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1. INTRODUCTION

Let ξ > 0 and f : R → R be continuous on R. If f is 2π-periodic or nonperiodic

and bounded on R or of some exponential or polynomial growth on R, the following

singular integrals are well defined :

Pξ(f)(x) =
1

2ξ

∫ +∞

−∞
f(x + t)e−|t|/ξ dt =

1

2ξ

∫ +∞

−∞
f(u)e−|u−x|/ξdu,

Qξ(f)(x) =
ξ

π

∫ π

−π

f(x + t)

t2 + ξ2
dt =

ξ

π

∫ x+π

x−π

f(u)

(u − x)2 + ξ2
du,

Q∗
ξ(f)(x) =

ξ

π

∫ +∞

−∞

f(x + t)

t2 + ξ2
dt =

ξ

π

∫ +∞

−∞

f(u)

(u − x)2 + ξ2
du,

Rξ(f)(x) =
2ξ3

π

∫ +∞

−∞

f(x + t)

(t2 + ξ2)2
dt =

2ξ3

π

∫ +∞

−∞

f(u)

((u − x)2 + ξ2)2
du,

Wξ(f)(x) =
1√
πξ

∫ π

−π

f(x + t)e−t2/ξ dt =
1√
πξ

∫ x+π

x−π

f(u)e−(u−x)2/ξ du,

W ∗
ξ (f)(x) =

1√
πξ

∫ +∞

−∞
f(x + t)e−t2/ξ dt =

1√
πξ

∫ ∞

−∞
f(u)e−(u−x)2/ξ du,

Here Pξ(f) is called of Picard type, Qξ(f), Q∗
ξ(f) and Rξ(f) are called of Poisson-

Cauchy type and Wξ(f), W ∗
ξ (f) are called of Gauss-Weierstrass type.
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Concerning the approximation of f(x) by the above real singular integrals (as

ξ → 0), many qualitative and quantitative results are known, see e.g. [3], [4], [2], [1],

to mention only a few.

A quite natural problem would be the study of the overconvergence phenomenon

for these singular integrals, that is the approximation of the analytic function f(z)

by the complex singular integrals obtained replacing x by z in the above formulas of

definition.

Remark 1.1. For each from the above singular integrals, it is easy to show that

by replacing x ∈ R with z ∈ C, the two forms identical in the real case, produce

two different complex operators. While the first forms of each operator will appear

to have the overconvergence phenomenon, unfortunately the second complex form

of each operator is not good for approximation. Indeed, to exemplify this fact we

consider the case of the Picard singular integral but the considerations for the other

operators are similar. In this case, for the second form we get the complex operator

Pξ(f)(z) =
1

2ξ

∫ +∞

−∞
f(u)e−|u−z|/ξdu

and taking f(z) = 1, z = x + iy, after the successive substitutions u− x = t, η = 1/ξ

and t = v/η we obtain

Pη(1)(z) =

∫ ∞

0

e−
√

v2+η2y2

dv <

∫ ∞

0

e−
√

v2

dv = 1,

for all η > 0. For any fixed v, y, denoting F (η) = e−
√

v2+η2y2

we easily get F ′(η) < 0

for all η > 0, that is F (η) is strictly decreasing on [0,∞). This implies that as function

of η (with fixed z), Pη(1)(z) is decreasing, therefore from the above inequality it follows

limη→∞ Pη(f)(z) < 1 = f(z) for f the constant function 1.

The aim of this note is to give some quantitative answers to the overconvergence

problem for the first complex forms of the above mentioned singular integrals.

2. MAIN RESULTS

The first main result is the following.

Theorem 2.1. Let d > 0 and suppose that f : Sd → C is bounded and uniformly

continuous in the strip Sd = {z = x + iy ∈ C; x ∈ R, |y| ≤ d}.
(i) Denoting Pξ(f)(z) = 1

2ξ

∫ +∞
−∞ f(z + t)e−|t|/ξ dt, for all ξ > 0 and z ∈ Sd we

have

|Pξ(f)(z) − f(z)| ≤ 5

2
ω2(f ; ξ)Sd

,

where

ω2(f ; δ)Sd
= sup{|f(u + t) − 2f(u) + f(u − t)|; u, u − t, u + t ∈ Sd, |t| ≤ δ}.
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(ii) Denoting Rξ(f)(z) = 2ξ3

π

∫ +∞
−∞

f(z+t)
(t2+ξ2)2

dt, for all ξ > 0 and z ∈ Sd we have

|Rξ(f)(z) − f(z)| ≤ Cω2(f ; ξ)Sd
,

where C > 0 is independent of z, ξ and f .

