
Communications in Applied Analysis 14 (2010), no. 3, 273–300

GENERALIZED VARIATIONAL COMPARISON THEOREMS AND
NONLINEAR ITERATIVE PROCESS UNDER RANDOM

PARAMETRIC PERTURBATIONS

G. S. LADDE1 AND M. SAMBANDHAM2

1Department of Mathematics and Statistics, University of South Florida

Tampa, FL 33620 USA

E-mail: gladde@cas.usf.edu

2Department of Mathematics, Morehouse College

Atlanta, GA 30314 USA

E-mail: msamband@morehouse.edu

ABSTRACT. In this article we develop basic mathematical tool to study the discrete time sto-

chastic processes. Using these tools we develop comparison results, stability properties and error

estimates.

1. INTRODUCTION

In this work, an attempt is made to investigate the qualitative properties of

nonlinear and stationary iterative process with random parametric perturbation. The

presented results extend and generalize the existing results [7, 8] in a systematic and

unified way. For related results on random difference equations we refer [1, 2, 3, 4, 6, 9]

and for random differential equations we refer [5, 10]. For deterministic theory of

difference equations we refer [11].

In Section 2, we formulate a problem and present basic results. The presented

results provide a fundamental mathematical tool to study the qualitative properties

of iterative systems. Section 3 deals with the development of generalized comparison

results. These results extend the existing results [7, 8]. In Section 4, we study the

stability property and in Section 5, we outline the error estimate results [9]. Various

examples are given to illustrate the significance of the results.

2. BASIC RESULTS

Let us present a mathematical description of discrete time dynamic processes

in chemical, engineering, medical, physical and social sciences. It is described by
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the following nonlinear and nonstationary iterative process under parametric random

perturbations:

∆y(k) = f(k, y(k), ω), y(k0, ω) = y0 (2.1)

where for fixed (k, y) ∈ I(k0) × R
n, y(k) ∈ R

n, ∆y(k) = y(k + 1) − y(k); f(k, y, ω)

and y0 ∈ R
n are random vectors defined on a complete probability space (Ω,F , P );

for each (k, y), f(k, y, ω) describes random perturbations.

In the absence of random perturbations, mathematical description (2.1) reduces

to:

∆m = F (k,m), m(k0) = m0 = E[y0]. (2.2)

In our presentation, we also utilize the following initial value problem:

∆x = F (k, x), x(k0) = x0. (2.3)

For the sake of easy reference, we list the following assumptions with regard to (2.1)–

(2.3).

Hypothesis-H(2.1): Assume that the initial state y0 is Fk0
-measurable. f(k, y, ω) is

a sequence of random vectors. We designate by y(k, k0, y0) = y(k) a solution process

of (2.1) each k ∈ I(k0) and y(k0) = y0.

Hypothesis-H(2.2): F is a sequence of continuous functions defined on R
n into R

n,

and it is twice continuously differentiable with respect to m. A solution process of

(2.2) is denoted by m(k, k0, m0) = m(k) for k ≥ k0. It is further assumed that its

second derivative ∂2

∂m0∂m0

m(k, k0, m0) is locally Lipschitzian in z0 for each (k, k0).

Remark 2.1. For each p ∈ I(k0) and y ∈ R
n, we observe that y(p+ 1) satisfies

y(p+ 1, p, y) = y(p+ 1) = y + f(p, y, ω), y(p) = y. (2.4)

In the following, we present a few auxiliary results with respect to smooth system

(2.2). These results will be used in this section as well as in the subsequent sections

of this work.

Lemma 2.2. Let the hypothesis H(2.2) be satisfied. Then the solution process m(k) =

m(k, k0, m0) of (2.2) is unique and it satisfies

m(k, p, x) = m(k, p+ 1, x+ F (p, x)), (2.5)

where m(k, p, x) is the solution process of (2.2) through the initial data (p, x) for

k0 ≤ p ≤ k, and p, k ∈ I(k0).

Proof. We note that the uniqueness of the solution process m(k, k0, m0) of (2.2) fol-

lows from the repeated composition of a map G(x) = x+ F (p, x) with itself.
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To prove (2.5), we consider the left-hand side of (2.5)

m(k, p, x) = (G ◦G ◦ · · · ◦G ◦G)(x)

(by (k − p) repeated composition of G with itself)

= (G ◦G ◦ · · · ◦G) ◦G(x) (by regrouping)

= (G ◦G ◦ · · · ◦G)(m(p+ 1, p, x) (from the definition of G and (2.4))

= m(k, p+ 1, (m(p+ 1, p, x)) (by the same reasoning as before)

= m(k, p+ 1, x+ F (p, x)) (by the definition of G and (2.4)).

This completes the proof of the lemma.

Lemma 2.3. Let the assumption of Lemma 2.2 be satisfied. Then, (a) ∂
∂m0

m(k, k0, m0)

exists and satisfies the following linear homogeneous matrix iterative process:

∆X =
∂

∂m
F (k,m(k))X, X(k0) = I, (2.6)

along the solution process m(k, k0, m0) = m(k) of (2.2) and it is denoted by

∂

∂m0
m(k, k0, m0) = Φ(k, k0, m0); (2.7)

(b) ∂2

∂m0∂m0

m(k, k0, m0) exists and satisfies the following linear nonhomogeneous ma-

trix iterative process:

∆X =
∂

∂m
F (k,m(k))X

+
∂2

∂m2
F (k,m(k)) · Φ(k, k0, m0)Φ(k, k0, m0), X(k0) = 0, (2.8)

along the solution process m(k, k0, m0) = m(k) of (2.2), where ∂2

∂m2 F (k,mz(k)) and
∂2

∂m2

0

m(k, k0, m0) are n× n Hessian matrices of F and m(k, k0, m0), respectively, and

their elements are 1 × n matrices, and

∂2

∂m2
F (k, ,m(k)) · Φ(k, k0, mz0) =

(

∂2

∂m∂zj
Fi(k,m(k))Φ(k, k0, m0)

)

n×n

.

