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ABSTRACT. In this article we study quantitatively with rates the trigonometric weak convergence
of a sequence of finite positive measures to the unit measure. Equivalently we study quantitatively
the trigonometric pointwise convergence of sequence of positive linear operators to the unit operator,
all acting on continuous functions on [—m,7]. From there we derive with rates the corresponding
trigonometric uniform convergence of the last. Our inequalities for all of the above in their right
hand sides contain the moduli of continuity of the right and left Caputo fractional derivatives of the
involved function. From our uniform trigonometric Shisha-Mond type inequality we derive the first
trigonometric fractional Korovkin type theorem regarding the trigonometric uniform convergence of
positive linear operators to the unit. We give applications, especially to Bernstein polynomials over

[—7, 7] for which we establish fractional trigonometric quantitative results.

AMS (MOS) Subject Classification. 26A33, 41A17, 41A25, 41A36, 41AR80.

1. INTRODUCTION

In this paper among other we are motivated by the following results.

Theorem 1 (P. P. Korovkin [11], (1960)). Let L,, : C([—m,7]) — C([—m,7]), n € N,

be a sequence of positive linear operators. Assume
L,(1) % 1 (uniformly) , L,(cost) — cost, Ly(sint) - sint, asn — oo.

Then L,f ~ f, for every f € O([—,w]) that is 2m— periodic.
Let f € C(la,b]) and 0 < h < b — a. The first modulus of continuity of f at h is
given by
wi(f, h) =sup{|f(z) — f(Y); 2.y € [a,0], |z — y| < R}
If A > b — a, then we define
wi(f,h) =wi(f,b—a).
Another motivation is the following.

Theorem 2 (Shisha and Mond [16], (1968)). Let Ly, Lo, ..., be linear positive op-

erators, whose common domain D consists of real functions with domain (—o0,00).
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Suppose 1, cosx,sinx, f belong to D, where f is an everywhere continuous, 2mw-periodic
function,with modulus of continuity wy. Let —oo < a < b < 00, and suppose that for
n=1,2,...,L,(1) is bounded in [a,b].

Then form=1,2,...,

1n(f) = flloe < M1 llo 1on (1) = Ul + 1 2n (1) + oo wr(f; i), (1)
where L2
o ()l
and || - || Stands for the sup norm over |a, b|. h

In particular, if L,(1) = 1, then (1) reduces to
| Ln(f) — f||oo < 2wi(f, pn)-

One can easily see that, forn=1,2,...,

< (3) 1 -1

+ [[(Ln(cost))(2) — cos | + [[(La(sint))(z) — Sinxlloo],
so the last along with (1) prove Korovkin’s Theorem 1 in a quantitative way and with
rates of convergence.
One more motivation follows.

Theorem 3 (see [1], p. 217). Let f € C*([-m,7]), n > 1, and i a measure on
[—7, 7] of mass m > 0. Put

/(n+1)

B = (/ <sin %)nﬂ -u(dt)> | (2)

and denote by w := wy(f™, B) the modulus of continuity of f™ at 3. Then

I C RS sy
[

n!

+ w[m ) 4/ (n 4 1)] -

Final motivation is [3]. A great aid for fractional calculus is [15].

In this article we study quantitatively the rate of trigonometric weak convergence
of a sequence of finite positive measures to the unit measure given the existence and
presence of the left and right Caputo fractional derivatives of the involved function.
That is in the right hand sides of the derived inequalities appear the first moduli of
continuity of the above mentioned fractional derivatives, see Theorem 23 and Corol-
lary 24.

Then via the Riesz representation theorem we transfer Theorem 23 into the lan-

guage of quantitative trigonometric pointwise convergence of a sequence of positive
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linear operators to the unit operator, all operators acting from C(|—m, 7]) into itself,
see Theorem 25, Corollary 26 and Theorem 28.

