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1. INTRODUCTION

It is well known (see eg., [1, page 306]) that the nonhomogesdinear equation
2'(t) = A(t)x(t) + f(t) has periodic solutions if and only if

/ YT rat =0 (L1)

for all periodic solutiong(¢) of periodw of the adjoint equation’(t) = — AT (t)y(t) where

A e C(R,R™™)andf € C(R,R™) are periodic of period. 'T’ denotes the transposi-
tion andR™ denotes then—dimensional Euclidean space. This result was extended in [2
page 423] to delay differential equations of the form

2'(t) = A(t)z(t) + B(t)x(t — 7) + f(¢), (1.2)

where A, B and f satisfy the same conditions and> 0 is a fixed real number. Indeed,
Halanay proved that (1.2) has periodic solutions if and a@in{§.1) holds for all periodic
solutionsy(t) of periodw of the adjoint equation

y'(t) = —AT(t)y(t) — BT (t + m)y(t + 1), (1.3)
which was constructed in terms of
(O a() =" (ate)+ [ 47 (6)Bls)als = r)ds. (L.4)

Recently, the above result has been carried out for linepuisive delay differential equa-
tions [3] and for linear impulsive differential equationgthvdistributed delay [4]. In this
paper, however, we shall consider a discrete time analofiine @above result and establish
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a necessary and sufficient condition for the existence abgier solutions for a class of
linear delay difference equations.

For a given differential equation, a difference equatiopragimation would be most
acceptable if the solution of the difference equation issame as the differential equa-
tion at the discrete points. However, it is impossible tas$athis requirement unless we
can explicitly solve both equations. Often, it is desiratblat a difference equation when
derived from a differential equation preserves the dynahfeatures of the corresponding
continuous time model. If such discrete models can be défreen continuous time delay
models, then the discrete time models can be used withoubasyof functional similari-
ties of continuous models. There are several methods faridgrdiscrete time version of
dynamical systems corresponding to continuous time faatmanis. One of the methods is
based on appropriate modifications of the models. For thigligue, differential equations
with piecewise constant arguments prove helpful, see [Sinfore information.

Assume that the average growth rate in (1.2) changes ataeigrvals of time, then
we can incorporate this aspect in (1.2) and obtain the foligwnodified equation with
piecewise constant arguments

2(t) = A([th=([t]) + B([thx([t — 7]), t=0, (1.5)

where[t] denotes the integer part ofor ¢ > 0. This equation occupies a position midway
between differential and difference equations. For motaitdeon the theory of this type
of equations, see the recent interesting papers [6, 7, &gtating (1.5) on any interval of
the form[n,n+1),n =0,1,2,..., we obtain

z(t) — z(n) = A(n)z(n) + B(n)z(n — 7)(t — n).
Lettingt — n + 1, we have
Az(n) = A(n)xz(n) + B(n)x(n — 1), (1.6)

whereAz(n) := z(n + 1) — xz(n). Equation (1.6) is considered to be a discrete analogue
of equation (1.2). For the sake of convenience, howeverha sonsider equation of the
form

Az(n) = A(n)z(n) + B(n+ Dz(n—j+1), n>0. (1.7)

In the previous two decades, the study of qualitative prtiigeof delay difference equations
has attracted significant interest by many researcherss i$hdue, in a large part, to the
rapidly increasing number of applications of the theorylhefde equations to various fields
of applied sciences and technology [9, 10, 11, 12, 13, 14, 1/®]particular, existence
of periodic solutions for delay difference equations hasrbextensively developed, see
for instance [14, 16, 17, 18, 19]. This paper contributeshotheory of delay difference
equations by proving a well known result using easily forated! algebraic analysis.
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2. ADJOINT EQUATION AND SOLUTIONS REPRESENTATIONS

Let N be, as usual, the set of natural numbers. In equation (1.i8)assumed that
2 < jis afixed positive integer number and B : N — R™*™, For anya, b € N, define
N(a) ={a,a+1,...} andN(a,b) = {a,a+1,...,b} wherea < b. By a solution of (1.7),
we mean a sequenagn) of elements irR™ which is defined for alk € N(ny, — ) and
satisfies (1.7) fon € N(ng) for somen, € N. It is easy to see that for any given € N
and initial conditions of the form

z(n) = ¢(n), n € N(ng—j,no), (2.1)

(1.7) has a unique solutior(n) which is defined forn € N(n, — j) and satisfies the initial
conditions (2.1).