Proof. The proof of the part (a) can be imitated by following the proof of Theo-

rem A.1. The proof of the part (b) can be reformulated by following the steps in the

proof of Theorem A.1. The details are left as an exercise to the reader.

Lemma 2.4. Let the hypotheses of Lemma 2.2 be satisfied. Then

(a)

Φ(k, p,m) = Φ(k, p + 1, m+ F (p,m))Φ(p+ 1, p,m); (2.9)

(b)

∂2

∂m0∂m0

m(k, p,m) =
∂

∂m0

Φ(k, p,m)
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=
∂

∂m0
(Φ(k, p + 2, m(p+ 2)) · Φ(p + 2, p,m)Φ(p+ 2, p,m)

+ (Φ(k, p+ 2, m(p+ 2)) ·
∂

∂m0
Φ(p+ 2, p,m)Φ(p+ 1, p,m);

(2.10)

(c)

m(k, p + 1, u+ v) −m(k, p, u) = Φ(k, p+ 1, u+ F (p, u))∆(p, u, v)

+
1

2

∂

∂m0
Φ(k, p+ 1, u+ F (p, u)) · ∆(p, u, v)∆(p, u, v)

+O(k, p+ 1, u+ F (p, u),∆(p, u, v)), (2.11)

and

O(k, p+ 1, u+ F (p, u),∆(p, u, v))

=

∫ 1

0

∫ 1

0

θ
[ ∂

∂m0
Φ(k, p+ 1, u+ F (p, u) + θψ∆(p, u, v))

−
∂

∂m0

Φ(k, p+ 1, u+ F (p, u))
]

· ∆(p, u, v)dψ dθ∆(p, u, v), (2.12)

∆(p, u, v) = [v − F (p, u)]. (2.13)

Proof. By differentiating partially both sides of (2.5) with respect to x, we have

∂

∂m0

m(k, p,m) =
∂

∂m0

m(k, p + 1, m+ F (p,m)) (by (2.4))

=
∂

∂m0
m(k, p + 1, m(p+ 1, p,m)) (by chain rule)

=
∂

∂m0

m(k, p + 1, m(p+ 1, p,m))
∂

∂m0

m(p+ 1, p,m) (from (2.7))

= Φ(k, p + 1, m(p+ 1, p,m))Φ(p+ 1, p,m)

This completes the proof of the part (a).

To prove (2.10), applying (2.4),

m(k, p,m) = m(k, p+ 2, m(p+ 1, p,m) + F (p+ 1, m(p+ 1, p,m))).

This together with the application of (2.9) yields

∂

∂m0
m(k, p,m) = Φ(k, p,m) = Φ(k, p+ 2, m(p+ 2, p,m))Φ(p+ 2, p,m).

Again by differentiating this expression, partially, with respect m for each (k, p), we

obtain

∂2

∂m2
0

m(k, p,m) =
∂

∂m0

Φ(k, p,m)

=
∂

∂m0

Φ(k, p+ 2, m(p+ 2, p,m))Φ(p+ 2, p,m)
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=
∂

∂m0
Φ(k, p+ 2, m(p+ 2, p,m)) ·

∂

∂m0
m(p+ 2)Φ(p+ 2, p,m))

+ Φ(k, p+ 2, m(p+ 2, p,m))
∂

∂m0
Φ(p+ 2, p+ 1, m(p+ 1, p,m))

(by product and chain rules)

=
∂

∂m0
Φ(k, p+ 2, m(p+ 2)) · Φ(p+ 2, p,m)Φ(p+ 2, p,m) (by notations)

+ Φ(k, p+ 2, m(p+ 2))
∂

∂m0
Φ(p + 2, p,m) · Φ(p+ 1, p,m).

This completes the proof (2.10).

To prove (2.11), by applying the generalized mean value Lemma A.1.1, we have

m(k, p+ 1, u+ v) −m(k, p, u) (from (2.5))

= m(k, p+ 1, u+ F (p, u) + v − F (p, u)))−m(k, p+ 1, u+ F (p, u))

=

∫ 1

0

Φ(k, p+ 1, u+ F (p, u) + θ∆(p, u, v))dθ∆(p, u, v) (from algebra and (2.5))

= Φ(k, p+ 1, u+ F (p, u))∆(p, u, v)

+

∫ 1

0

[Φ(k, p + 1, u+ F (p, u) + θ∆(p, u, v)) − Φ(k, p+ 1, u+ F (p, u)]dθ∆(p, u, v)

= Φ(k, p+ 1, u+ F (p, u))∆(p, u, v)

+ Ψ(k, p+ 1, u+ F (p, u),∆(p, u, v))∆(p, u, v), (2.14)

where

Ψ(k, p+ 1, u+ F (p, u),∆(p, u, v)) (from (2.5))

=

∫ 1

0

[Φ(k, p + 1, u+ F (p, u) + θ∆(p, u, v)) − Φ(k, p + 1, u+ F (p, u))]dθ. (2.15)

Again by applying the generalized mean value Lemma A.1.1, we get

[Φ(k, p + 1, u+ F (p, u) + θ∆(p, u, v)) − Φ(k, p + 1, u+ F (p, u))]