From there we derive quantitative results with respect to the sup-norm || - ||oo,
regarding the trigonometric uniform convergence of positive linear operators to the
unit. Again in the right hand side of our inequalities we have moduli of continuity
with respect to right and left Caputo derivatives of the engaged function. For the
last see Theorem 30, a trigonometric Sisha-Mond type result. From there we derive
the first trigonometric Korovkin type convergence theorem at the fractional level, see
Theorem 31.

We give applications of our fractional trigonometric Sisha-Mond and trigonomet-

ric Korovkin theory, see Corollaries 34-36, etc.

This is the first in literature article studying the trigonometric quantitative con-

vergence of positive linear operators to the unit at the fractional level.

In approximation theory the involvement of fractional derivatives is very rare,
almost nothing exists, with the exception of the recent [3]. The only other fractional
articles that exist so far are of V. Dzyadyk [6] of 1959, F. Nasibov [12] of 1962,
J. Demjanovic [4] of 1975, and of M. Jaskolski [10] of 1989, all regarding estimates to

best approximation of functions by algebraic and trigonometric polynomials.

2. BACKGROUND

We need

Definition 4. Let v > 0, n = [v] (]-] is the ceiling of the number), f € AC"([a, b])
(space of functions f with f("~1 € AC([a, b]), absolutely continuous functions). We
call left Caputo fractional derivative (see [5], p. 38, [8], [15] the function

DLf(e) = s [ =0 (3)

Va € [a,b], where T is the gamma function I'(v) = [~ e~V dt, v > 0.
We set D?, f(z) = f(x),Vx € [a,b].
Lemma 5 ([3]). Letv >0, v €N, n = [v], f € C"([a,b]) and f® € L([a,b]).
Then D, f(a) = 0.
Definition 6 (see also [8], [7], [2]). Let f € AC™([a,b]), m = [«a], @ > 0. The right

Caputo fractional derivative of order o > 0 is given by

D fla) = il [ (¢ = aye o @

Vz € [a,b]. We set D)) f(z) = f(z).

Lemma 7 ([3]). Let f € C™ Y([a,b]), f™ € Lo([a,b]), m = [a], a > 0. Then
Dy f(b) = 0.
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We also need
Lemma 8 ([3]). Let f € AC™([a,b]), m = [a], a > 0; p is a positive finite measure
on the Borel o-algebra of [a,b], xg € [a,b]. Then
m—1
f®) (z
En(at) = [ f@du) - S L8 [ ko)
k=0 k! [a,b]

[a,b]

- d /[ y ([ ¢ = o os, 1) = D2y flawic) dute)

; /(] (/ (= 0D 10 - Di Sl ) o)} (2

Convention 9. We assume that

Dg, f(x) =0, forz < x, (6)

*20
and
Dy _f(x) =0, forz >z, (7)
for all x, g € (a,b].
We mention
Proposition 10 ([3]). Let f € C™([a,b]), n = [v], v > 0. Then DY, f(x) is continu-
ous in x € |a,b].
Also we have
Proposition 11 ([3]). Let f € C™([a,b]), m = [v], v > 0. Then Dy f(z) is
continuous in x € [a, b].
We further mention
Proposition 12 ([3]). Let f € C™ ([a,b]), f'™ € Lo([a,b]), m = [a], a > 0 and
DL @) = g . = 0 Q
for all x,zo € [a,b] : x > xy.
Then Dy _ f(x) is continuous in x.

Proposition 13 ([3]). Let f € C" Y([a,b]), f'™ € Lo([a,b]), m = [a], a > 0 and

(=D

D10 = ey | Y (¢ e e e, (9)

for all x,xy € [a,b] : xg > x.
Then Dy _ f(x) is continuous in x.
We need
Proposition 14 ([3]). Let g € C([a,b]), 0 < ¢ < 1,2, € [a,b]. Define

L(z,xo) = /x(x — ) tg(t)dt,  for x > x, (10)

o
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and L(x,z9) =0, for x < zy.

Then L is jointly continuous in (x,xq) on [a,b]*.

