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1. INTRODUCTION

Though the importance of fractional derivative to model a variety of real world

problems became obvious few decades ago, the study of the theory of fractional differ-

ential equations was initiated and some basic results have been obtained recently [8].

In fact, the study of the theory of fractional dynamic systems is more global than the

theory of classical ordinary differential equations. The notions of fractional calculus

may be traced back to the works of Euler, but the idea of fractional difference is very

recent.

In [2] Diaz and Osler defined the fractional difference by the rather natural ap-

proach of allowing the index of differencing, in the standard expression for the nth

difference, to be any real or complex number.

In this paper, the definition of fractional difference of a function un given by [1],

is slightly modified using which the fractional difference of function un is expressed in

terms of the function at the previous arguments. Using the modified definition some

important difference inequalities are obtained.

2. PRELIMINARIES

Definition 2.1. The backward difference operator ∆−n is defined as ∆−n = ε−1(1 − B)

where Bfn = fn−1 is standard backward shift operator and ε is interval length.
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In [3] Gray and Zhang gave a definition of the fractional difference as follows:

Definition 2.2. For any complex number α and f defined over the integer set

{a − p, a − p + 1, . . . , n}, the αth order difference of f(n) over {a, a + 1, . . . , n} is

defined by

∇αf(n) =
∇p

Γ(p − α)

n−a
∑

k=0

Γ(k + p − α)

Γ(k + 1)
f(n − k). (2.1)

Later, Hirota [4] took the first n terms of Taylor series of ∆α
−n = ε−α(1 − B)α

and gave the following definition.

Definition 2.3. Let α ∈ R. Then difference operator of order α is defined by

∆α
−nun =







ε−α
∑n−1

j=0

(

α

j

)

(−1)jun−j, α 6= 1, 2, . . .

ε−m
∑m

j=0

(

m

j

)

(−1)jun−j, α = m ∈ Z>0.
(2.2)

Here
(

a

n

)

, (a ∈ R, n ∈ Z) stands for a binomial coefficient defined by

(

a

n

)

=



















Γ(a+1)
Γ(a−n+1)Γ(n+1)

n > 0

1 n = 0

0 n < 0.

(2.3)

In 2002, Nagai [1] introduced another definition of fractional difference which is

a slight modification of Hirota’s fractional difference operator.

Definition 2.4. Let α ∈ R and m be an integer such that m − 1 < α ≤ m. The

difference operator ∆∗,−n of order α is defined as

∆α
∗,−nun = ∆α−m

−n ∆m
−nun = εm−α

n−1
∑

j=0

(

α − m

j

)

(−1)j∆m
−(n−j)un−j. (2.4)

Definition 2.5. Let f(n, r) be any function defined for n ∈ N
+
0 , 0 ≤ r < ∞ and

consider the initial value problem

∇αun+1 = f(n, un), u(0) = u0. (2.5)

A function vn defined on N
+
0 is said to be an under function with respect to the

initial value problem (2.5) if ∇αvn+1 ≤ f(n, vn). Similarly any function wn defined

on N
+
0 is said to be a over function with respect to the initial value problem (2.5) if

∇αwn+1 ≥ f(n, wn).
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3. MAIN RESULTS

In this paper, we consider a particular case of (2.4). By taking the interval length

ε = 1 and m = 1, (2.4) becomes

∆α
∗,−nun =

n−1
∑

j=0

(

α − 1

j

)

(−1)j∆
−(n−j)un−j.

Since for 0 < α ≤ 1,
(

α−1
j

)

= (−1)j
(

j−α

j

)

,

∆α
∗,−nun =

n−1
∑

j=0

(

j − α

j

)

∆−(n−j) un−j.

For convenience, we denote the backward difference operator ∆∗,−n by ∇. Then the

fractional difference operator of order α (0 < α ≤ 1) is given by

∇αun =

n−1
∑

j=0

(

j − α

j

)

∇un−j. (3.1)

Throughout this paper we use (3.1) as the fractional difference operator of order α

(0 < α ≤ 1).

Remark 3.1. For any α (0 < α ≤ 1),

∇−αun =

n−1
∑

j=0

(

j + α

j

)

∇un−j.