=

∫ 1

0

∂

∂m0
Φ(k, p + 1, u+ F (p, u) + θψ∆(p, u, v)) · ∆(p, u, v)θ dψ

=
∂

∂m0
Φ(k, p+ 1, u+ F (p, u)) · ∆(p, u, v)θ

+

∫ 1

0

θ
[ ∂

∂m0
Φ(k, p+ 1, u+ F (p, u) + θψ∆(p, u, v))

−
∂

∂m0
Φ(k, p+ 1, u+ F (p, u))

]

· ∆(p, u, v)dψ (2.16)

By integrating both sides with respect to θ from 0 to 1 and using notation (2.15), we

have

Ψ(k, p+ 1, u+ F (p, u),∆(p, u, v))
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=
1

2

∂

∂m0
Φ(k, p+ 1, u+ F (p, u)) · ∆(p, u, v)

+

∫ 1

0

∫ 1

0

θ
[[ ∂

∂m0
Φ(k, p + 1, u+ F (p, u) + θψ∆(p, u, v))

−
∂

∂m0

Φ(k, p + 1, u+ F (p, u))
]

· ∆(p, u, v)dψ
]

dθ. (2.17)

From (2.17), (2.14) reduces to

m(k, p+ 1, u+ v) −m(k, p, u)

= Φ(k, p+ 1, u+ F (p, u))∆(p, u, v)

+
1

2

∂

∂m0
Φ(k, p+ 1, u+ F (p, u)) · ∆(p, u, v)∆(p, u, v)

+

∫ 1

0

∫ 1

0

θ
[[ ∂

∂m0
Φ(k, p+ 1, u+ F (p, u) + θψ∆(p, u, v))

−
∂

∂m0
Φ(k, p+ 1, u+ F (p, u))

]

· ∆(p, u, v)dψ dθ
]

∆(p, u, v). (2.18)

This together with the notation (2.12), the proof of (2.11) follows, immediately. This

completes the proof of the lemma.

By utilizing a vector Lyapunov-like function V ∈ C[R+ ×R
n ×Ω,RN ], we define

an operator as follows:

∆V (p,m(k, p, u, v)) = V (p+ 1, m(k, p+ 1, u+ v)) − V (p,m(k, p, u)) (2.19)

where, m(k, p, u) and m(k, p + 1, u + v) are the solution processes of (2.2) through

(p, u) and (p+ 1, u+ v), v and u ∈ R
n.

Remark 2.5. For v = f(p, y, ω) and u = y, ∆V (p,m(k, p, y)) in (2.19) is denoted by

∆(2.1)V (p,m(k, p, y)). Furthermore, from the continuity of f guarantees the measur-

ability of the difference operator ∆(2.1)V (p,m(k, p, y)).

In the following, we present a result that provides a basis for the definition of

the generating operator L associated with a flow v. For this purpose, we need an

additional condition on V (t, y).

Theorem 2.6. Let the hypotheses H(2.1) and H(2.2) be satisfied. Let V ∈ C[R+ ×

R
n,RN ] and further assume that ∂

∂t
V (t,m), ∂

∂x
V (t,m) and ∂2

∂z∂z
V (t,m) exist, and are

continuous in all (t,m) in R+ ×R
n, and moreover ∂2

∂z∂z
V (t,m) is locally Lipschitzian

in m for each t. Then an operator L is defined by

LV (p,m(k, p, u), v) = LaV (p,m(k, p, u), v) + LeV (p,m(k, p, u), v)

+ L0V (p,m(k, p, u), v), (2.20)
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where

LaV (p,m(k, p, u), v) = Vt(p,m(k, p, u))

+ Vm(p,m(k, p, u))A(k, p+ 1,∆(p, u, v)), (2.21)

LeV (p,m(k, p, u), v) =
1

2
[Vm(p,m(k, p, u))E(k, p+ 1,∆(p, u, v))

+
1

2

∂2

∂m∂m
V (p,m(k, p, u)) · Θ(k, p+ 1,∆(p, u, v))Θ(k, p+ 1,∆(p, u, v)) (2.22)

and

L0V (p,m(k, p, u), v)

=

∫ 1

0

[Vt(p+ θ,m(k, p, u) + θ∆m) − Vt(p,m(k, p, u))]dθ

+

∫ 1

0

∫ 1

0

θ
[ ∂2

∂z2
[V (p+ θ,m(k, p, u) + ψθ∆m) − V (p,m(k, p, u))] · ∆m∆m

]

dψ dθ

+
1

2

[ ∂2

∂m∂m
V (p,m(k, p, u)) · Θ(k, p+ 1,∆(p, u, v))

×O(k, p+ 1, u+ F (p, u),∆(p, u, v))

+
∂2

∂m∂m
V (p,m(k, p, u)) ·O(k, p+ 1, u+ F (u, p),∆(p, y))Θ(k, p+ 1,∆(p, y)),

+ Vm(p,m(k, p, u))O(k, p+ 1, u+ F (p, u),∆(p, u, v))
]

, (2.23)

where O(k, p + 1, m(p + 1),∆(p, u, v)) and ∆(p, u, v) are as defined in (2.12) and

(2.13), respectively, and

∆m = m(k, p + 1, u+ v) −m(k, p, u), (2.24)

A(k, p+ 1,∆(p, u, v)) = Φ(k, p+ 1, u+ F (p, u))∆(p, u, v), (2.25)

E(k, p+ 1,∆(p, u, v)) =
1

2

∂

∂m0

Φ(k, p + 1, u+ F (p, u)) · ∆(p, u, v)∆(p, u, v), (2.26)

and

Θ(k, p+ 1,∆(p, u, v)) = A(k, p+ 1,∆(p, u, v)) + E(k, p+ 1,∆(p, u, v)). (2.27)

Proof. Let m(k, p + 1, u + v) and m(k, p, u) be solution processes of (2.2) through

(p + 1, u+ v) and (p, u), respectively. From (2.5) and (2.13) we recall that m(k, p +

1, u+F (p, u)+∆(p, u, v)) = m(k, p+1, u+v) and m(k, p+1, u+F (p, u)) = m(k, p, u).