We mention

Proposition 15 ([3]). Let g € C([a,b]), 0 < ¢ < 1, z,x¢ € [a,b]. Define

K (2, 20) = / P o g(Qde,  forx < ao, (1)

and K(x,x¢) =0, for x > xy.
Then K(x,x0) is jointly continuous from [a,b)? into R.
Based on Propositions 14, 15 we derive

Corollary 16 ([3]). Let f € C™([a,b]), m = [a], @« > 0, x,29 € [a,b]. Then

D2, f(x), D _f(x) are jointly continuous functions in (x,xo) from [a,b]* into R.

We need
Theorem 17 ([3]). Let f : [a,b]* — R be jointly continuous. Consider

G(x) = wi(f(,2), 0, [, 0]),
d>0,z € a,b].
Then G is continuous on |a, b.
Also it holds
Theorem 18 ([3]). Let f : [a,b]*> — R be jointly continuous. Then

H(z) = wi(f(- x),6,[a,x]),
x € |a,b], is continuous in x € [a,b], § > 0.
We make

Remark 19. Let p be a finite positive measure on Borel o-algebra of [—m, 7]. Let

a > 0, then by Holder’s inequality we obtain (x¢ € [—7, 7]),

/[_mo] (zo — x)*dp(x) < 2% (/{_mo} <(:):0 2_ x))a-i-l du@)) 2y

=, z) = < (2 ( /[

—7'('750()]

in = )/ (e)) )
(12)
by |t| < 7wsin(]t]/2),t € [—m, 7).

Similarly we obtain

/(xo’ﬂ] (z — mo)*dp(z) < 2% (/(xm] ((z ;xo))aﬂ d’u(x)) e

1 1

e )= < mye /( ]<sm<<x—xo>/4>>a+1du<x>)mu((xo,wnw (13)
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Let now m = [a],« € N, >0,k =1,...,m—1. Then again by Holder’s inequality

we obtain

/ |z — x| du(x) (2.14)
[_Wﬂﬂ

_k
. |,',U _ x0| a+1 (a+1) w1k
<2 S S dp(x) (u([—m, 7])) @D
at+l—k

< 2n)* [ tintie- sl ) ) ()

Terminology 20. Here C([—m,|) denotes all the real valued continuous functions
on [—m,m]. Let Ly : C([—m,7]) — C(|—m,7]), N € N, be a sequence of positive
linear operators. By Riesz representation theorem (see [14], p. 304) we have
Lt = [ fOdu) (15)
YV xg € [—m, 7|, where upyg, is a unique positive finite measure on a Borel algebra of
[—m, ). Call
LN(17 ZL’O) = :U’Nro([_ﬂ-v ﬂ-]) = MNIO' (16)
We make
Remark 21 ([3]). Let f € C"([a,b]), f™ € Lo([a,b]), n = [v]v >0, v &N.

Then we have

D2 e < 1T

ey (GO AR S L] (17)

Thus we observe

wi(Dy, f,0) = sup D f(x) — DL f(y)l

iy
< B P G- B P ,
- zjlel[gb] <F(n —v+1) (v =)™+ Fn—v+1) (y—a) (2.18)
lz—y|<é
201 £l -
——(b—a)"". 2.1
STa-v+n" "% (2.19)
Consequently
w1 (DY, f,0) < M(b —a)"". (20)
AT T (n—v+1)
Similarly, let f € C™ ([a,b]), f™ € Lo([a,b]), m = [a], @ >0, a € N, then
20 £ s -
o < —a)me.
wl(Db—fv 5) — F(m— a—+ 1) (b a) (21)
So for f € C™([a,b]), f™ € Ly([a,b]), m = [a], @ >0, a €N, we find
201 £l

sup wi (D%, f,0)

oyl < =1 (h— q)m, 292
o€(a,b] ot L(m—a+ 1)( ) (22)
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and

« 2||-f(m)||00
sup wl(on_fa 5)[a,xo} <

2 e  (p_ g)yme. 923
xo€la,b] - F(m —a+ 1)( ) ( )

