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1. INTRODUCTION

In 2007, Liu et al. [9] considered the third order two-point boundary value problem

u′′′(t) + λα(t)f(t, u(t)) = 0, a ≤ t ≤ b, (1.1)

u(a) = u′′(a) = u′(b) = 0. (1.2)

Motivated by this work, we in this paper consider the third order boundary value problem

u′′′(t) + g(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (1.3)

u(0) = u′′(0) = u′(1) = 0. (1.4)

In this paper, we shall derive some new a priori estimates to positive solutions of the prob-

lem (1.3)–(1.4). These estimates improve the ones obtainedin [9]. We shall also prove

some existence, nonexistence, and uniqueness results for positive solutions of the problem

(1.3)–(1.4). Here, by a positive solution, we mean a solution u(t) such thatu(t) > 0 for

t ∈ (0, 1).

The problem (1.3)–(1.4) is closely related to a boundary value problem for the fourth

order beam equation, namely,

u′′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.5)
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u(0) = u′′(0) = u′(1) = u′′′(1) = 0. (1.6)

The boundary conditions (1.6) have definite physical meanings. The conditionsu(0) =

u′′(0) = 0 mean that the beam is simply supported att = 0, while the boundary conditions

u′(1) = u′′′(1) = 0 mean that the beam is supported by a sliding clamp att = 1. Note that

(1.4) is just a part of (1.6). A study of the problem (1.3)–(1.4) will give us more insight

into the problem (1.5)–(1.6).

Throughout this paper, we assume that

(H1) f : [0,∞) → [0,∞) andg : [0, 1] → [0,∞) are continuous functions, andg(t) 6≡ 0

on [0, 1].

This paper is organized as follows. In Section 2, we give the Green function for the

problem (1.3)–(1.4), state the Krasnosel’skii fixed point theorem, and fix some notations.

In Section 3, we present some a priori estimates to positive solutions to the problem (1.3)–

(1.4). In Section 4, we establish some existence and nonexistence results for positive solu-

tions to the problem (1.3)–(1.4). Then, in Section 5, we establish some uniqueness results

for positive solutions to the problem (1.3)–(1.4).

2. PRELIMINARIES

The Green functionG : [0, 1]× [0, 1] → [0,∞) for the problem (1.3)–(1.4) is given by

G(t, s) =







t(1 − s) − (t − s)2/2, if s ≤ t,

t(1 − s), if t < s.

Then problem (1.3)–(1.4) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (2.1)

It is easy to verify thatG is a continuous function, andG(t, s) ≥ 0 if (t, s) ∈ [0, 1]2. We

will need the following fixed point theorem, which is due to Krasnosel’skii [7], to prove

some of our results.

Theorem 2.1.Let (X, ‖ · ‖) be a Banach space over the reals, and letP ⊂ X be a cone in

X. LetH1 andH2 be real numbers such thatH2 > H1 > 0, and let

Ωi = {v ∈ X | ‖v‖ < Hi}, i = 1, 2.

If L : P ∩ (Ω2 − Ω1) → P is a completely continuous operator such that, either

(K1) ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω1, and‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω2, or

(K2) ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω1, and‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω2,

thenL has a fixed point inP ∩ (Ω2 − Ω1).
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For the rest of this paper, we letX = C[0, 1] with the norm

‖v‖ = max
t∈[0,1]

|v(t)|, ∀v ∈ X.

Clearly, X is a Banach space. We defineY = {v ∈ X | v(t) ≥ 0 for 0 ≤ t ≤ 1}, and

define the operatorT : Y → X by

(Tu)(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (2.2)

It is clear that if (H1) holds, thenT (Y ) ⊂ Y andT : Y → Y is a completely continuous

operator. We also define the constants

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,

F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

These constants, which are associated with the functionf , will be used later in Section 4.

3. ESTIMATES FOR POSITIVE SOLUTIONS

In this section, we shall prove some new a priori estimates for positive solutions of the

problem (1.3)–(1.4). To this purpose, we define the functionb : [0, 1] → [0, 1] by

b(t) = 2t − t2.

It is easily seen thatb(t) ≤ 2t for 0 ≤ t ≤ 1. It is also easy to see thatb(t) ≥ t for

0 ≤ t ≤ 1. In fact, we have

b(t) − t = t − t2 = t(1 − t) ≥ 0, 0 ≤ t ≤ 1.