Under the assumption of the lemma, applications of Lemmas 2.2, 2.3, and 2.4, the

generalized mean value theorem with notations (2.5), imitating the argument used in

the proof of Lemma 2.4(c), and algebraic simplifications, we have

∆vV (p,m(k, p, u, v))

= V (p+ 1, m(k, p+ 1, u+ v)) − V (p,m(k, p, u))
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=

∫ 1

0

[Vt(p+ θ,m(k, p, u) + θ∆m)

+ Vm(p+ θ,m(k, p, u) + θ∆m)∆m]dθ

= Vt(p,m(k, p, u)) + Vm(p,m(k, p, u))∆m

+

∫ 1

0

[Vt(p+ θ,m(k, p, u) + θ∆m) − Vt(p,m(k, p, u))

+ [Vm(p+ θ,m(k, p, u) + θ∆m) − Vm(p,m(k, p, u))]∆m]dθ

= Vt(p,m(k, p, u)) + Vm(p,m(k, p, u))∆m

+
1

2

∂2

∂m∂m
V (p,m(k, p, u)) · ∆m(∆m))

+

∫ 1

0

[Vt(p+ θ,m(k, p, u) + θ∆m) − Vt(p,m(k, p, u))]dθ

+

∫ 1

0

∫ 1

0

θ
[[ ∂2

∂m2
V (p+ θ,m(k, p, u) + ψθ∆m)

−
∂2

∂m2
V (p,m(k, p, u))

]

· ∆m∆m
]

dψ dθ

= Vt(p,m(k, p, u)) + Vm(p,m(k, p, u))[∆m]

+
1

2

[ ∂2

∂m2
V (p,m(k, p, u)) · ∆m∆m

]

+
[

∫ 1

0

[Vt(p+ θ,m(k, p, u) + θ∆m) − Vt(p,m(k, p, u))]dθ

+

∫ 1

0

∫ 1

0

θ
[ ∂2

∂m2
V (p+ θ,m(k, p, u) + ψθ∆m)

−
∂2

∂m2
V (p,m(k, p, u))

]

· ∆m∆m
]

dψ dθ (2.28)

From (2.4), (2.5), (2.11), (2.12), and the definitions of operators La, Le, Lo, the

notations and the definitions introduced in the theorem, and increments ∆(p, u, v) and

∆m with algebraic simplifications and regrouping, (2.28) reduces to desired relation

in (2.20). The details are left to the reader.

Remark 2.7. We note that for v = f(p, y, ω) and u = y, the definition of

LV (p,m(k, p, y, v)) ≡ LV (p,m(k, p, y)) in (2.20) does not depend on the knowledge

of the solution process of (2.1). It just depends on y ∈ R
n, the rate function f

and ∆(p, u, v) = f(p, y, ω) − F (p, y). Moreover, in order to characterize the effects

of random perturbations (both internal as well as external), L is decomposed into

three operators La, Le and Lo representing the absence of randomness, the presence

of external disturbances, and round of error, respectively.

The following results illustrate the computational feasibility of L-operator.
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Corollary 2.8. Let V (p,m) = α(p)mTm = α(p)‖m‖2, α(p) > 0, for any k ∈ I(k0),

k0 ≤ p ≤ k. Then

Vt(p,m) = 0, Vm(p,m) = 2α(p)mT ,
∂2

∂m∂m
V (p,m(k, p, y)) = 2I.

Then LV (p,m(k, p, y)) reduces to

LV (p,m(k, p, u)) = LaV (p,m(k, p, u, v))+LeV (p,m(k, p, u, v))+L0V (p,m(k, p, u, v)),

(2.29)

where

LaV (p,m(k, p, u)) = 2a(p)m(k, p, u)TΦ(k, p+ 1, m(p+ 1))∆(p, u, v)

= 2α(p)m(k, p, u)TA(k, p+ 1,∆(p+ 1))

LeV (p,m(k, p, u)) = [ΘT (k, p+ 1, m(p+ 1))Θ(k, p+ 1, m(p+ 1))

+ α(p)m(k, p, u)TE(k, p+ 1,∆(p, u, v))

and

LoV (p, z(k, p, u)) = 2α(p)m(k, p, u)TO(k, p+ 1, m(p+ 1),∆(p, u, v))

+OT (k, p+ 1, m(p+ 1, p, u),∆(p, u, v)Θ(k, p+ 1, m(p+ 1)

+ ΘT (k, p+ 1, m(p+ 1, p, u))O(k, p+ 1, m(p+ 1),∆(p, u, v))

+OT (k, p+ 1, m(p+ 1, p, u)O(k, p+ 1, m(p+ 1),∆(p, u, v)).