We also make

Remark 22. Let Ly : C([—m,7]) — C([-m,7]), N € N, be a sequence of positive
linear operators. Using (15) and Hoélder’s inequality we obtain (x € [—m, 7], k =
I,....om—=1,m=[a]l,ag€N,a>0)fork=1,...,m—1 that

k
L a+1 (aF1)
Ly (|- =2, 2) || < @) | || Lx ((sin (' 4‘”')) x)
| Ly 1]t (24)

Notice that for any x € [—m, 7| we have
Cll=r, 7)) 3 | —l¥g () < |- 2] € C[=m. 7],

therefore

C([~m,7]) > <sm <| : _‘”Pj‘“’](')))aﬂ < (sin (' ' :"))QH e O([-m, ).

(25)
Consequently, by positivity of Ly we obtain
L X—ww . a+1 L a+1
Ly sin [ =l Xrm () , T < ||Ln sin - —=] , T
4 4
(26)

Similarly, for any = € [—m, 7] we have
C([—ﬂ‘,ﬂ']) 2 | ) _$|X[$7W} < | ) _I| < C([—ﬂ',ﬂ‘]),

thus

C([~m, 7)) > (sin (%))QH < (sin (‘ ' f‘))aﬂ e C([~m ). (27)

Hence
Ly (( (Lot en0)) ) Ly (( (L)) )

So if the right hand side of (26), (28) goes to zero, so do their left hand sides.

<

[e.e] [e.e]

(28)

In fact we notice that

(o2 o () )

for every x € [—m, 7.
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Hence it holds

(2 ) ()
(=) )|

' . (30)
1%7<($n<|-—xvjﬂmﬂo))a+jx>
o (s (B=e)) )
o

()

3. MAIN RESULTS

<

e}

_l_

Consequently, if both

)

o0

— 0,

[e.e]

as N — 400, then

We present our first main result

Theorem 23. Let f € AC™([—7,7]), f™™ € Loo([-7, 7)), m = [a],a €N, a > 0;
r1,7m9 > 0, pu is a positive finite measure on the Borel o-algebra of [—m, 7], xy € [—7, 7.
Then

m—1 (k) o
[ i) - 3

k=0

Kﬁﬂ@—xwwmw

2 ttm e + 2

a+1 (5%7)
([ (o (2) o)
wy (Dg‘of, T (/[—m | (sin <x04_$)>a+1 du(x)) (Q}H))
" [~m.0]

-Fku«xmwbﬂﬁmu+agf%yg](/Lwﬂ(gn<x;ﬂb))WHdu@»>
Wy (Dfxof, - </( . (sin (””” _4“”“0))&“ dﬂ(g;)> M) . (31)
’ [o,7]
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Proof. By (5) we obtain
E-'EO([_W7 ﬂ-])

<wg UL ([ €m0 = D steoiac ) dnto

i /(mo,ﬂ] (/a:(l' B )a 1|D*$0 (C) D:Cmo ($0)|d4) d,u(x)} = (*)
Let Ay, hy > 0, then

= UL (e (5 )

dp(@)] Wi (D3, f; 1) [ 0]

+U(W] (/gc:(x—o (1+<h )dc) ()]m(D*xof,hz)M}.

Le.
Eﬂﬂo([_ﬂ-7 ﬂ-])

dp()Jwi (D5, f hi) ol

; { /(] (@ o / :<x (= xo>“d<) du<x>]

wi (D2, f, ho)[wo, 7]}

i AU (0 ) )]
wi(Dgy_ fy 1) (= o]

+ U(xm <(‘T _axO)a + %2(2(_@“?:;1) dpu( )] w1 (D2 £, h2) o ) }

Therefore

Bull-m) < 7 { |3 /[] (20 — 2)°du(x)

1 +1
—_ —x)*"d D2 hi)i—ra
D L (0= )| (D )