We shall construct the adjoint equation of (1.7) with respgea function resembles
(1.4). It turns out that the discrete analogue of (1.4) hagdm

n+j—1

(y(n), z(n)) = y"(W)z(n) + Y y" (k)B(k)a(k — j). (2.2)

k=n+1
We should remark that no periodicity condition is used tigtoaut the results of this sec-
tion.

Lemma 2.1. Letz(n) be any solution of1.7)andy(n) be any solution of
Ay(n) = AT (n)y(n +1) — B" (n + j)y(n + j), (2.3)
then

(y(n),z(n)) = constant (2.4)

Proof. Clearly, it suffices to show thak(y(n), z(n)) = 0. It follows that
Aly(n), z(n)) = y" (n + 1)Az(n) + Ay" (n)z(n) +y" (n + d)B(n + j)a(n)
—yT(n+1)B(n+ Da(n —j +1).
In view of equations (1.7) and (2.3), we have
Aly(n),z(n)) = y" (n + [A(n)z(n) + B(n + z(n - j + 1)]

— [y (n+ 1D AMn) +y" (n + 5)B(n + j)|z(n)
+y"(n+5)B(n+j)z(n) —y" (n+ 1)B(n+ Na(n - j +1) = 0.

The proof is finished.

In virtue of Lemma 2.1, we may say that equation (2.3) is apiatlpf (1.7). It is easy
to verify also that the adjoint of (2.3) is (1.7), i.e., theg anutually adjoint of each other.

Definition 2.2. A matrix solutionX (n, «) of (1.7) satisfyingX (o, «) = I, (I is an identity
matrix), andX (n, «) = 0 for n < «is called a fundamental matrix of (1.7).
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Definition 2.3. A matrix solutionY (n, ) of (2.3) satisfyingV’ (o, «) = I andY (n,a) =0
for n > «is called a fundamental matrix of (2.3).

Consider the nonhomogeneous equation
Ax(n) = A(n)z(n) + B(n + a(n — j +1) + f(n), n >0, (2.5)

wheref : N — R™. It is to be noted that the construction of function (2.2) ispecial
interest in itself. Besides, it is used to derive the adjeitation in Lemma 2.1, solutions
representations of equations (1.7), (2.3) and (2.5) cankssbtained using this function.
In view of (2.4), we may write

{y(n), z(n)) = (y(no), 2(no)). (2.6)

Replacingy(a) by Y (a,n) and using the properties of the fundamental matrix, we have
the following result.

Lemma 2.4. Let X (n,«) be a fundamental matrix of1.7) andny, € N. If z(n) is a
solution of (1.7), then

no+j—1

z(n) = X(n,no)z(ng) + > X(n,k)B(k)z(k — j).

k=ng+1
One can also obtain the solutions representation of equéid). Indeed,

Lemma 2.5. Let X (n, «) be a fundamental matrix of1.7) andny, € N. If z(n) is a
solution of (2.5), then

z(n) = X(n,no)x(ng) + Z X(n,k)B(k)x(k —j) + z_: X(n, k+1)f(k).
k=no+1 k=no

Upon replacinge(«) by X («, n) in relation (2.6), one can similarly derive the solu-
tions representation of the adjoint equation (2.3). Nagnely

Lemma 2.6.LetY (n, «) is a fundamental matrix of2.3)andn, € N. If y(n) is a solution
of (2.3), then

no+j—1

y(n) =Y (n,no)y(ne) + Y Y(nk—j)B" (k)y(k).

k=ng+1

Furthermore, relation (2.6) tells us that(n, ng) = Y7 (ng,n) which can be seen by
replacingz(n) by X (n,ng) andy(n) by Y (n, ng).
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3. PRELIMINARY ASSERTIONS

With regard to equation (2.5), the following conditions assumed to be valid through-
out the rest of the paper.

() A, B: N — R™™ arep periodic sequenceg,> 7;
(i) f: N — R™isp periodic sequence, > j.