Proof. From (2.11) and (2.12), we have

Vm(p,m(k, p, u))∆m = Vm(p,m(k, p, y))
[

Φ(k, p+ 1, m(p+ 1))∆(p, y)

+
1

2

∂

∂m0
Φ(k, p+ 1, u+ F (p, y))∆(p, u, v)∆(p, u, v)

+O(k, p+ 1, u+ F (p, y),∆(p, u, v)
]

where

1

2

∂2

∂z2
V (p,m(k, p, u))∆mT ∆m

= ΘT (k, p+ 1, m(p+ 1))Θ(k, p+ 1, m(p+ 1))

+ ΘT (k, p+ 1, m(p+ 1))O(k, p+ 1, y + F (p, u)∆(p, u))

+OT (k, p+ 1, u+ F (p, u),∆(p, u, v))Θ(k, p+ 1, m(p+ 1))

+OT (k, p+ 1, u+ F (p, u),∆(p, u, v))O(k, p+ 1, u+ F (p, u),∆(p, u, v))

After elementary computations and simplifications, (2.20) reduces to the desired re-

lation in (2.29). We note that the scope of L-operator defined in (2.20) in the context

of auxiliary system (2.2) is illustrated by following well-known special cases:
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Corollary 2.9. If F (p, y) in (2.2) is F (p, y) ≡ 0, then m(k, p, u) = u, Φ(k, p, u) = I

and ∂2

∂m2

0

m(k, p, u) ≡ 0. Then the L-operator defined in (2.20) in Theorem 2.6 reduces

to the L-operator: LV (p, u, v) = LaV (p, u, v) + LeV (p, u, v) + L0V (p, u, v), where

LaV (p, u, v) = E[Vt(p, u) + Vm(p, u)v,

LeV (p, u, v) =
1

2

∂2

∂m2
V (p, u) · vv,

L0V (p, u, v) =

∫ 1

0

{

Vt(p+ θ, u+ θv) − Vt(p, u)

+

∫ 1

0

[

θ
∂

∂m
Vm(p+ θ, u+ θψv −

∂

∂m
Vm(k, y)

]

· vv

}

dψ dθ

Corollary 2.10. If F (p,m) = A(p)m, then in this case: m(k, p, u) =
∏k−1

i=p (I +

A(i))u, ∂
∂m
F (p,m) = A(p), ∂2

∂m2F (p,m) ≡ 0, Φ(k, p, u) =
∏k−1

i=p (I + A(i)) ≡ Φa(k, p),
∂2

∂m2

0

m(k, p, u) ≡ 0. Then the L-operator defined in (2.20) in Theorem 2.6 reduces to:

LV (p,m(k, p, u, v)) = LaV (p,m(k, p, u), v) + LeV (p,m(k, p, u, v))

+ LoV (p,m(k, p, u, v)), (2.30)

where

LaV (p,m(k, p, u, v)) = [Vt(p,m(k, p, u)) + Vm(p,m(k, p, u))][Φ(k, p+ 1)∆(p, u, v))],

LeV (p,m(k, p, u, v)) =
1

2

∂2

∂m∂m
V (p,m(k, p, u)) · Φ(k, p + 1)vΦ(k, p+ 1)v,

and

LoV (p,m(k, p, u, v)) =

∫ 1

0

[Vt(p+ θ,m(k, p, u) + θ∆m)) − Vt(p,m(k, p, u))]dθ

+

∫ 1

0

∫ 1

0

θ
[ ∂2

∂m2
V (p+ θ,m(k, p, u) + ψθ∆m)

−
∂2

∂m2
V (p,m(k, p, u))∆m(∆m)T

]

where,

∆(p, u, v) = [v − A(p)u]

Θ(k, p+ 1, m(p+ 1)) = (∆(p, u, v))TΦT (k, p+ 1)Φ(k, p+ 1)∆(p, u, v)

and

∆m = m(k, p+ 1, u+ v) −m(k, p, u) = m(k, p+ 1, v) −m(k, p+ 1, A(p)u)

= Φ(k, p+ 1)[v − A(p)u].
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3. COMPARISON THEOREMS

In this section, by developing results concerning random difference inequalities,

we shall present several comparison theorems which are useful to study the error esti-

mates and stability properties of stochastic difference systems. Again in the following

we assume that all the inequalities and relations involving random quantities are true

with probability one (w.p. 1).

Now we prove a fundamental result concerning difference inequalities. This result

plays an important role for further development of comparison theorems for random

difference systems.

Theorem 3.1 (VARIATIONAL COMPARISON THEOREM). Let the hypotheses of

Theorem 2.6 be satisfied. Further assume that

i) G ∈ C[R×R
N ×Ω,RN ] and G(k, a, ω) satisfies the one-sided Lipschitz condition

G(k, b, ω) − G(k, a, ω) ≥ −Γ(k, ω)(b − a) for all a, b ∈ R
N and b ≥ a where

Γ(k, ω) = diag{γ1, . . . , γN} with 0 ≤ γi ≤ 1 for 1 ≤ i ≤ N ;

ii) LV (p,m(k, p, y)) ≤ G(p, V (p,m(k, p, y)), ω) for all (p, y) ∈ I(k0)×R
n where the

generating operator L is defined as

LV = [LV1, LV2, . . . , LVi, . . . , LVN ]T

where LV (k,m(t, p, x)) is defined analogous to L in (2.20);

iii) r(k) is the solution of the system of comparison difference equations

u(k + 1) = u(k) +G(k, u(k), ω), u(k0, ω) = u0(ω); (3.1)

iv) E[V (p,m(k, p, y(p)))] exists for any solution y(p) = y(p, k0, y0) of the iterative

stochastic process (2.1) for all p ∈ I(k0) and k0 ≤ p ≤ k, and

V (k0, m(k, k0, y0)) ≤ u0. (3.2)

Then

V (p,m(k, p, y(p))) ≤ r(p, ω), for all p ∈ I(k0). (3.3)

Moreover, (3.3) reduces to

V (k, y(k)) ≤ r(k, ω) for all k ∈ I(k0). (3.4)

Proof. For k0 ≤ p + 1 ≤ k, let m(k, p, y) = m(k, p + 1, y + F (p, y)) and y(p, ω) =

y(k, k0, y0) be the solution processes of (2.2) and (2.1) through (p, y + F (p, y)) and

(k0, y0), respectively. Define

V (p+ 1, m(k, p+ 1, y(p+ 1))) = V (p+ 1, m(k, p+ 1, y(p) + f(p, y(p), ω))) (3.5)

We also note that

V (p,m(k, p, y(p))) = V (p,m(k, p+ 1, y(p) + F (p, y(p))). (3.6)
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From (3.5), (3.6), (2.1), we have

V (p+ 1, m(k, p+ 1, y(p+ 1))) − V (p,m(k, p, y(p)))

= [∆(2.1)V1(p,m(k, p, y(p))), . . . ,

∆(2.1)Vi(p,m(k, p, y(p))), . . . ,∆(2.1)VN(p,m(k, p, y(p)))]T .