Remark 3.2. If f is defined over {0, 1, . . . , n}, then using (2.1), the αth order differ-

ence of f(n) over {1, 2, . . . , n} can be written as

∇αf(n) =
∇

Γ(1 − α)

n−1
∑

k=0

Γ(k + 1 − α)

Γ(k + 1)
f(n − k)

=
n−1
∑

j=0

Γ(j + 1 − α)

Γ(1 − α)Γ(j + 1)
∇fn−j

=
n−1
∑

j=0

(

j − α

j

)

∇fn−j

which is same as (3.1). Hence (3.1) satisfies all the properties satisfied by (2.1) [3],

which are given below:

i. For any real numbers α and β, ∇α∇βun = ∇α+βun.

ii. For any constant ‘c’, ∇α[cun + vn] = c∇αun + ∇αvn.

iii. For α ∈ R, ∇α(unvn) =
∑n−1

m=0

(

α

m

)

[∇α−mun−m][∇αvn].
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Lemma 3.3. Let n ∈ N
+
0 , 0 ≤ r < ∞ and un be a function defined on N

+
0 . Then for

0 < α ≤ 1

∇αun = un −

(

n − 1 − α

n − 1

)

u0 − α

n−1
∑

j=1

1

(j − α)

(

j − α

j

)

un−j. (3.2)

Proof. We know from (3.1) that

∇αun =

n−1
∑

j=0

(

j − α

j

)

∇un−j

=

n−1
∑

j=0

(

j − α

j

)

(un−j − un−j−1)

=

n−1
∑

j=0

(

j − α

j

)

un−j −

n−1
∑

j=0

(

j − α

j

)

un−j−1

=

[

un +

(

1 − α

1

)

un−1 +

(

2 − α

2

)

un−2 + · · ·

+

(

n − 2 − α

n − 2

)

u2 +

(

n − 1 − α

n − 1

)

u1

]

−

[

un−1 +

(

1 − α

1

)

un−2 +

(

2 − α

2

)

un−3 + · · ·

+

(

n − 2 − α

n − 2

)

u1 +

(

n − 1 − α

n − 1

)

u0

]

= un −

(

n − 1 − α

n − 1

)

u0 +

[(

1 − α

1

)

− 1

]

un−1 + · · ·

+

[(

n − 1 − α

n − 1

)

−

(

n − 2 − α

n − 2

)]

u1

= un −

(

n − 1 − α

n − 1

)

u0 +
n−1
∑

j=1

[(

j − α

j

)

−

(

j − 1 − α

j − 1

)]

un−j

= un −

(

n − 1 − α

n − 1

)

u0 − α

n−1
∑

j=1

1

(j − α)

(

j − α

j

)

un−j.

Hence the proof.

Example 3.4. For any b with |b| > 1, using (3.1) we get

i. ∇αbn =
bn(b − 1)

b

n−1
∑

j=0

(

j − α

j

)

b−j .

ii. ∇
1

2 b2 =
b2(b − 1)

b

1
∑

j=0

(

j − 1
2

j

)

b−j = b(b − 1)

[

1 +
1

2b

]

= b2 −
1

2
b −

1

2
.

iii. ∇
1

2 b1 = b − 1.
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Remark 3.5. We note that ∇αu0 = 0 and ∇αu1 = u1 − u0 = ∇u1.

Remark 3.6. For α ∈ R,

∇α∇−αun = ∇−α∇αun = un − u0.

Also

∇α∇−α(un − u0) = ∇−α∇α(un − u0) = un − u0.

Theorem 3.7. Let n ∈ N
+
0 , 0 ≤ r < ∞ and f(n, r) be a non decreasing function in

r for any fixed n. Let vn and wn be two functions defined on N
+
0 . Suppose that for

n ≥ 0 and 0 < α ≤ 1 the inequalities

∇αvn+1 ≤ f(n, vn), (3.3)

∇αwn+1 ≥ f(n, wn). (3.4)

hold. Then v0 ≤ w0 implies

vn ≤ wn, for all n ≥ 0.

Proof. For α = 1, fractional differences coincides with ordinary differences and hence

the result is true [7]. Now consider for 0 < α < 1. Suppose that (3.5) is not true.