Lemma 3.1. If u ∈ C3[0, 1] satisfies the boundary conditions(1.4), and

u′′′(t) ≤ 0 for 0 ≤ t ≤ 1, (3.1)

then

u′′(t) ≤ 0, u′(t) ≥ 0, u(t) ≥ 0 for 0 ≤ t ≤ 1. (3.2)

Proof. Note that (3.1) implies thatu′′ is nonincreasing. Sinceu′′(0) = 0, we haveu′′(t) ≤ 0

on [0, 1]. This means thatu′ is nonincreasing on[0, 1]. Sinceu′(1) = 0, we haveu′(t) ≥ 0

on [0, 1]. Sinceu(0) = 0, we haveu(t) ≥ 0 for 0 ≤ t ≤ 1. The proof of the lemma is now

complete.

Lemma 3.2. If u ∈ C3[0, 1] satisfies(1.4)and (3.1), then

u(t) ≥ tu(1) for 0 ≤ t ≤ 1. (3.3)
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Proof. If we define

h(t) = u(t) − tu(1), 0 ≤ t ≤ 1,

thenh′(t) = u′(t) − u(1), and

h′′(t) = u′′(t) ≤ 0, 0 ≤ t ≤ 1.

To prove the lemma, it suffices to show thath(t) ≥ 0 on [0, 1].

It is easy to see thath(0) = h(1) = 0. Sinceh is concave downward on[0, 1], we have

h(t) ≥ 0 for 0 ≤ t ≤ 1. The proof is complete.

Lemma 3.3. If u ∈ C3[0, 1] satisfies(1.4)and (3.1), then

u(t) ≤ u(1)b(t) for t ∈ [0, 1]. (3.4)

Proof. If we define

h(t) = b(t)u(1) − u(t) = (2t − t2)u(1) − u(t), 0 ≤ t ≤ 1,

then

h′(t) = (2 − 2t)u(1) − u′(t), h′′(t) = −2u(1) − u′′(t),

h′′′(t) = −u′′′(t) ≥ 0, 0 ≤ t ≤ 1. (3.5)

The last inequality implies thath′ is concave upward on[0, 1]. It is easy to see thath(0) =

h(1) = h′(1) = 0. By the Mean Value Theorem, becauseh(0) = h(1) = 0, there exists

p ∈ (0, 1) such thath′(p) = 0. Now we haveh′(p) = h′(1) = 0. Sinceh′(t) is concave

upward, we have

h′(t) ≥ 0 on (0, p), h′(t) ≤ 0 on (p, 1).

Sinceh(0) = h(1) = 0, we haveh(t) ≥ 0 on (0, 1). The proof is complete.

Theorem 3.4. Suppose that (H1) holds. Ifu(t) is a nonnegative solution to the problem

(1.3)–(1.4), thenu(t) satisfies(3.2), (3.3), and(3.4).

Proof. If u(t) is a nonnegative solution to the problem (1.3)–(1.4), thenu(t) satisfies the

boundary conditions (1.4), and

u′′′(t) = −g(t)f(u(t)) ≤ 0, 0 ≤ t ≤ 1.

Now Theorem 3.4 follows directly from Lemmas 3.1, 3.2, and 3.3. The proof is complete.

Now we define

P =
{

v ∈ X : v(1) ≥ 0, tv(1) ≤ v(t) ≤ b(t)v(1) on [0, 1]
}

.

ClearlyP is a positive cone inX. It is obvious that ifu ∈ P , thenu(1) = ‖u‖. We see

from Theorem 3.4 that ifu(t) is a nonnegative solution to the problem (1.3)–(1.4), then

u ∈ P . In a similar fashion to Theorem 3.4, we can show thatT (P ) ⊂ P . To find a
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positive solution to the problem (1.3)–(1.4), we need only to find a fixed pointu of T such

thatu ∈ P andu(1) = ‖u‖ > 0.

Remark 3.5. In [9], Liu et al. considered the following cone for the problem (1.3)–(1.4),

namely,

P ′ =
{

v ∈ X : v(t) ≥ (t/2)‖v‖ on [0, 1]
}

.

It is easy to see thatP is a subset ofP ′. In other words,P is a finer cone thanP ′. If

we apply the Krasnosell’skii fixed point theorem on this finercone, we will obtain sharper

existence and nonexistence results for positive solutionsto the problem (1.3)–(1.4). Our

coneP is finer because our upper and lower estimates for positive solutions for the problem

(1.3)–(1.4), which are given in Lemmas 3.2 and 3.3, are sharper than those in [9].

4. EXISTENCE AND NONEXISTENCE RESULTS

Now we define some important constants. Let

A =

∫ 1

0

G(1, s)g(s)s ds, B =

∫ 1

0

G(1, s)g(s)b(s) ds.

The next two theorems provide sufficient conditions for the existence of at least one

positive solution for the problem (1.3)–(1.4).

Theorem 4.1.Suppose that (H1) holds. IfBF0 < 1 < Af∞, then the problem(1.3)–(1.4)

has at least one positive solution.