From the hypotheses of Theorem 2.6 and assumption ii) of the theorem, we have

∆V (p,m(k, p, y(p))) = V (p+ 1, m(k, p+ 1, y(p+ 1))) − V (p,m(k, p, y(p)))

= [LV1(p,m(k, p, y(p))), . . . , LVi(p,m(k, p, y(p))), . . . , LVN(p,m(k, p, y(p)))]T

≤ G(p, V (p,m(k, p, y(p))), ω). (3.7)

By choosing u0 ≥ V (k0, m(k, k0, y0(ω))) and applying Theorem 2.2 [7], one concludes

V (p,m(k, p, y(p))) ≤ r(p, k0, u0, ω), for all k0 ≤ p ≤ k, k ∈ I(k0). (3.8)

In particular, for p = k, (3.8) reduces to

V (k, y(k, ω)) ≤ r(k, k0, u0, ω)), for all k ∈ I(k0).

This completes the proof of the theorem.

The following corollary demonstrates the scope of the comparison Theorem 3.1.

This corollary is based on Corollaries 2.8, 2.9 and 2.10.

Corollary 3.2. By considering Corollaries 2.8 and 2.10 and noting the fact that

LoV (p,m(k, p, x)) = 0 and ∆(p, y) = f(p, y, ω)−A(p)y, we assume that one can find

µ(p) ∈ R, and ν(p), β(p) ∈ R
+ such that

m(k, p, y)TΦ(k, p)[f(p, y, ω)− F (p, y)] ≤ µ(p, ω)m(k, p, y)Tm(k, p, y), (3.9)

[f(p, y, ω)− F (p, y)]TΦT (k, p)Φ(k, p)[f(p, y, ω)− F (p, y)]

≤ ν(p, ω)m(k, p, y)Tm(k, p, y) + β(p, ω), (3.10)

and

2µ(p, ω) + ν(p, ω) ≥ −1, k0 ≤ p ≤ k

for all k0 ≤ p ≤ k and any k ∈ I(k0). Then

V (k, y(k, k0, y0)) ≤ r(k, k0, u0, ω),

provided V (k0, y0) ≤ u0.

Proof. From (3.2), algebraic calculations and simplifications with notation V (p, z) =

α(p)zT z, one can obtain

LV (p,m(k, p, y)) ≤ g(p, ω)V (p,m(k, p, y)) + β(p, ω),
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where g(p, ω) is defined by g(p, ω) = −(2µ(p, ω) + ν(p, ω) + 1) + 1. In this setup, the

system of comparison equations then becomes

∆u(k) = G(k, u(k), ω), uk0
= u0 (3.11)

where

G(k, u, ω) = g(p, ω)u(k) + β(k, ω).

It is obvious that the above comparison function G(k, u, ω) satisfies all the hypotheses

of Theorem 2.2 [7]. One only needs to assume condition iv) holds and then pick

u0 ≥ V (k0, x0)). Thus by the application of Theorem 2.2 [7], one may conclude

V (k, y(k)) ≤ r(k, k0, u0, ω), ∀ k ∈ I(k0) (3.12)

where r(k, k0, u0) is the solution process of the comparison difference equation (3.11).

Corollary 3.3. Let us assume that hypotheses H(2.1) and H(2.2) be satisfied.

(a) Assume that the conditions in Corollary 2.10 are fulfilled. In addition the oper-

ator L defined in (2.30) satisfies the following inequality

LV (p,m(k, p, y)) ≤ G(p,m(k, p, y), ω) (3.13)

where G satisfies the conditions of Theorem. Under the conditions (iii) and (iv)

of Theorem 3.1. The conclusion of Theorem 3.1 remains true.

(b) Assume that conditions of Corollaries 2.8 and 2.9 are valid. Further assume


















2αyT [f(p, y, ω)− F (p, y)] ≤ µ(p, ω)yTy

α[f(p, y, ω)− F (p, y)]T [f(p, y, ω)− F (p, y)] ≤ ν(p, ω)yTy

2µ(p, ω) + γ(p, ω) ≥ −1.

(3.14)

Then the conclusion of Corollary 3.2 remains valid, that is,

V (k, y(k, k0, y0)) ≤ r(k, k0, u0, ω) (3.15)

provided

V (k0, y0) ≤ u0

where r(k, k0, u0) is the solution process of (3.11).

Proof. The proofs of these results can be constructed by following the arguments used

in Theorem 3.1 and Corollary 3.2.

To investigate qualitative properties of (2.1), we use the corresponding properties

of comparison system (3.1). If the dimension of system (3.1) (dimension “N”) is very

high, it is difficult to obtain such information about the system. Therefore, it forces

to reduce the dimension to either lower or to obtain an information about such system
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by comparing with lower order system. Here, we choose to provide an estimate on

the solution process of (2.1) in terms of a scalar iterative process.

Theorem 3.4. Assume that conditions i), ii), iii) and iv) of Theorem 3.1 are satisfied.