L o 1 )
+ |:a [mo,w](x — 1'0) d,U([)j') + W [xo’ﬂ](x _ 1.0) +1dlu(x):|
(D% f )i}

Momentarily we assume positive choices of

1

Ta — T a+1 (a+1)
hi=m </ (sin ( 4 )) d,u(:c)) > 0,
[—=m,z0] 4

1

T — 10 a+1 (a+1)
he =19 / (sin ( 1 )) dp(z) > 0.
(w07_7"]

47

(32)

(33)

(36)

(37)

(38)
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Consequently, by (12),(13) and (36), we obtain

s ™ G ()

wi(Dgy_ f, 1) {—x e + [(M((xom]))(“i” T L] (E)a

(v + 1)ry T
wi (D2 £, ) woum } (39)

Eﬂvo([_ﬂ-> W]) <

proving (31).

Next we examine the special cases. If

r—1z a+1
/ <sin < 0)) du(z) =0,
(w0, 4

then sin (x 4“”0) = 0, a.e. on (zg, 7|, that is © = x¢ a.e. on (xg, 7|, more precisely
u{x € (zo, ] 1 X 7é zo} = 0, hence p(xg, 7] = 0. Therefore p concentrates on [—, xo].
In that case (31) is written and holds as
m—1
) (2
/’ ()~ S T [ oty
[—7‘( IE()] k=0 ‘ [—W,:Eo]
(2m)~ 1 2
< —7 — (a+1) -
= F(O&—Fl) (:U’([ W,xo])) + (Oé-'-l)’f’l

t1)

a+1 at+1
[ () )
a+1 (a%l)
wi | Dy, f,m </[_ | (Sin (:c04— I)) d,u(x)) (40)

[—=m,z0]

Since (7, 7] = 0 and w(@) = 0, in the case of xy = 7, we get again (40) written for

xo = 7. So inequality (40) is a valid inequality when

[ (o (20)) 20

If additionally we assume that

/[—mo] <Sin ((%4_ x)))o‘“ du(r) =0,

then sin(*=) = 0, a.e. on [—7, x|, that is z = z¢ a.e. on [—7, x|, which means
u{x € [—m,x0] : @ #} = 0. Hence p = d,,M, where d,, is the unit Dirac measure and
M = p(l=m, ) > 0.

In the last case we obtain L.H.S (40) = R.H.S (40) = 0, that is (40) is valid

trivially.
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At last we go the other way around. Let us assume that

Tn — a+1
/ <sin ( 0 )) du(z) =0,
[—m,z0] 4

then reasoning similarly as before, we get that u over [—m, zo] concentrates at x.

That is H= 5900:“’([_71-7350])7 on [_77-7 SL’(]]-

In the last case (31) is written and holds as

m—1 f(k)(fﬂo) .
/uo,n] f@)dulw) - k! /@Oﬂq (z — @) dp(x)

k=0

o e+ 2

N
(o (o () )
wi | D2 frs ( /H <sin <‘” - “"O))QH dm)) o Y

[wo 77"]

If g = —m, then (41) can be redone and rewritten, just replace (xg, ] by [—m, 7] all

over. So inequality (41) is valid when

/@cw} <Sin <x _4%)>a+1 du(z) # 0.

If additionally we assume that

T — a+1
/ (sin ( 0)) du(z) =0,
(wo.7] 4

then as before u(xg, 7] = 0. Hence (41) is trivially true, in fact L.H.S (41) = R.H.S
(41) = 0. The prof of (31) now is completed in all possible cases. O

We continue in a special case.