(iii) Suppose in addition that f is of Lipschitz class α ∈ (0, 1) in Sd, that is there

exists a constant M > 0 such that

|f(u) − f(v)| ≤ M |u − v|α, for all u, v ∈ Sd.

Denoting Q∗
ξ(f)(z) = ξ

π

∫ +∞
−∞

f(z+t)
t2+ξ2 dt, for all ξ > 0 and z ∈ Sd we have

|Q∗
ξ(f)(z) − f(z)| ≤ Cξα,

where C > 0 is independent of z and ξ but depends on f .

(iv) Denoting W ∗
ξ (f)(z) = 1√

πξ

∫ +∞
−∞ f(z + t)e−t2/ξ dt, for all ξ > 0 and z ∈ Sd we

have

|W ∗
ξ (f)(z) − f(z)| ≤ Cω2(f ;

√

ξ)Sd
,

where C > 0 is independent of z, ξ and f .

Proof. (i) If z ∈ Sd then clearly that for all t ∈ R we have z + t ∈ Sd and since f is

bounded in Sd (denote its bound by M(f)) it easily follows |Pξ(f)(z)| ≤ 2M(f) for

all z ∈ Sd. Therefore Pξ(f)(z) exists for all z ∈ Sd. Also, the uniform continuity of f

on Sd implies that 0 ≤ limξ→0 ω2(f ; ξ)Sd
≤ 2 limξ→0 ω1(f ; ξ)Sd

= 0.

For all z ∈ Sd we have

|Pξ(f)(z) − f(z)| =

∣

∣

∣

∣

1

2ξ

∫ ∞

0

[f(z + t) − 2f(z) + f(z − t)]e−|t|/ξdt

∣

∣

∣

∣

≤ 1

2ξ

∫ ∞

0

ω2(f ; (t/ξ)ξ)Sd
e−t/ξdt

≤ ω2(f ; ξ)Sd

1

2ξ

∫ ∞

0

[1 + (t/ξ)]2e−t/ξdt =
5

2
ω2(f ; ξ)Sd

.

For the last equality see [2], pp. 252–253, proof of Theorem 5.2.

(ii) We reason exactly as at the above point (i). We obtain

|Rξ(f)(z) − f(z)| =

∣

∣

∣

∣

2ξ3

π

∫ ∞

0

[f(z + t) − 2f(z) + f(z − t)]

(t2 + ξ2)2
dt

∣

∣

∣

∣

≤ 2ξ3

π

∫ +∞

0

ω2(f ; (t/ξ)ξ)Sd

(t2 + ξ2)2
dt

≤ ω2(f ; ξ)Sd

2ξ3

π

∫ ∞

0

[

1 +
t

ξ

]2

· 1

(t2 + ξ2)2
dt ≤ Cω2(f ; ξ)Sd

,

since by easy calculation we get that

2ξ3

π

∫ ∞

0

[

1 +
u

ξ

]2

· 1

(t2 + ξ2)2
dt ≤ C,
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where C > 0 is independent of ξ.

(iii) We get

|Q∗
ξ(f)(z) − f(z)| =

∣

∣

∣

∣

ξ

π

∫ ∞

−∞

[f(z + t) − f(z)]

u2 + ξ2
du

∣

∣

∣

∣

≤ ξ

π

∫ ∞

−∞

|f(z + t) − f(z)|
t2 + ξ2

dt

≤ 2M
ξ

π

∫ ∞

0

tα

t2 + ξ2
du

=
2M

π
ξα

∫ ∞

0

vα

v2 + 1
dv,

where it is easy to prove that
∫ ∞

0
vα

v2+1
dv < ∞.