Further assume that satisfies

N
∑

i=1

diGi(p,m(k, p, y), ω) ≤ γ(p, ω)

m
∑

i=1

diVi(p,m(k, p, y)) + µ(p, ω), (3.16)

and define

v̄(p,m(k, p, y)) =
m
∑

i=1

diVi(p,m(k, p, y)), (3.17)

for di > 0 for 1 ≤ i ≤ N . Then

v̄(p, y(p, ω)) ≤ r(p, ω) for all k0 ≤ p ≤ k, k ∈ I(k0), (3.18)

whenever

v̄(k0, m(k, k0, x0)) ≤ u0(ω) (3.19)

where r(p, ω) is the solution of the scalar comparison difference equation

∆u(p) = γ(p, ω)u(p) + µ(p, ω), uk0
= u0 (3.20)

with u(p) ∈ R+.

Proof. The proof of the result follows by using v̄(p,m(k, p, y)) defined in (3.17) and

the application of Corollary 3.2. The details are left to the reader.

We demonstrate the scope of Theorem 3.1 in the following remark.

Remark 3.5. If u0(ω) = V (k0, x(k, k0, y0(ω)), ω), then (3.4) becomes

V (k, y(k, ω), ω) ≤ r(k, k0, V (k0, x(k, ω), ω)), k ≥ k0. (3.21)

We remark that the comparison Theorems 3.1 and 3.4 are not exactly like the com-

parison results [7]. From (3.21) it is obvious that Theorems 3.1 and 3.4 relate the

solution processes of three kinds of difference equations, namely (2.1), (2.3), and

(3.1)/(3.11). On the other hand, the usual comparison results relate the solutions of

two kinds of initial value problems namely (2.1) and (3.1)/(3.11). Another impor-

tant factor regarding Theorems 3.1 and 3.4 is that the initial state u0 of the sample

solution process r(p, k0, u0, ω) of (3.1)/(3.11) depends upon k.

In the following, we shall give a few examples to illustrate the scope of Theo-

rems 3.1 and 3.4.
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Example 3.6. Consider the linear stochastic difference equation

∆y(k, ω) =
y(k, ω)

k + 1
+H(k, y(k, ω), ω), y(k0, ω) = y0(ω), (3.22)

where H ∈M [I(k0 + 1) × R,R[Ω, R]]. We assume

yH(p, y, ω) ≤ −λ1(p, ω)y2, λ1(p, ω) > 0

H2(p, y, ω) ≤ λ2(p, ω)y2, λ2(p, ω) ≥ 0. (3.23)

Further we consider the difference equation

∆x(k) =
1

k + 1
x(k), x(k0, ω) = x0(ω) = y0(ω). (3.24)

We notice that

m(k) =







y0, k = p ≥ k0

y0(k+2)
(p+1)

, k ≥ p+ 1 ≥ k0

solution of (3.24). We assume V (k, x) = |x|2. From Theorem 3.1 and Corollary 2.8,

we have

LV (p,m(k, p, y)) = LaV (p,m(k, p, y) + LeV (p,m(k, p, y)) + L0V (p,m(k, p, y)),

where m(k, p, y) is the solution process of (3.24) through (p, y), LaV (p,m(k, p, y)) =

m(k, p, y)
(

k+2
p+1

)

H(p, y, ω), LeV (p, x(k, p, y)) =
(

k+2
p+1

)2

H2(p, y, ω), and

L0V (p, x(k, p, y)) = 0. In the context of the (3.22) and (3.23), we obtain

LV (p, x(k, p, y, ω)) =
(k + 2)2yH(p, y, ω)

(p+ 1)
+

(k + 2)2H2(ℓ, y, ω)

(p+ 1)2

≤ (−2λ1(p, ω) + λ2(p, ω))

(

k + 2

p+ 1

)2

y2

≤ λV (p,m(k, p, y)), (3.25)

where

λ(p, ω) = −2λ1(p, ω) + λ2(p, ω).

In this case the comparison equation is

∆u(p, ω) = λ(p, ω)u(p, ω), u(k0, ω) = u0(ω) (3.26)

and the solution is given by

r(k, k0, u0(ω), ω) =







u0(ω), k = k0

u0(ω)
∏k−1

p=k0
λ(p, ω), k ≥ k0

(3.27)

where u0(ω) = |m(k, k0, y0(ω))|2. Therefore from (3.25), (3.26) and (3.27) and apply-

ing Theorem 2.2 [7], relation (3.4) becomes

|y(k, ω)|2 ≤ |m(k, ω)|2
k−1
∏

p=k0

(1 + λ(p)) ≤ |m(k, ω)|2 exp

[

k−1
∑

p=k0

λ(p)

]

(3.28)
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This justifies Remark 3.5.

Example 3.7. Consider the linear stochastic difference equation

∆y(k, ω) = y(k, ω) +H(k, y(k, ω), ω), y(k0, ω) = y0(ω) (3.29)

where H is as defined in (3.22) and it satisfies

yH(p, y, ω)y ≤ −λ3(p, ω)y2, λ3(p, ω) > 0

H2(p, y, ω) ≤ λ4(p, ω)y2, λ4(p, ω) > 0. (3.30)

Further we consider the difference equation

∆x(k) = x(k), x(k0, ω) = y0(ω). (3.31)

We notice x(k) = 2k−k0y0(ω) is the solution of (3.31). By taking V (k, x, ω) = |x|2,

we have

V (p, x(k, p, y)) = |m(k, p, y)|2 = 22(k−p)y2,

where m(k, p, y) is the solution process of (3.31) through (p, y). We compute LV (p,

m(k, p, y)) with respect to (3.29). By using (3.29) and following the argument used

in Example 3.6, we have

LV (p, x(k, p, y)) = LaV (p,m(k, p, y)) + LeV (p,m(k, p, y)) + L0V (p,m(k, p, y))

= 22(k−p)
[

2yH(p, y, ω) +H2(p, y, ω)
]

≤ [−2λ3(p, ω) + λ4(p, ω)]22(k−p)y2

≤ λ(p, w)V (p,m(k, p, y)), (3.32)

where

λ(p, ω) = [−2λ3(p, ω) + λ4(p, ω)].