Proof. First, we chooseε > 0 such that(F0 +ε)B ≤ 1. By the definition ofF0, there exists

H1 > 0 such thatf(x) ≤ (F0 + ε)x for 0 < x ≤ H1. Now for eachu ∈ P with ‖u‖ = H1,

we haveTu ∈ P and

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(1, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖

∫ 1

0

G(1, s)g(s)b(s) ds

= (F0 + ε)‖u‖B ≤ ‖u‖,

which means‖Tu‖ = (Tu)(1) ≤ ‖u‖. Thus, if we letΩ1 = {u ∈ X | ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

To constructΩ2, we chooseδ > 0 andτ ∈ (0, 1/4) such that
∫ 1

τ

G(1, s)g(s)s ds · (f∞ − δ) ≥ 1.
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There existsH3 > 0 such thatf(x) ≥ (f∞ − δ)x for x ≥ H3. Let H2 = H3/τ + H1. If

u ∈ P such that‖u‖ = H2, then for eacht ∈ [τ, 1], we have

u(t) ≥ H2t ≥ H2τ ≥ H3.

Therefore, for eachu ∈ P with ‖u‖ = H2, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

τ

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

τ

G(1, s)g(s)(f∞ − δ)u(s) ds

≥

∫ 1

τ

G(1, s)g(s)s ds · (f∞ − δ)‖u‖ ≥ ‖u‖,

which means‖Tu‖ ≥ ‖u‖. Thus, if we letΩ2 = {u ∈ X | ‖u‖ < H2}, thenΩ1 ⊂ Ω2, and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Now that the condition (K1) of Theorem 2.1 is satisfied, thereexists a fixed point ofT in

P ∩ (Ω2 − Ω1). The proof is now complete.

Theorem 4.2.Suppose that (H1) holds. IfBF∞ < 1 < Af0, then the problem(1.3)–(1.4)

has at least one positive solution.

The proof of Theorem 4.2 is very similar to that of Theorem 4.1and is therefore omit-

ted. The next two theorems provide sufficient conditions forthe nonexistence of positive

solutions to the problem (1.3)–(1.4).

Theorem 4.3. Suppose that (H1) holds. IfBf(x) < x for all x > 0, then the problem

(1.3)–(1.4)has no positive solutions.

Proof. Assume the contrary thatu(t) is a positive solution of the problem (1.3)–(1.4). Then

u ∈ P , u(t) > 0 for 0 < t ≤ 1, and

u(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(1, s)g(s)u(s) ds

≤ B−1

∫ 1

0

G(1, s)g(s)b(s) ds · u(1)

= B−1Bu(1) = u(1),

which is a contradiction. The proof is complete.

In a very similar fashion, we can prove the next nonexistencetheorem.
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Theorem 4.4. Suppose that (H1) holds. IfAf(x) > x for all x > 0, then the problem

(1.3)–(1.4)has no positive solutions.

Example 4.5.Consider the third order boundary value problem

u′′′(t) = −λ(1 + 2t + t2)u(t)(1 + 3u(t))/(1 + u(t)), 0 ≤ t ≤ 1, (4.1)

u(0) = u′′(0) = u′(1) = 0, (4.2)

whereλ > 0 is a parameter. In this example,g(t) = 1 + 2t + t2 andf(u) = λu(1 +

3u)/(1 + u). It is easy to see thatf0 = F0 = λ, f∞ = F∞ = 3λ, and

λx < f(x) < 3λx for x > 0.

Calculations indicate that

A = 3/10, B = 59/140.

By Theorem 4.1, if

1.111 ≈ 1/(3A) < λ < 1/B ≈ 2.373,

then the problem (4.1)-(4.2) has at least one positive solution. From Theorems 4.3 and 4.4

we see that if

λ ≤ 1/(3B) ≈ 0.791 or λ ≥ 1/A ≈ 3.333,

then the problem (4.1)–(4.2) has no positive solutions.

This example shows that our existence and nonexistence results work quite well.

5. UNIQUENESS RESULTS AND CONVERGENCE OF ITERATION

The next theorem is a uniqueness result for the problem (1.3)–(1.4).

Theorem 5.1. In addition to (H1), assume that

(A1) f(x) is nondecreasing inx, and there exists a real numberr > 0 such thatf(r) > 0;

(A2) there existsβ ∈ (0, 1) such that

f(θx) ≥ θβf(x) for all θ ∈ (0, 1) and x ≥ 0.

Then the boundary value problem(1.3)–(1.4)has exactly one positive solution.

Proof. First we show that the boundary value problem (1.3)–(1.4) has at least one positive

solution. Ifx > r, then by (A2) we havef(x) ≤ (x/r)βf(r), which implies thatF∞ = 0.