Let x(n) = z(n; ) be the solution of equation (2.5) defined for> 0 such thatz(n)

coincides withy on [—7,0]. The periodicity of the equation implies thatn + p; ¢) is

likewise a solution of the equation defined for- p > j. If this solution coincides witlp

in [—7, 0], then on the basis of the uniqueness theorem it followsithat- p; ) = x(n; @)

for all n > —j and the solution is periodic. Thus the periodicity conditaf the solution
is written asx(n + p; ) = @(n) forn € [—75,0]. If W is defined byiWy = z(n + p; ¢),

n € [—7,0], then it follows thatz(n) is periodic if and only ifiW ¢ = ¢, i.e., p is a fixed
point of V.

Let z(n) = z(n; ) be the solution of (1.7) defined far > 0 such that:(n) = ¢(n)
on[—7,0]. Then by Lemma 2.5,

n—1

w(ni) = z(ni) + > X(n.k+1)f(k).

k=0
DefineU by Uy = z(n + p; ¢), n € [—4,0]. Then, since

n+p—1

Weo=Up+ Y X(n+pk+1)f(k),
k=0

the periodicity condition reads as

n+p—1

p=Up+ Y X(n+pk+1)f(k). (3.1)
k=0

Let y(n) = y(n;v) be the solution of (2.3) defined far < p + j such thaty(n) = ¥ (n)
on[p, p + j]. Similarly, we conclude that if(n — p; ¢) coincides withy in [p, p + j] then
y(n — p;¥) = y(n;¢) and hence the solution is periodic. From Lemma 2.6, we get

p+j—1
v(n) = X"(p,n—p)(p) + Y XT(k—jn—p)B"(k)p(k),
k=p+1
forn € [p,p+j]. Letg(s) = (s +p+j) for s € [—7,0]. Settingn = k — p — j, we find

out
-1

B(s) = XT(p, s+ )@(=g) + 3 XT(n+ps+ )BT (n+5)a(n).
For convenience, we also use the no:;titj)n
(U(s), ®(s)) = W (—7)®(0) + _Z VT (k)B(k + j)®(k), (3.2)

k=—j+1



196 J. O. ALZABUT

for matrix sequence$ and® defined ori—j, 0] as long as multiplication is possible. Note
that (U (s), ®(s)) is either a number or a vector or a matrix, depending on thessif
and®.

The following lemma, which is a discrete analogue of Lemma[8], plays a key role
in our later analysis. Its proof is straightforward and caralshieved directly by changing
the order of summations.

Lemma 3.1. For any matrix sequences, M, L € R™*™, we have
((L(0), M(a,0))", N(a)) = (L(0), (M" (a, 0), N())).
By using this notation, the operatbrcan be written as

Up=(X"(p+s,n+7),0n).

If we defineU¢ = (¢(n), X (p+n, s + 5))7, then in view of Lemma 3.1 we obtain

(U, ) = (3(n), (XT(p+n,5+7),0(s))) = (&, Usp).

Let Vip = y(no — p; ) for ng € [p,p + j]. That s,
p+j—1

V= X"(p,no —p)b(p) + Y X (k—7,n0 —p)B" (k)v(k),

k=p+1

for ng € [p,p + j]. If pis an eigenvalue of’, then there exists a nonzero solution of
-1

pp(s) = X"(p,s+5)d(=5)+ > X"(n+p.s+5)B"(n+p)@n),
k=—j+1

wherep(s) = (s +p+j),s € [—4,0]. The right side of the above equation is nothing
butU¢. Thus the eigenvalues of the operatbrandV coincide and in addition, if is an
eigenfunction foi/, theng = v (s + p + ) is an eigenfunction fof/.

Lemma 3.2. Equationg(1.7) and (2.3) have the same number of linearly independent pe-
riodic solutions of periogh > j.