In the assumptions of Theorem 23, when » = r; = ro > 0, and by calling
M = ([~ 7)) 2 p([—r, o)), (o, 7)), we gt
Corollary 24. It holds
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(Dgo f,r </[_” | (Sin (:c04— x))aﬂ d,u(x)) (Q}H))
’° [~
— e\ O (%)
+ (/{xoﬂ (sin (:)3 1 )) d,u(x))
([ (52 o) ) |

["EOJ‘—}

Based on Theorem 23, Corollary 24 and (15), we obtain
Theorem 25. Let f € AC™([~n,7]),f™ € Lo([-m, 7)), m = [a],a €N, a > 0;
r > 0, and Ly : C([—m,7]) — C([—7,7]), n € N, a sequence of positive linear

operators, xyg € |[—m,w|. Then

m—1 f(k) (l’()

LN xo—z
k=0

Ly((z — xo)kaxo)

1 2
L ]_ (a+1) -
[ w(L,0)) +<a+1>r}

[e]3

[(LN ((sin (\SE — xo\?i[_n,xo} (:c)))aﬂ ’xo) ) (=)
o ~ | | sin |7 — 20| X o (2) ) )T 7%)) (aiu)
N N

+ (LN <<sm (‘x - x0|4X[x0,7r]($)>)a+1 %)) (5%7)
O e ) R B A

Corollary 26 (to Theorem 25). It holds

-

Q

m— (k
Ln(f, o) — Z f ) Ly ((z — 20)", 20)

=0

2T
L 1 (a+1) -
[ w{L,20)) +<a+1>r}

(el

[—m,z0]
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. a+1 (OélTl)
w1 (Dfxofa r (LN ((Sin (%)) ,ZE’Q)) )
["EOJ‘—}
N a+1 WQTU
(LN ((Sin <|x 4x0|>) ,$0>> : (44)
We make

Remark 27. Let f € AC([-m, 7)), ' € Loo([-m,7]), 0 < a < 1, g € [—7,7];
Ly : C([-m,7]) = C(]—m,7]), N € N, sequence of positive linear operators. Then
by Theorem 25 and

|Ln(fswo) — f(wo)| < |Ln(fiwo) — f(@o) L (1, @o)| + | f(wo)||Ln(1, o) — 1], (45)
we obtain

Theorem 28. Let f € AC([—m,7]), [" € Loo([-m,7]),0 < a < 1, r >0, 29 €
[—m,7]; Ly : C([—m,7]) = C([—7,7]), N € N, sequence of positive linear operators.
Then

|Ln(fs20) = f(zo)| < |f(zo)| [Ln(1,20) — 1]

(2m)™ - 27
['(a+1) {(LN(L%))( o (a+ 1)7’]

a+1 (aiw
w1 (Dgofﬂ” (LN ((sin <|:L' _370|)Z[—7r,m0}(1'))> ,SL’())) )
[—m,0]
a+1 (aLH)
o o () )
a+1 (aiU
w1 (Dfxof, r (LN ((Sin (\x — xo‘f[zo,ﬂ (x))) ,$0>> ) . (46)
[zo,m]

We make
Remark 29. We observe that

(2m)” G
R.H.S(43) < m {HLN(l)Héo + m}

(=)

oo
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T X—T(SC : ot %H
sup wy | Dy_f,r||Ln (Sin (| X ))) T
x€|—m,7] 4 : ]

L Xx (- a+1 ﬁ
sup wy | D¢ f,r || Ly <sin <M)) , T =:0. (47)
zE€[—m,m] 4 o]

So that
m—1 f(k
7 = —o)k )| <6 (48)
k=0 o]
We further observe that
Lnlf,2) — F@)] < Z+ )] L1 1|+Z Iy (= a0t )
T W)
<@l a0) -1+ 3 g (= | +0. a9

We have proved the main result, a Shisha-Mond type trigonometric inequality at the
fractional level.

Theorem 30. Let f € AC™([~7, 7)), f™ € Loo([-7,7]), m = [a], a €N, a >0
;>0 and Ly : C([-m,7]) — C([-m7]), N € N, a sequence of positive linear

operators, x € |—m,w|. Then

k
1Exf — flly < [l 2 — 1+ Z 1t Ul 1, (= %, )l
(2m)” 1/(a+1) 27 }
+F(0z +1) {HLN(I)HOO + (a+1)r

(%)

L X—wm . a+1
[LN ((Sm<| o)) x)
1
t X—wm : o+l ot
sup  wi (Dg‘f,r LN<<sin<‘ 214 ]())) ,:):) )
x€|—m,7] 4
[_Wﬁﬂ
T me : ot
o (o (L)) )
_1
a+1
) ) (50)
o [z,7]

[e.e]

e (( (\ - —x\fmo))““ )

z€|—7,7]

sup  wq (Dfx.far
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Next we derive the following trigonometric Korovkin type convergence result at

fractional level.

