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1. INTRODUCTION

The concept of derivative of an arbitrary order or fractional derivative was more

than 300 years old beginning with a query posed by L’Hospital to Leibnitz. In course

of time the notions were well defined and the fractional calculus was fully developed.

In the past few decades it was realized that these fractional derivatives appear to

have natural framework to model physical phenomeno in a transient state. This gave

new impetus to this field and recently there has been a rekindled interest to study

the theory of fractional differential equations [1, 3, 4, 5, 6, 8, 9].

The monotone iterative technique [7] is an effective and flexible mechanism that

offers theoretical, as well as constructive results in a closed set, namely, the sector.

The first order periodic boundary value problem is a resonance problem, has useful

applications and so is of considerable interest.

In this paper, the PBVP for Caputo fractional differential equation is considered

and the monotone iterative technique is developed.

2. PRELIMINARIES

We begin with the definition of the Riemann Liouville fractional differential equa-

tion, the Caputo fractional differential equation and then proceed to give the relation

between these derivatives.
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The Riemann-Liouville fractional differential equation is given by

Dqx = f(t, x), x(t0) = x0 = x(t)(t− t0)1−q |t=t0 , t0 ≤ t ≤ T, (2.1)

and the corresponding Volterra fractional integral equation is given by

x(t) = x0(t) +
1

Γ(q)

t∫
t0

(t− s)q−1 x(s)ds (2.2)

where x0(t) = x0(t−t0)q−1

Γ(q)
.

The Caputo fractional differential equation is given by

cDqx = f(t, x), x(t0) = x0 (2.3)

and the corresponding Volterra fractional integral equation is given by

x(t) = x0(t) +
1

Γ(q)

t∫
t0

(t− s)q−1x(s)ds (2.4)

The relation between the Caputo fractional derivative and the Riemann fractional

derivative is given by
cDqx(t) = Dq[x(t)− x(t0)]

Using this relation we can show that the following results that are true for Rie-

mann Liouville fractional derivative also hold for Caputo fractional derivative.

We need the following notation before proceeding further.

Cp[[t0, T ], R] = [u ∈ C((t0, T ], R] and (t− t0)pu(t) ∈ C[[t0, T ], R].

Now we state the following lemmas without proof.

Lemma 2.1. Let m ∈ Cp([t0, T ], R) be locally Hölder continuous with exponent λ > q

and for any t1 ∈ (t0, T ], we have

m(t1) = 0 and m(t) ≤ 0 for t0 ≤ t ≤ t1. (2.5)

Then it follows that,

Dqm(t1) ≥ 0. (2.6)

Lemma 2.2. Let {xε(t)} be a family of continuous functions on [t0, T ], for each

ε > 0, where Dqxε(t) = f(t, xε(t)), x
0
ε = xε(t)(t − t0)1−q |t=t0, and | f(t, xε(t)) |≤ M

for t0 ≤ t ≤ T . Then the family {xε(t)} is equicontinuous on [t0, T ].

In order to develop the monotone iterative technique for PBVP of Caputo frac-

tional differential equation we need the explicit solution of the nonhomogeneous linear

fractional differential equation of Caputo’s type given by

cDqx = λx+ f(t), x(t0) = x0, (2.7)
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where f ∈ Cq([t0, T ],R), Hölder continuous with exponent q. Following the method

of successive approximations we get the unique solution of (2.4) as

x(t) = x0Eq(λ(t− t0)q) +

t∫
t0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds, t ∈ [t0, T ], (2.8)

where Eq(t)
∞∑
k=1

tk

Γ(qk+1)
and Eq, q(t) =

∞∑
k=1

tk

Γ(qk+q)
are Mittag-Leffler functions of one

parameter and two parameters respectively.

3. MONOTONE METHOD FOR PERIODIC

BOUNDARY VALUE PROBLEMS

Consider the IVP
cDqx = f(t, x), x(0) = x0 (3.1)

where f ∈ C([0, 2π]×R,R), cDqx is the Caputo fractional derivative of x of order q,

0 < q < 1. The following Volterra integral equation

x(t) = x0 +
1

Γ(q)

t∫
0

(t− s)q−1f(s, x(s))ds, 0 ≤ t ≤ 2π (3.2)

is equivalent to (3.1), where Γ is the Gamma function. We are interested in the

following periodic boundary value problem (PBVP)

cDqx = f(t, x), x(0) = x(2π). (3.3)

Since (3.3) is a resonance problem, we have no way of obtaining right away an equiv-

alent fractional Volterra integral equation. We need to employ the ideas of Lyapunov

Schmidt method [2]. For this purpose, we develop needed results. Let us start with

the following theorem involving basic inequalities.