(iv) We get

|W ∗
ξ (f)(z) − f(z)| =

∣

∣

∣

∣

1√
πξ

∫ ∞

0

[f(z + t) − 2f(z) + f(z − t)]e−t2/ξdt

∣

∣

∣

∣

≤ 1√
πξ

∫ +∞

0

ω2(f ; (t/
√

ξ)
√

ξ)Sd
e−t2/ξdt

≤ ω2(f ;
√

ξ)Sd

1√
πξ

∫ ∞

0

[

t√
ξ

+ 1

]2

e−t2/ξdt ≤ Cω2(f ;
√

ξ)Sd
,

since
1√
πξ

∫ ∞

0

t2

ξ
e−t2/ξdt =

1√
π

∫ ∞

0

v2e−v2

dv < ∞

and

2√
πξ

∫ ∞

0

t√
ξ
e−t2/ξdt =

2√
πξ

√

ξ

∫ ∞

0

ve−v2

dv =
2√
π

∫ ∞

0

ve−v2

dv < ∞.

Remark 2.2. Simple examples of functions f satisfying Theorem 2.1 are given by

any finite sum of the form Tm(z) =
∑m

k=0 ak cos(kz) + bk sin(kz), where ak, bk ∈ C,

which for each fixed m is bounded in Sd together with its derivatives of any order.

These follow from the relationships [sin(z)]′ = cos(z), [cos(z)]′ = − sin(z), for all

z ∈ C and from the inequalities valid for all for all z = x + iy ∈ Sd and k = 0, 1, 2, ...,

| sin(kz)| ≤ ek|y| ≤ ekd, | cos(kz)| ≤ ek|y| ≤ ekd.

These inequalities follow from sinh(y) = (ey − e−y)/2 for y ∈ R, which implies

| sin(z)| =

√

sin2(x) + sinh2(y) =
√

(e2y + e−2y)/2 − cos2(x) ≤ e|y|.

Replacing now z by kz we obtain the required inequality in the statement for sin. For

the upper estimate of | cos(z)| we take into account that

| cos(z)| = | sin(π/2 − z)| = | sin(π/2 − x − iy)|

=

√

cos2(x) + sinh2(y)
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=
√

(e2y + e−2y)/2 − sin2(x) ≤ e|y|,

which proves the inequality for | cos(kz)| too.

Remark 2.3. If in Theorem 2.1 f is analytic in Sd and we have |f ′′(z)| ≤ M for all

z ∈ Sd, then by the mean value theorem in complex analysis, for all z ∈ Sd and ξ > 0

we obtain the more concrete estimates

|Pξ(f)(z) − f(z)| ≤ Cξ, , |Rξ(f)(z) − f(z)| ≤ Cξ2, |W ∗
ξ (f)(z) − f(z)| ≤ Cξ.

In the cases of the other two singular integrals (on the interval [−π, π]) we can

state the following local/pointwise estimates.

Theorem 2.4. Let d > 0 and suppose that f : Sd → C is continuous in the strip

Sd = {z = x + iy ∈ C; x ∈ R, |y| ≤ d}.
(i) Denoting Qξ(f)(z) = ξ

π

∫ π

−π
f(z+t)
t2+ξ2 dt, for all ξ > 0 and z ∈ Sd we have

|Qξ(f)(z) − f(z)| ≤
[

1 +
1

π
ln(π2 + 1)

]

ω2(f ; ξ)[z−π,z+π]

ξ
+ ξ

2

π2
‖f‖Sd

,

where [z − π, z + π] = {(z − π)(1 − λ) + λ(z + π); λ ∈ [0, 1]} and for 0 ≤ δ ≤ π

ω2(f ; δ)[z−π,z+π]

= sup{|f(u + t) − 2f(u) + f(u − t)|; u, u − t, u + t ∈ [z − π, z + π], t ∈ R, |t| ≤ δ}.

(ii) Denoting Wξ(f)(z) = 1√
πξ

∫ +π

−π
f(z + t)e−t2/ξ dt, for all ξ > 0 and z ∈ Sd we

have

|Wξ(f)(z) − f(z)| ≤ Cω2(f ; ξ)[z−π,z+π]

ξ
+ 2‖f‖Sd

√

ξ · 1

π
√

π
,

where C > 0 is independent of z, ξ and f .

Proof. (i) Fix z ∈ Sd. Evidently that for all t ∈ R we have z + t ∈ Sd and the

continuity of f in Sd evidently implies that Qξ(f)(z) exists for all z ∈ Sd. Also, the

uniform continuity of f on [z − π, z + π] implies

0 ≤ lim
ξ→0

ω2(f ; ξ)[z−π,z+π] ≤ 2 lim
ξ→0

ω1(f ; ξ)[z−π,z+π] = 0.