If x < 1, then by (A2) we havef(x) ≥ (x/r)βf(r), which implies thatf0 = +∞. Now

Theorem 4.2 implies that the problem (1.3)–(1.4) has at least one positive solution.
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Next, we shall show that the problem (1.3)–(1.4) has at most one positive solution.

If the boundary value problem (1.3)–(1.4) has two positive solutionsu(t) andv(t), then

u = Tu andv = Tv. Note that

u(t) ≥ tu(1) ≥ b(t)u(1)/2

≥
u(1)

2v(1)
b(t)v(1) ≥

u(1)

2v(1)
v(t), 0 ≤ t ≤ 1.

If we let M be the largest positive number such that

u(t) ≥ Mv(t) for 0 ≤ t ≤ 1,

thenM ≥ u(1)/(2v(1)).

Now we show thatM ≥ 1. Assume that contrary thatM < 1, then

u(t) = Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds

≥

∫ 1

0

G(t, s)g(s)f(Mv(s))ds

≥ Mβ

∫ 1

0

G(t, s)g(s)f(v(s))ds

= MβTv(t)

= Mβv(t), 0 ≤ t ≤ 1,

which contradicts the maximality ofM sinceMβ > M . This contradiction shows that

M ≥ 1.

SinceM ≥ 1, we haveu(t) ≥ v(t). In a similarly way we can show thatv(t) ≥ u(t).

This implies thatu ≡ v. The proof is complete.

We define two positive constants

K1 :=

∫ 1

0

G(1, s)g(s)f(1)ds and K2 :=

∫ 1

0

G(1, s)g(s)f(1)sβds.

Lemma 5.2. Assume that (H1), (A1), and (A2) hold. LetM be a positive constant such

thatM > 1 and

M ≥ K
1/(1−β)
1 .

Then(Tw0)(t) ≤ w0(t) for 0 ≤ t ≤ 1 wherew0(t) = M for all 0 ≤ t ≤ 1.

Proof. In fact, we have

(Tw0)(1) =

∫ 1

0

G(1, s)g(s)f(M)ds

≤ Mβ

∫ 1

0

G(1, s)g(s)f(1)ds

≤ MβM1−β

= M.
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SinceTw0 ∈ P , we have

(Tw0)(t) ≤ (Tw0)(1) ≤ M = w0(t), 0 ≤ t ≤ 1.

The proof is complete.

Lemma 5.3. Assume that (H1), (A1), and (A2) hold. Letm be a positive constant such that

m < 1 and

m ≤ K
1/(1−β)
2 .

Then(Tu0)(t) ≥ u0(t) for 0 ≤ t ≤ 1 whereu0(t) = mt for all 0 ≤ t ≤ 1.

Proof. First we have

(Tu0)(1) =

∫ 1

0

G(1, s)g(s)f(ms)ds

≥ mβ

∫ 1

0

G(1, s)g(s)f(1)sβds

= mβK2.

Then, sinceTu0 ∈ P , we have

(Tu0)(t) ≥ t · (Tu0)(1) ≥ mβK2t ≥ mt, 0 ≤ t ≤ 1.

The proof is complete.

The next theorem shows that, under certain conditions, if westart with any function

u ∈ P with u(1) > 0 and apply the operatorT to thisu again and again, then the iterative

process will always converge to the unique solution to the problem (1.3)–(1.4).

Theorem 5.4. Assume that (H1), (A1), and (A2) hold. Letv∗(t) be the unique positive

solution for the problem(1.3)–(1.4). If v0 ∈ P is such thatv0(1) > 0, then

lim
n→∞

T nv0 = v∗.

Proof. ChooseM > 1 such thatM ≥ K
1/(1−β)
1 andM ≥ ‖v0‖. Choosem ∈ (0, 1) such

thatm ≤ K
1/(1−β)
2 andm ≤ ‖v0‖. Let

w0(t) ≡ M, 0 ≤ t ≤ 1

and

u0(t) = mt, 0 ≤ t ≤ 1.

Then we haveTu0 ≥ u0, Tw0 ≤ w0, andu0 ≤ v0 ≤ w0.

Now we letun = T nu0, vn = T nv0, andwn = T nw0 for n ≥ 1. SinceT is an

increasing operator, we have

u0 ≤ u1 ≤ u2 ≤ · · · · · · ≤ w2 ≤ w1 ≤ w0.
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Therefore both{un} and{wn} are convergent sequences. Letu∗ = lim un andw∗ =

lim wn, then bothu∗ andw∗ are positive solutions to the boundary value problem (1.3)–

(1.4). Since the positive solution to the boundary value problem (1.3)–(1.4) is unique, we

haveu∗ = v∗ = w∗. It is also easy to see that for every positive integern, we have

un ≤ vn ≤ wn.

The squeeze theorem implies thatlim vn = v∗. The proof of the theorem is complete.
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