Proof. Consider the equation

pp(s) —Ugp(s) = F(s). (3.3)
It is obvious that the fundamental matriX can be written as a linear combination of
linearly independent vectors. That is,

X(p+s,n+35) =D ar()bu(n) + Ki(s,m), fors,n e [—j,0] x [4,0],
k=1

whereay(s) are column andy(n) are row linearly independent vector&; is a matrix
such that K| is chosen small. Clearly, we have

X (p+s,m+7)=>_ bl (nai(s) + K (s,m).
k=1
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Then, by using the fact thét? (n)al (s), ¢(s)) = ar(s){(bE(n), ¢(s)), (3.3) becomes

po(s) = Y ar(s) (B (n), (m) = (KT (s,m), 0(n)) = F(s).

k=1

m

Setting
v(s) = = 3 an()BE ), o m)) + ~F (), (3.4)
Pi3 P
we obtain '
v(s) = o(s) — ;(Kf(& 1), (n)). (3.5)
Now consider equation of the form
v(s) = @(s) = MKT (s,m),0(n))- (3.6)

We seek a solution of the form(s) = >~  XN;(s). Substituting this into (3.6) and
identifying the coefficients of the powers &f we obtain

po(s) =v(s) and @i(s) = (K[ (s,a),pi1(a)), i=1,2,....
It follows that|y;(s)| < M?sup |v(s)|, whereM = sup |K{|andi = 1,2, .... Therefore,
the series converges|ik| M <s 1. We have
pi(s) = (K] (s, ), v(a)).
By the induction principle, we obtain
pils) = (K (s, ), v(a)),
whereK;(s,n) = (K (s,a), K;_1(a,n)). Indeed, we have
SOH-I(S) = <K?(87 Oé), QO[(O()> = <K1T<S7 Oé), <KlT(Oé77])7 V(W»)
Using Lemma 3.1, we get
(pl—l-l(‘s) = <<K?(S, Oé), Kl(a7 7])>T7 V(U)) = <K£-1<87 77)7 V(U))
It follows that, if |\| < % then the solution of equation (3.6) can be written as

pls) = v(s) + Y Neu(s) = v(s) + Y N(K] (s,a),v(a)).

=1
Thus,¢(s) = v(s) + (I'" (s, a), v(a)) whereT' (s, a) = Y2, N K[ (s,a). Therefore, if
o < 37 andsup [KT| < |p|, we deduce that
p(s) = v(s) + (I (s,a),v(a)) (3.7)
is a solution of (3.5).
On the other hand, consider the equation
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which can be written as

pa(s) =D b (s)(@(a), ar(a)” + (p(a), Ki(a, )"

Setting -
(s) = %;bﬂs)@(a),ak(a)ﬂ (3.9
we obtain
7(5) = Bls) = 5 (P(a), K 5). (3.9
Following similar analysis, we obtain that the solution 819 is in the form
(s) = 0(s) + (7(a), D, )7, (3.10)

whereT (o, s) = S.7°, A K (a, s) and Ky (1, s) = (KT ,(n, @), K1 («, s)). However, using
the induction principle and Lemma 3.1, it is easy to verifatti;(n, s) = K;(n,s) by
which one can see that

[(n,s) =T(n,s). (3.11)
In view of equation (3.4), we have
pv(s) =Y ar(s)(bE (), ¢(n)) + F(s). (3.12)
k=1
Sincep(s) = v(s) + (I'' (s, a), v(a)), we have

which can be written as

m

pv(s) = 3 axls) ({0F (), v(m)) + (B (1), (D7 (1, @), v())) ) + F(s).

k=1
Using Lemma 3.1, we get

pv(s) = ak(s)(bi (@) + (b (), T(n, )", v(@)) + F(s)
Hence .
pr(s) = ar(s)(bf (), v(a)) + F(s), (3.13)

1
whereb? (o) = bE(a) + (X (n),T(n,a))T. Setting\, = (b (a), v(a)), it follows from
(3.13) that

pv(s) — F(s) = Z Arag(s) (3.14)
k=1
which is of the form of the solution of (3.13). Analogouslyetsolution of
pi(s) =Y bi(s)((n),an(n)” (3.15)
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has the form

pir(s) =Y bk (s). (3.16)

where i, = (9(n),ax(n))” anda(n) = ar(n) + (T7(n, a), ax()). In view of (3.13),
(3.14) becomes

S () = 3 an(s) (5 (a), %F(a) + % S Ajas(a)). (3.17)
k=1 k=1 j=1
Similarly, equation (3.15) implies that (3.16) can be vefitias
S b (s) = SOH D b ). (3.18)
k=1 k=1 j=1