For all z ∈ Sd we have

Qξ(f)(z) − f(z) =
ξ

π

∫ π

0

f(z + t) − 2f(z) + f(z − t)

t2 + ξ2
dt − f(z)E(ξ),

where

|E(ξ)| = E(ξ) = 1 − 2ξ

π

∫ π

0

dt

t2 + ξ2
= 1 − 2

π
arctg

π

ξ
≤ 2

π2
ξ

(for the last estimate |E(ξ)| ≤ 2
π2 ξ see e.g. [2], p. 257).
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It follows

|Qξ(f)(z) − f(z)| ≤ ξ

π

∫ π

0

|f(z + t) − 2f(z) + f(z − t)|
t2 + ξ2

dt + ‖f‖Sd
|E(ξ)|

≤ ξ

π

∫ π

0

ω2(f ; (t/ξ)ξ)[z−π,z+π]

t2 + ξ2
dt + ‖f‖Sd

· |E(ξ)|

≤ ξ

π
· ω2(f ; ξ)[z−π,z+π] ·

∫ π

0

[

1 +
t

ξ

]2
1

t2 + ξ2
dt + ‖f‖Sd

· |E(ξ)|.

Reasoning as in the proof of Theorem 3.1, pp. 257–258 in [2], we arrive at the desired

estimate in statement.

(ii) We reason exactly as at the above point (i). We can write

Wξ(f)(z) − f(z) =
1√
πξ

∫ π

0

[f(z + t) − 2f(z) + f(z − t)]e−t2/ξ dt

− f(z)

[

1 − 1√
πξ

∫ π

−π

e−t2/ξ dt

]

.

Here
∣

∣

∣

∣

f(z)

[

1 − 1√
πξ

·
∫ π

−π

e−t2/ξ dt

]
∣

∣

∣

∣

=

∣

∣

∣

∣

f(z)

[

1 − 2√
πξ

∫ π

0

e−t2/ξ dt

]
∣

∣

∣

∣

=

∣

∣

∣

∣

f(z)

[

2√
πξ

∫ ∞

0

e−t2/ξ dt − 2√
πξ

∫ π

0

e−t2/ξ dt

]
∣

∣

∣

∣

= |f(z)| ·
∣

∣

∣

∣

2√
πξ

∫ ∞

π

e−t2/ξ dt

∣

∣

∣

∣

≤ ‖f‖Sd
· 2√

πξ

∫ ∞

π

ξ

t2
dt = 2‖f‖Sd

√

ξ · 1

π
√

π
.

Reasoning as in [2], p. 258), this implies

|Wξ(f)(z) − f(z)| ≤ 1√
πξ

∫ π

0

ω2(f ; t)[z−π,z+π]e
−t2/ξ dt + 2‖f‖Sd

√

ξ
1

π
√

π

≤ Cω2(f ; ξ)[z−π,z+π]

ξ
+ 2‖f‖Sd

√

ξ · 1

π
√

π
,

which proves the theorem.

In what follows, for Pξ(f)(z) and W ∗
ξ (f)(z) we will consider the weighted approx-

imation on Sd, which seems to be more natural because Sd is unbounded in C.

For this purpose, first we need some general notations. Let w : Sd → R+ be a

continuous weighted function in Sd, with the properties that w(z) > 0 for all z ∈ Sd

and lim|z|→∞ w(z) = 0. Define the space

Cw(Sd) = {f : Sd → C; f is continuous in Sd and ‖f‖w < ∞},

where ‖f‖w := sup{w(z)|f(z)|; z ∈ Sd}.
Also, for f ∈ Cw(Sd) define the weighted modulus of smoothness

ω2,w(f ; t)Sd
= sup{w(z)|f(z + h) − 2f(z) + f(z − h)|; z ∈ Sd, h ∈ R, |h| ≤ t}.



OVERCONVERGENCE OF SOME SINGULAR INTEGRALS 19

Remark 2.5. This modulus of smoothness has the properties : a) it is increasing

as function of t ; b) ω2,w(f ; 0)Sd
= 0; c) ω2,w(f ; λt)Sd

≤ (λ + 1)2ω2,w(f ; t)Sd
, for all

λ, t ≥ 0. (The proofs are similar to those for the functions of real variable in [4],

p. 234).