Then because of v0 ≤ w0 there exists a k ∈ N
+
0 such that vk ≤ wk and vk+1 > wk+1.

It follows, using (3.2), (3.3), (3.4) and the monotone property of f , that

f(k, wk) ≤ ∇αwk+1

= wk+1 −

(

k − α

k

)

w0 − α

k
∑

j=1

1

(j − α)

(

j − α

j

)

wk+1−j

< vk+1 −

(

k − α

k

)

v0 − α

k
∑

j=1

1

(j − α)

(

j − α

j

)

vk+1−j

= ∇αvk+1

≤ f(k, vk),

which is a contradiction in view of the above assumptions and the monotonicity of

f(n, r) in r. Hence the proof.

Remark 3.8. If we assume that v0 < w0 in Theorem 3.7 the equality in the conclusion

(3.5) must be dropped.

Theorem 3.9. Let m1(n, r) and m2(n, r) be two non negative functions defined for

n ∈ N
+
0 , 0 ≤ r < ∞ and non decreasing with respect to r for any fixed n ∈ N

+
0 . Let

yn be a function defined for n ∈ N
+
0 and that

m1(n, yn) ≤ ∇αyn+1 ≤ m2(n, yn) (3.5)
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for all n ∈ N
+
0 and 0 < α ≤ 1. Let vn and wn be the solutions of the difference

equations

∇αvn+1 = m1(n, vn), v(0) = v0, (3.6)

∇αwn+1 = m2(n, wn), w(0) = w0. (3.7)

and suppose that v0 ≤ y0 ≤ w0. Then

vn ≤ yn ≤ wn, n ∈ N
+
0 . (3.8)

Proof. Consider the second part of (3.6) and (3.8) i.e.

∇αyn+1 ≤ m2(n, yn),

∇αwn+1 = m2(n, wn).

Applying Theorem (3.7), since y0 ≤ w0 we obtain the right half of the inequality in

(3.9) i.e. yn ≤ wn. A similar argument yields the left half of the inequality (3.9).

Theorem 3.10. Let the functions m1(n, r) and m2(n, r) be as in Theorem 3.9 and

xn and yn be the solutions of the difference equations

∇αxn+1 = f(n, xn), x(0) = x0, (3.9)

∇αyn+1 = g(n, yn), y(0) = y0. (3.10)

where xn and yn are defined for n ∈ N
+
0 and 0 < α ≤ 1 and f(n, r) and g(n, r) are

defined for n ∈ N
+
0 , 0 ≤ r < ∞ and satisfy the condition

m1(n, |xn − yn|) ≤ |f(n, xn) − g(n, yn)| ≤ m2(n, |xn − yn|) (3.11)

for all n ∈ N
+
0 . Let vn and wn be the solutions of (3.7) and (3.8) and for n ∈ N

+
0 .

Assume that v0 ≤ |x0 − y0| ≤ w0. Then

vn ≤ |xn − yn| ≤ wn, for all n ∈ N
+
0 . (3.12)

Proof. Let un = |xn −yn|. Then u0 = |x0−y0| ≤ w0. On account of the monotonicity

of m2(n, r), we obtain, using Remark 3.5,

u1 = |x1 − y1|

= |x0 + f(0, x0) − y0 − g(0, y0)|

≤ |x0 − y0| + |f(0, x0) − g(0, y0)|

≤ u0 + m2(0, |x0 − y0|)

≤ w0 + m2(0, w0)

= w0 + ∇αw1

= w1.