Taking into account that the vectofs, } are linearly independent, we obtain from (3.17)
the algebraic equation

m

PA =D YA+ fe. (3.19)

j=1
wherey,; = (bf(a),a;(a)) and fi, = (b (a), F(«)). Similarly, we get from (3.18) the
algebraic equation

Ptk =D il (3.20)

j=1
where7 ), = (b7 (1), ax(n)). We know that equation (3.19) fo, has a solution if and only
if
> ufe=0 (3.21)
k=1

for all the solutions.,, of the equation
Pk = D Vil (3.22)
j=1

By employing Lemma 3.1 and relation (3.11), however, we daaia tha jﬁf = 7,,. Thus,
equations (3.20) and (3.22) coincide.

Therefore, we conclude that the equations

PN = Z ViNj (3.23)
j=1
and
PRk = > Ytk (3.24)
=1

have the same number of linearly independent solutions. $olation of (3.23) cor-

responds/(s) = %ZZ“ZI Arax(s) and to this corresponds the solutigris) = v(s) +
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(' (s, ), v()) for the equatiormy(s) — Uy(s) = 0, linearly independent solutions cor-
responding to the linearly independent solutions of eguafB.23). Likewisely, a solu-
tion of the equationg(s) — Ug(s) = 0 will correspond to a solution of equation (3.20)
which coincides with (3.24), linearly independent solasaorresponding to linearly in-
dependent solutions. It follows from here that the equatiep(s) — Up(s) = 0 and
pp(s) — Up(s) = 0 have the same number of independent solutions, which isjnie
particular the fact that/ andU have the same eigenvalues, henceiif a multiplier of the
equation,% is a multiplier of the adjoint equation. The proof of Lemma & completed.

4. THE MAIN THEOREM

We are now in a position to state and prove the main resultisiidwper.

Theorem 4.1. A necessary and sufficient condition for the existence abgiersolutions
of periodp of equation(2.5)is that

p—1
> oy (k+1)f(k) =0, (4.1)
k=0

for all periodic solutiongy(n) of periodp of the adjoint equatioii2.3).

NECESSITY Letx(n) bep periodic solution of (2.5) ang(n) p periodic solution of
(2.3). Itfollows that(y(n), x(n)) is p periodic. In view of (2.3) and (2.5), one can conclude
that

Aly(n),z(n)) =y" (n+1)f(n), 0<n<p. (4.2)
Summing (4.2) over the intervé, p — 1] results in

S+ AR =0,
k=0

which is the same as (4.1).

SUFFICIENCY. Suppose that (4.1) is satisfied for all periodic solutigs) of period
p of (2.3). In virtue of relation (3.21), Lemma 3.2 tells usttha

pp(s) —Up(s) = F(s)

has solutions if and only if

(pla), Fa)) =0 (4.3)
for all ¢ satisfying

pd(s) = Ug(s) = 0.
Therefore, it suffices to show that (4.3) holds under coadi{4.1). To see this we first

observe from (3.1) that
s+p—1

F(s)=(s) =Up(s) = Y X(s+p.k+1)f(k).

k=0
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It follows that
-1

(p(a), F(a)) = g" (=) F(0) + Y & (k)B(k+ j)F (k). (4.4)

k=—j+1
SubstitutingF’ into (4.4) leads to

(3(0), F(0)) = 37(=3) S X (psk + 1) (k)
+ i @T(k)B(k:Jrj)[ 2 X(p+k,r+1)f(r)].

(@la), Fa)) =" (p) ) X(p, k+1)f(k)

n i _Z VT(q+p+5)Blg+5)X(qg+p,r+1)f(r),

r=0 ¢g=—j+1

where thatX (p + 1, «) = 0 for « > p + n is used. Reordering the terms, we finally get

[y

(B(a), F(a)) = Y |47 () X (p,k + 1)

+ > WTla+p+)Bla+ )X (g +pk+ )] f(R).

qg=—j+1
In view of Lemma 2.6 we see that the right hand side of the albguation is nothing but

=

e
Il

p—1
STy (k + 1) (k)
k=0
which is clearly zero by our assumption (4.1). The proof isshed.
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