Theorem 2.6. Let d > 0 and suppose that f : Sd → C is continuous in the strip

Sd = {z = x + iy ∈ C; x ∈ R, |y| ≤ d}.
Let the Freud-type weight w(z) = e−q|z| with q > 0 fixed and f ∈ Cw(Sd). Denot-

ing Pξ(f)(z) = 1
2ξ

∫ +∞
−∞ f(z + t)e−|t|/ξ dt and W ∗

ξ (f)(z) = 1√
πξ

∫ +∞
−∞ f(z + t)e−t2/ξ dt, we

have

‖Pξ(f) − f‖w ≤ 5

2
ω2,w(f ; ξ)Sd

, for all 0 < ξ < 1/q

and

‖W ∗
ξ (f) − f‖w ≤ Cω2,w(f ;

√

ξ)Sd
, for all 0 < ξ < 1,

where C > 0 is independent of z, ξ and f .

Proof. The continuity of f in Sd implies the continuity of Pξ(f) and W ∗
ξ (f) in Sd.

We have

|w(z)Pξ(f)(z)| =

∣

∣

∣

∣

1

2ξ

∫ +∞

−∞
w(z + t)f(z + t)

w(z)

w(z + t)
e−|t|/ξ dt

∣

∣

∣

∣

≤ ‖f‖w
1

2ξ

∫ ∞

−∞
e|t|(q−1/ξ)dt ≤ Cξ,q‖f‖w.

Passing to supremum after z ∈ Sd it follows that Pξ(f) ∈ Cw(Sd), for all 0 < ξ < 1/q.

Also, for all z ∈ Sd we obtain

w(z)|Pξ(f)(z) − f(z)| =

∣

∣

∣

∣

1

2ξ

∫ ∞

0

w(z)[f(z + t) − 2f(z) + f(z − t)]e−|t|/ξdt

∣

∣

∣

∣

≤ 1

2ξ

∫ ∞

0

ω2,w(f ; (t/ξ)ξ)Sd
e−t/ξdt

≤ ω2,w(f ; ξ)Sd

1

2ξ

∫ ∞

0

[1 + (t/ξ)]2e−t/ξdt =
5

2
ω2,w(f ; ξ)Sd

.

Passing to supremum with z ∈ Sd we get the desired estimate for ‖Pξ(f) − f‖w.

In the case of W ∗(f)(z) first we get

|w(z)W ∗
ξ (f)(z)| =

∣

∣

∣

∣

1√
πξ

∫ +∞

−∞
w(z + t)f(z + t)

w(z)

w(z + t)
e−t2/ξ dt

∣

∣

∣

∣

≤ ‖f‖w
2√
πξ

∫ ∞

0

et(q−t/ξ)dt.

But
∫ ∞

0

et(q−t/ξ)dt =

∫ q+1

0

et(q−t/ξ)dt +

∫ ∞

q+1

et(q−t/ξ)dt,
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and for 0 < ξ ≤ 1 and t ≥ q + 1 we get t(q − t/ξ) ≤ −t and et(q−t/ξ) ≤ e−t, which

implies
∫ ∞

q+1

et(q−t/ξ)dt ≤
∫ ∞

q+1

e−tdt = e−(q+1).

In conclusion, from the above considerations we get |w(z)W ∗
ξ (f)(z)| ≤ Cξ,q‖f‖w and

passing to supremum with z ∈ Sd it immediately follows W ∗
ξ (f) ∈ Cw(Sd), for all

0 < ξ ≤ 1.

For the estimate, for all z ∈ Sd we obtain

w(z)|W ∗
ξ (f)(z) − f(z)| =

∣

∣

∣

∣

1√
πξ

∫ ∞

0

w(z)[f(z + t) − 2f(z) + f(z − t)]e−t2/ξdt

∣

∣

∣

∣

≤ 1√
πξ

∫ +∞

0

ω2,w(f ; (t/
√

ξ)
√

ξ)Sd
e−t2/ξdt

≤ ω2,w(f ;
√

ξ)Sd

1√
πξ

∫ ∞

0

[

t√
ξ

+ 1

]2

e−t2/ξdt

≤ Cω2,w(f ;
√

ξ)Sd
,

(for the last inequality see the proof of Theorem 2.1 (iv)).
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D’Analyse Numér. Théor. Approx. (Cluj), 37 (1998), 251–261.
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