FRACTIONAL DIFFERENCE INEQUALITIES 95

If the inequality un ≤ wn is fulfilled for n = 1, 2, . . . , k, it follows by the monotonicity

of m2(n, r) that

uk+1 = |xk+1 − yk+1|

=

∣

∣

∣

∣

(

k − α

k

)

x0 + α

k
∑

j=1

1

(j − α)

(

j − α

j

)

xk+1−j + f(k, xk)

−

(

k − α

k

)

y0 − α

k
∑

j=1

1

(j − α)

(

j − α

j

)

yk+1−j − g(k, yk)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

k − α

k

)

(x0 − y0) + α

k
∑

j=1

1

(j − α)

(

j − α

j

)

(xk+1−j − yk+1−j)

+ f(k, xk) − g(k, yk)

∣

∣

∣

∣

≤

∣

∣

∣

∣

(

k − α

k

)

(x0 − y0)

∣

∣

∣

∣

+

∣

∣

∣

∣

α

k
∑

j=1

1

(j − α)

(

j − α

j

)

(xk+1−j − yk+1−j)

∣

∣

∣

∣

+ |f(k, xk) − g(k, yk)|

≤

(

k − α

k

)

|(x0 − y0)| + α

k
∑

j=1

1

(j − α)

(

j − α

j

)

|(xk+1−j − yk+1−j)|

+ |f(k, xk) − g(k, yk)|

≤

(

k − α

k

)

w0 + α

k
∑

j=1

1

(j − α)

(

j − α

j

)

wk+1−j + m2(k, |xk − yk|)

=

(

k − α

k

)

w0 + α

k
∑

j=1

1

(j − α)

(

j − α

j

)

wk+1−j + m2(k, wk)

= wk+1.

Hence by mathematical induction we obtain |xn−yn| ≤ wn for all n ∈ N
+
0 . The proof

of the left half of the inequality in (3.13) is similar.

Theorem 3.11. Let f(n, r, s) be a function defined for n ∈ N
+
0 , 0 ≤ r < ∞, 0 ≤ s <

∞ is non negative and nondecreasing with respect to r and s for any fixed n ∈ N
+
0 .

Let un be solution of the difference equation

∇αun+1 = f(n, un, un), u(0) = u0 (3.13)

for all n ∈ N
+
0 and 0 < α ≤ 1. Suppose that the inequality

∇αxn+1 ≤ f(n, xn, yn). (3.14)
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is satisfied for all n ∈ N
+
0 and 0 < α ≤ 1, where the functions xn and yn are defined

for n ∈ N
+
0 such that x0 ≤ u0. Then

xn ≤ un (3.15)

for all n ∈ N
+
0 provided

yn ≤ un (3.16)

for all n ∈ N
+
0 .

Proof. Consider (3.15) and (3.14) i.e.

∇αxn+1 ≤ f(n, xn, yn),

∇αun+1 = f(n, un, un).

Since yn ≤ un, applying Theorem 3.9, x0 ≤ u0 implies xn ≤ un.

Remark 3.12. Let un be any function defined on N
+
0 and f(n, r) be a function

defined on n ∈ N
+
0 , 0 ≤ r < ∞. Then for n ≥ 0 and 0 < α ≤ 1,

∇αun+1 = f(n, un)

or

∇−α∇αun+1 = ∇−αf(n, un).

By using Remarks 3.1 and 3.6 we get

un+1 − u0 =
n−1
∑

j=0

(

j + α

j

)

∇f(n − j, un−j)

or

un+1 =
n−1
∑

j=0

(

j + α

j

)

∇f(n − j, un−j) + u0.

Theorem 3.13. Let un, an and bn be nonnegative functions defined for n ∈ N
+
0 . Let

f(n, r) be a nonnegative function defined for n ∈ N
+
0 , 0 ≤ r < ∞ and non decreasing

in r for any fixed n ∈ N
+
0 . If

un ≤ an + bn

n−2
∑

j=0

(

j + α

j

)

∇f(n − 1 − j, un−1−j) (3.17)

for n ∈ N
+
0 , then

un ≤ an + bnrn (3.18)

for n ∈ N
+
0 , where rn is the solution of the difference equation

∇αrn+1 = f(n, an + bnrn), r(0) = 0 (3.19)

for n ∈ N
+
0 and 0 < α ≤ 1.
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Proof. Define function zn by

zn =
n−2
∑

j=0

(

j + α

j

)

∇f(n − 1 − j, un−1−j).

Then z0 = 0, un ≤ an + bnzn and using Remark 3.12

∇αzn+1 = f(n, un) ≤ f(n, an + bnzn).

By using Theorem 3.9 we have zn ≤ rn. Then un ≤ an + bnzn ≤ an + bnrn. Hence the

proof.
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