Theorem 31. Let a« € N, a« > 0, m = [a], and Ly : C([—7,7]) — C(|—n, 7)),

N €N, a sequence of positive linear operators. Assume Ly1-51 (uniformly), and

o ()|

as N — co. Then Lyf>5f, ¥ f € AC™([~m,x]), f™ € Lo([~7,7]). (The second
condition means (LN ((sin ('_Tx'))aﬂ)) ()50, = € [-m,7.)

Proof. Since ||Ly1l — 1]|oc — 0 we get |[Ly1l — 1]| < K, for some K > 0. We write
Lyl =Lyxy1—1+41, hence

— 0,

IEnl < vl =1 + 1o S K +1, YNEN.

That is ||[Ly1|le is bounded. Se we are using inequality (50). By assumption
| Ln((sin(l58)a+1 @) || — 0, as N — oo and (24) we get ||Ln(] - —[*, 2)[|o — 0

for k=1,...,m —1. Also by (26) and (28) we obtain that

e (( <| - —xvj_w,x}(-)))““ ) HOO

and 1
x| X (- ot
Ly ((sm (Fet) g;> 0
4

as N — oo.

Additionally by (22) and (23) we get that

sup  wq (D;“_f, -)[_ E sup w1 (DS [ )wm < M(Qﬁ)m—a’
z€[—m,m] e z€|—7,7] F(m — o+ ].)

so they are bounded.

Thus based on the above, from (50), we derive that |Lyf — f|l« — 0, proving
the claim. 0

We make
Remark 32. Based on Corollary 16 and Theorem 17, 18, given that f € C™([—7, 7)),

we obtain that,

1
R X_Wx . a+l1 o+l
(7) sup wi | Dy f,7 || Ly (sin(‘ z| & }())) L
z€[—m,m] 4
o [—7{',1‘}
1
c—z| X (- atl (a+1)
=uw1 Df;l—f,r LN<<sin<‘ il 4[ ]())) ,ZL’) — 0, (51)

[—m,21]
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as

when N — oo, for some z; € [—m, 7).

Similarly

1
| X (- at1 ot
(76)  sup wq | DEfor|| Ly <sin <M)) T
z€[—m,m] 4 o]

. X:ET(' . a+1 (ai‘lfl)
(ngf,r b o (L)) ) Lo o)
° [ZEQ’W]
as
o a+1
LN<<sin<| 4x|)) ,:,17) — 0,

when N — oo, for some x5 € [—m, 7.

Corollary 33. Here Ly : C([—m,7]) — C(|—m,7]), N € N, positive linear operators.
Let0 <a<1,r>0, fe AC(|[—n,n|), f' € Lo(|—m, 7). Then

(2n)° o, 2m
IS = Flae < ISl Nl =L+ 5y [nmnnéo T

[ (62
(o (G (=522 ) ) -
Ly ((Sin (%))H m)
Ly ((sin () - x)

(%)

oo

_|_

8

sup  wq (ij‘wf,r

x€|—m,7]




FRACTIONAL TRIGONOMETRIC KOROVKIN THEORY 55

4. APPLICATION

Consider the Bernstein polynomials on [—m, 7] for f € C([—m, 7)) :

o =3 (V)1 (o 28) (527 ()

k=0

N € N, any # € [—7,m]. There are positive linear operators from C([—m,7]) into
itself. Herelet 0 < a < 1,7 > 0 and take f € AC([—m,7|), f' € Loo([—7, 7). Setting

g(t) = f(2nt —m), t € [0, 1], we have g(0) = f(—m), g(1) = f(m), and

Ba)) = (3)o () -0+ = (Bupie)a € [-mr.

k=0
Here © = ¢(t) = 27t — m is an 1 — 1 and onto map from [0,1] onto [—m, 7]. Clearly
here g € AC([0,1]) and ¢’ € L ([0,1]).

