each $x \in A$ with $x \in j_{U_{\alpha}}g\Phi_{\alpha}(x)$ there exists $U_x \in \alpha$ such that $s^{-1}(x) \in U_x$ and $Fg^{-1}(x) \cap U_x \neq \emptyset$,
- (4) if (p,q) is any selected pair for F then there exists a selected pair $(p'_{\alpha}, q'_{\alpha})$ of Φ_{α} with $(q'_{\alpha})_{\star}(p'_{\alpha})_{\star}^{-1}(j_{U_{\alpha}})_{\star}g_{\star} = q_{\star}p_{\star}^{-1}$; here $j_{U_{\alpha}} : A \hookrightarrow U_{\alpha}$ is the natural embedding.

It is worth mentioning here also that we can also improve Theorem 2.2 in [16]. A map $F \in \mathfrak{U}_c^{\kappa}(X,Y)$ is called a AES(compact) map if for any compact pair (Z,A)and any homeomorphism $g: X \to A$ for each $\alpha \in Cov(Y)$ there exists $\Phi_{\alpha} \in \mathfrak{U}_c^{\kappa}(Z,Y)$ such that for each $x \in A$ with $x \in jg\Phi_{\alpha}(x)$ (here $j: A \hookrightarrow Z$ is the natural imbedding) there exists $U_x \in \alpha$ such that $s^{-1}(x) \in U_x$ and $Fg^{-1}(x) \cap U_x \neq \emptyset$.

Theorem 2.16. Let X be a uniform compact space and suppose $F \in \mathfrak{U}_c^{\kappa}(X, X)$ is a AES(compact) map. In addition assume F is upper semicontinuous map with compact values. Then F has a fixed point.

Proof. Let $\alpha \in Cov_X(X)$. From Theorem 1.2 it suffices to show F has an α -fixed point. We know [12] that X can be embedded as a closed subset K^* of T; let $s: X \to K^*$ be a homeomorphism. Let $j: K^* \hookrightarrow T$ be an inclusion. Now since $s^{-1}: K^* \to X$ and since F is a AES(compact) map there exists $\Phi_\alpha \in \mathfrak{U}_c^\kappa(T,X)$ such that for each $x \in K^*$ with $x \in js\Phi_\alpha(x)$ there exists $U_x \in \alpha$ such that $s^{-1}(x) \in U_x$ and $Fs^{-1}(x) \cap U_x \neq \emptyset$. Let $G_\alpha = js\Phi_\alpha$ and note $G_\alpha \in \mathfrak{U}_c^\kappa(T,T)$ so Theorem 1.1 guarantees that there exists $x \in T$ with $x \in G_\alpha x$. Then there exists $y \in \Phi_\alpha(x)$ with x = js(y). Note $s(y) \in K^*$. Now there exists a $U \in \alpha$ with $s^{-1}(x) \in U$ and $Fs^{-1}(x) \cap U \neq \emptyset$. Since x = js(y) we have $y \in U$ and $F(y) \cap U \neq \emptyset$. As a result F has an α -fixed point.

3. PERIODIC POINTS

Let X be a Hausdorff topological space. A point $x \in X$ is said to be a periodic point for a map $F: X \to 2^X$ with period n if $x \in F^n(x)$.

Theorem 3.1. Let X be a Hausdorff topological space and $F \in CACs(X, X)$. Suppose $\chi(F) \neq 0$ or $P(F) \neq 0$. Fix $m \in \{0, 1, ...\}$. Then F has a periodic point with period n where $m + 1 \leq n \leq m + P(F)$.

Proof. We know for Theorem 2.6 that F is a Lefschetz map. Now $P(F) \neq 0$ (see Theorem 1.7 (a)). We now know for Theorem 1.7 (c) that there exists a $n, m+1 \leq 1$

 $n \leq m + P(F)$ with $\Lambda(F^n) \neq 0$. From Remark 2.5 we have $F^n \in CACs(X, X)$. As a result Theorem 2.6 guarantees that F^n has a fixed point.

Theorem 3.2. Let X be a Hausdorff topological space and $F \in MCACs(X, X)$. Suppose $\chi(F) \neq 0$ or $P(F) \neq 0$. Fix $m \in \{0, 1, ...\}$. Then F has a periodic point with period n where $m + 1 \leq n \leq m + P(F)$.

Proof. We know for Theorem 2.9 that F is a Lefschetz map and also we know that $\Lambda(F^n) \neq 0$ for some n where $m + 1 \leq n \leq m + P(F)$. From Remark 2.8 we have $F^n \in MCACs(X, X)$. As a result Theorem 2.9 guarantees that F^n has a fixed point.

Theorem 3.3. Let X be a Hausdorff topological space and $F \in ACACs(X, X)$. Suppose $\chi(F) \neq 0$ or $P(F) \neq 0$. Fix $m \in \{0, 1, ...\}$ and suppose $F^n \in ACACs(X, X)$ for any n with $m + 1 \leq n \leq m + P(F)$. Then F has a periodic point with period n where $m + 1 \leq n \leq m + P(F)$.

Proof. We know for Theorem 2.14 that F is a Lefschetz map and also we know that $\Lambda(F^n) \neq 0$ for some n where $m + 1 \leq n \leq m + P(F)$. By assumption we have $F^n \in ACACs(X, X)$. As a result Theorem 2.14 guarantees that F^n has a fixed point.

REFERENCES

- R.P. Agarwal and D.O'Regan, A Lefschetz fixed point theorem for admissible maps in Fréchet spaces, *Dynamic Systems and Applications* 16 (2007), 1–12.
- [2] R.P. Agarwal and D.O'Regan, Fixed point theory for compact absorbing contractive admissible type maps, *Applicable Analysis* 87 (2008), 497–508.
- [3] R.P. Agarwal, D.O'Regan and S. Park, Fixed point theory for multimaps in extension type spaces, *Jour. Korean Math. Soc.* **39** (2002), 579–591.
- [4] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc. 41 (1990), 421–434.
- [5] H. Ben-El-Mechaiekh, Spaces and maps approximation and fixed points, *Jour. Computational and Appl. Mathematics* 113 (2000), 283–308.
- [6] H. Ben-El-Mechaiekh and P. Deguire, General fixed point theorems for non-convex set valued maps, C.R. Acad. Sci. Paris 312 (1991), 433–438.
- [7] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.
- [8] G. Fournier and L. Gorniewicz, The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces, *Fundamenta Mathematicae* 92 (1976), 213–222.
- [9] L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht, 1999.
- [10] L. Gorniewicz and D. Rozploch-Nowakowska, The Lefschetz fixed point theory for morphisms in topological vector spaces, *Topol. Meth. Nonl. Anal.* **20** (2002), 315–333.
- [11] A. Granas, Fixed point theorems for approximative ANR's, Bull. Acad. Polon. Sc. 16 (1968), 15–19.

- [12] A. Granas and J. Dugundji, Fixed point theory, Springer, New York, 2003.
- [13] J.L. Kelley, General Topology, D. Van Nostrand Reinhold Co., New York, 1955.
- [14] D. O'Regan, Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed Point Theory and Applications 2004 (2004), 13-20.
- [15] D. O'Regan, Asymptotic Lefschetz fixed point theory for ANES(compact) maps, *Rendiconti del Circolo Matematico di Palermo*, to appear.
- [16] D. O'Regan, Fixed point theory for extension type maps in topological spaces, *Applicable Analysis*, to appear.
- [17] D. O'Regan, Fixed point theory for compact absorbing contractions in extension type spaces, to appear.