Theorem 3.1. Let f ∈ C([0, 2π] × R,R), v, w ∈ C([0, 2π],R), v, w be Hölder con-

tinuous with exponent λ > q, 0 < λ < 1 and for 0 < t ≤ 2π,

cDqv(t) ≤ f(t, v(t)), v(0) ≤ v(2π)
cDqw(t) ≥ f(t, w(t)), w(0) ≥ w(2π)

}
. (3.4)

Suppose further f(t, x) is strictly decreasing in x for each t. Then

v(t) ≤ w(t), 0 ≤ t ≤ 2π. (3.5)

Proof. If (3.5) is not true, then there exists an ε > 0 and t0 ∈ [0, 2π] such that

v(t0) = w(t0) + ε and v(t) ≤ w(t) + ε, 0 ≤ t ≤ 2π. (3.6)

Setting m(t) = v(t)− w(t)− ε, we find that, if t0 ∈ (0, 2π],

m(t0) = 0, m(t) ≤ 0, 0 ≤ t ≤ t0 ≤ 2π.
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If t0 = 0, we get, because of (3.4), v(2π) ≥ v(0) = w(0) + ε ≥ w(2π) + ε, and hence,

in all cases, we have

m(t0) ≥ 0 and m(t) ≤ 0 for 0 ≤ t ≤ t0 ≤ 2π (3.7)

We therefore obtain, using (3.4), strictly decreasing nature of f(t, x) in x and Lemma 2.1,

f(t0, v(t0)) ≥ cDqv(t0) ≥ cDqw(t0) ≥ f(t0, w(t0)) > f(t0, v(t0)),

which is a contradiction. Hence (3.5) is valid and the proof is complete.

Corollary 3.2. Let m : [0, 2π]→ R be Hölder continuous and satisfy

cDqm(t) ≤ −Mm(t), 0 ≤ t ≤ 2π, m(0) ≤ m(2π), M > 0.

Then m(t) ≤ 0, 0 ≤ t ≤ 2π.

We next consider the PBVP for linear nonhomogeneous fractional differential

equation given by

cDqu(t) = −Mu(t) + h(t), u(0) = u(2π) (3.8)

where M > 0 and h ∈ C([0, 2π],R).

In order to prove the existence of a solution for the PBVP (3.8), we begin with

the solution of the IVP

cDqu(t) = −Mu(t) + h(t), u(0) = u0 (3.9)

which, from (2.7) and (2.8), reduces as

u(t) = u0Eq(Mtq) +

t∫
0

(t− s)q−1Eq,q(M(t− s)q)h(s)ds.

Now setting t = 2π and u(2π) = u(0) = u0, we get

u0[1− Eq(Mtq)] =

2π∫
0

(2π − s)q−1Eq,q(M(2π − s)q)h(s)ds

which gives,

u0 =
1

[1− Eq(Mtq)]

2π∫
0

(2π − s)q−1Eq,q(M(2π − s)q)h(s)ds.

Thus the solution of the PBVP (3.9) is given by

u(t) = Eq(Mtq)

1−Eq(Mtq)

2π∫
0

(2π − s)q−1Eq,q(M(2π − s)q)h(s)ds

+
t∫

0

(t− s)q−1Eq,q(M(t− s)q)h(s)ds.

(3.10)
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We shall next develop the monotone iterative technique for the PBVP (3.3). The

following result provides the existence of extremal solutions of (3.3) and used the

method of upper and lower solutions.

Theorem 3.3. Assume that

(i) v0, w0 : [0, 2π]→ R are Hölder continuous with exponent λ > q such that

cDqv0 ≤ (t, v0), f v0(0) ≤0 (2π),

v cDqw0 ≥ f(t, w0), w0(0) ≥ w0(2π),

0 < t ≤ 2π

and v0(t) ≤ w0(t) for 0 ≤ t ≤ 2π;

(ii) f(t, u)− f(t, v) ≥ −M(u− v) for v0 ≤ v ≤ u ≤ w0 and M > 0.

Then there exist monotone sequences {vn}, {wn} such that vn → ρ, wn → r as

n→∞ uniformly on [0, 2π] and (ρ, r) are extremal solutions of PBVP (3.3).