Notice also that

(B ((- = 2)"))(@) = [(Bu((- = ))(0)](27)* = ~=H(1 = 1)

_ (2]7\;)2 (5’7;”) (”2;5”) T %2,\%9: € [—m, 7).

Le.
(By((- = 2)*))(z) =<
In particular (By1)(z) =1,V x € [—7, 7.
Applying Corollary 33 we get
Corollary 34. It holds

|

sup  wq (Dg‘f,r

(2m)™ 27
vt = 11e = e [ e ]

By <<sin (I : _x\)i[_m](.)))aﬂ ’z) OO

By ((sin (‘ : —xl?j_m(.)))aﬂ x) 1

£ﬁz<<$n<Lﬁjﬂgﬁﬂﬁi>>a+iz>

sl (Dw’r BN(<““ (WDZ“) ) e
o ) un

VN € N.

_ 1 _ 1 2 - 3y _
Next let a = 5, and r = 7, that is r = . Notice I'(3) =

z€|—m,7]

+

e[
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Corollary 35. Let f € AC([—n, 7)), f' € Loo(|—m,7]), n € N. Then

1
3

(=)
By <<sin <| : —x‘)j—”](')))% ,IL"> ;) [—m,a]
o (o (=222)) )
) e
%/ o]

IBNf = fllo < 2V2(27 +1)

12
sup. wy [ D7 f, 3

z€[—m,m] 3

+

12
sup  wq Dfmf,g

x€|—m,7]

3
3
x| X (- 3
By ((Sm (M)) x)
4
By |sinz| < |z|, V2 € R — {0}, in particular sinz < z, for z > 0, we get

3/2 3/2
- - 1
<sin<| 4$|)> §<| 4:1:|) =§|-—x|3/2,

vV N eN.

Hence

TWED )

by discrete Holder’s inequality)

< LEZ% (x+7r— #)2 (J;f) (m;rw)’“ <7T2—7Tx)N_k] 3/1

34 w2
= (By ((-—x)27x)) < N V o ze€l[-mml. (57)
Consequently it holds
3/2
1By (|- =%, @)oo < N (58)
and
|- —x 3/2 73/2

Therefore we get

Y

o (o (22))

[e.9]
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t Xxw : 5/2
o (o (Ltmt)) )
. 3/2 3/2
o ()"
We have proved

Corollary 36. Let f € AC([—m, 7)), f' € Loo(|—m,7]), N € N. Then

(27T+ ].) V 27T 1/2 T
IBNf = flloo £ ——/=—| sup wi|D,f
\/4 N x€|—m,7] 6\/ [—7,2]

o0

< s
= 8N3/4>

vV NeN. (60)

T
+ sup w [ DY? ,—) . 61
xe[—gﬂr} ' ( f 6v N [z,7] ( )

So as N — oo we derive that By f—f with rates.

Discussion 37. From (61), Corollary 16, and Theorems 17, 18 we obtain that

27+ 1)V2r [wl( e, T )[_”1

||BNf - f“oo < D:c1—f7

VN 6vVN
v (D21, 7 ) ] , (62)
“6VN/ oo
for some z1, 29 € ([—m, 7)), f € CY([—m, 7).
Therefore
2r+1 1/2 s )
B 2m) (w1 | D) f, —=
IBnf =l < (A1) >[( L)
1/2 63
v (D121 6f)[_”] (63
Further we assume that Dl/ 2 “ f and Dw2 are Lipschitz functions of order 1, that is
D2 f(@) = DY f()| < Kale —yl, (64)
and
DU (@)= DL f(y)| < Kol — . (65)

Va,y € [—-m, x|, and K7, K3 > 0. Then from (63) we obtain

27 (27 + 1)

m

(K1 + K3). (66)
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