Proof. For any η ∈ [v0, w0] such that η ∈ C([0, 2π],R) and v0 ≤ η ≤ w0, consider the

fractional linear differential equation with periodic boundary conditions

cDqu(t) = G(t, u(t)) = f(t, η(t))−M [u(t)− η(t)], u(0) = u(2π) (3.11)

The linear PBVP (3.11) can be solved and a solution of (3.11) is given by relation

(3.10). Of course, in the present context h(t) = f(t, η) +Mη and is to be replaced in

(3.10) by this new value.

We shall show that the solution u(t) of (3.11) thus obtained is unique. If not,

let u1(t), u2(t) be two solutions of (3.11). Set p(t) = u1(t) − u2(t). Then we find

that cDqp(t) = −Mp(t), p(0) = p(2π). Now using Corollary 3.1 it follows that

u1(t) = u2(t). This proves uniqueness.

We now define a mapping A by Aη = u, where u is the unique solution of PBVP

(3.11) and show that

(a) v0 ≤ Av0, w0 ≥ Aw0

(b) A is monotone nondecreasing on [v0, w0].

In order to prove (a), we set Av0 = v1, where v1 is the unique solution of the

PBVP (3.11) and v0 is the lower solution of (3.3). Let p = v0− v1, then using (i) and

(3.11) with η = v0, we get

cDqp = cDqv0 −c Dqv1 ≤ −Mp, p(0) ≤ p(2π), 0 ≤ t ≤ 2π.

Hence, by Corollary 3.1, we have p(t) ≤ 0 for 0 ≤ t ≤ 2π, which proves that v0 ≤ Av0.

Similarly, we can show w0 ≥ Aw0. To prove (b), let η, µ ∈ [v0, w0] such that η ≤ µ.

Suppose that u1 = Aη and u2 = Aµ.
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Setting p(t) = u1(t)− u2(t), we find that

cDqp = cDqu1 − cDqu2

= f(t, η)−M(u1 − η)− f(t, µ) +M(u2 − µ)

≤ M(µ− η)−M(u1 − η) +M(u2 − µ)

= −Mp and p(0) = p(2π).

Consequently, Corollary 3.1 gives u1 ≤ u2 on [0, 2π] proving (b).

It is now easy to define sequences {vn}, {wn} such that vn = Avn−1, wn = Awn−1

and then to conclude

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0, 0 ≤ t ≤ 2π. (3.12)

Since the sequences {vn}, {wn} are uniformly bounded by (3.12), we see that {cDqvn},
{cDqwn} are also uniformly bounded on [0, 2π] in view of the fact

cDqvn+1 = f(t, vn)−M(vn+1 − vn), vn+1(0) = vn+1(2π)

cDqwn+1 = f(t, wn)−M(wn+1 − wn), wn+1(0) = wn+1(2π) (3.13)

Then utilizing Lemma 2.2, we can conclude the equicontinuity of the sequences

{vn}, {wn} and as a result, Ascoli-Arzela Theorem and (3.12) shows that vn → ρ,

wn → r as n → ∞, uniformly on [0, 2π]. Clearly ρ, r are solutions of PBVP (3.3),

since vn, wn satisfy the corresponding fractional Volterra integral equations of type

(3.10).

To prove that ρ, r are extremal solutions of PBVP (3.3), let us suppose that, for

some k > 0, vk−1 ≤ u ≤ wk−1 on [0, 2π], where u is any solution of PBVP (3.3) such

that v0 ≤ u ≤ w0. Then setting p = v0 − v1, we get

cDqp = cDqvk − cDqu

= f(t, vk−1)−M(vk − vk−1)− f(t, u)

≤ M(u− vk−1)−M(vk − vk−1) = −Mp

and p(0) = p(2π).

This implies by Corollary 3.1 that p(t) ≤ 0 on 0 ≤ t ≤ 2π, which yields vk ≤ u.

Using similar arguments, we have u ≤ wk on [0, 2π]. Since v0 ≤ u ≤ w0, it follows by

induction that vn ≤ u ≤ wn, for all n, on [0, 2π]. Hence we have ρ ≤ u ≤ r on [0, 2π],

proving ρ, r are minimal and maximal solutions of PBVP (3.3) respectively.

Corollary 3.4. If in addition to the assumptions of Theorem 3.1, we assume that,

for 0 < N < M , we have

f(t, u)− f(t, v) ≤ −N(u− v), v0 ≤ v ≤ u ≤ w0,

that ρ = r = u is the unique solution of the PBVP (3.3).
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Proof. The proof is immediate since ρ ≤ r, setting p = r − ρ,

Dqp = Dqr −Dqρ = f(t, r)− f(t, ρ)

≤ −Mp

p(0) = p(2π),

and Corollary 3.1, yields ρ = r = u, as claimed.
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