In this case the comparison equation is

∆u(p, ω) = λ(p, ω)u(p, ω), u(k0, ω) = u0(ω) (3.33)

and its solution is given by

r(k, k0, u0(ω), ω) =







u0(ω), k = k0

u0(ω)
∏k−1

p=k0+1(1 + λ(p, ω)), k ≥ k0

(3.34)

Therefore, from (3.32), (3.33), (3.34), and invoking Theorem 3.1 relation (3.4) reduces

to

|y(k, ω)|2 ≤ |x(k, ω)|2
k
∏

s=k0+1

(1 + λ(s)) ≤ |x(k, ω)|2 exp

[

k
∑

s=k0+1

λ(s)

]

(3.35)
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Remark 3.8. In particular, if λ3(p, ω) =
√

λ4(p, ω) = α(p, ω) and 2|1− α(p, ω)| < 1

w.p. 1, then (3.35)

|y(k, ω)|2 ≤

(

1

4

)k−k0

|x(k, ω)|2. (3.36)

Example 3.9. We consider the following system of difference equation

∆y(k, ω) = Â(k, e)y(k, ω) +R(k, y, ω)y(k, ω), y(k0, ω) = y0(ω) (3.37)

where R(k, y, ω) = A(k, y, ω)− Â(k, e) and e is an n-dimensional parameter. Further

we consider the difference system

∆x(k) = Â(k, e)x(k), x(k0, ω) = x0(ω). (3.38)

We notice that the solution of (3.38) is

x(k, k0, x0(ω)) =







y0(ω), k = k0

∏k−1
p=k0

(I + Â(p, e))y0(ω) = Φ(k, k0, e)y0(ω), k ≥ k0 + 1,
(3.39)

where

Φ(k, k0, e) =







I, k = k0

∏k−1
p=k0

(I + Â(p, e)), k ≥ k0.

Let us assume that

m(k, p)‖y‖2 ≤ yTΦT (k, p, e)Φ(k, p, e)y ≤M(k, p)‖y‖2,

yTΦT (k, p, e)Φ(k, p, e)R(p, y, ω)y ≤ −λ(p, ω)‖y‖2

yTRT ΦT (k, p, e)Φ(k, p, e)Ry ≤ M1(k, p)‖y‖
2, M1 > 0 (3.40)

where m,M are minimal and maximal eigenvalues of ΦT Φ and M1 is the maximal

eigenvalue of RT ΦT (k, p, e)Φ(k, p, e)R.

By taking V (k, x) = ‖x‖2, we get

V (p, x(k, p, y)) = ‖x(k, p, y)‖2 = ‖Φ(k, p, e)y‖2,

where x(k, p, y) is the solution process of (3.38) through (p, y). Now we compute

LV (p, x(k, p, y(p))) with regard to (3.37). By using (3.40), (3.37), Theorem 2.6,

Corollary 2.8, we have

LV (p, x(k, p, y)) = LaV (p, x(k, p, y)) + LeV (p, x(k, p, y)) + L0V (p, x(k, p, y))

= 2xT (k, p, y)Φ(k, p, e)R(p, y, ω)y

+ yTRT (p, y, ω)ΦT (k, p, e)Φ(k, p, e)R(p, y, ω)y

= 2yTΦT (k, p, e)Φ(k, p, e)R(p, y, ω)y

+ yTRT (p, y, ω)ΦT (k, p, e)Φ(k, p, e)R(p, y, ω)y. (3.41)
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By using (3.40), we have

‖y‖2 ≤
1

m(k, p)
yTΦT (k, p, e)Φ(k, p, e)y ≤

1

m(k, p)
V (p, x(k, p, y))

yT ΦT (k, p, e)Φ(k, p, e)R(p, y, ω)y ≤ −λ(p, ω)‖y‖2

≤ −
λ(p, ω)

M(k, p)
V (p, x(k, p, y), ω), λ(p, ω) > 0

yTRT (p, y, ω)ΦT (k, p, e)Φ(k, p, e)R(p, y, ω)y ≤M1(p)‖y‖
2

≤
M1(p)

m(p)
V (p, x(k, p, y)). (3.42)

Using estimates (3.42), (3.41) reduces to

LV (p, x(k, p, y)) ≤ ν(p)V (p, x(k, p, y)) (3.43)

where ν(p, ω) = −2λ(p,ω)
M(k,p)

+ M1(p)
m(k,p)

. In this case the comparison equation is

∆u(p, ω) = ν(p, ω)u(p, ω), u(k0, ω) = u0(ω) (3.44)

and its solution is given by

r(p, k0, u0(ω), ω) =







u0(ω), p = k0

u0(ω)
∏p

s=k0+1(ν(s, ω) + 1), p ≥ s ≥ k0

(3.45)

where u0(ω) = V (k0, x(k, k0, y0(ω))) = ‖x(k, ω)‖2. From (3.43), (3.44), (3.45) and

applying Theorem 3.1, relation (3.4) becomes

‖y(k, ω)‖2 ≤ ‖x(k, ω)‖2
k
∏

s=k0+1

(1 + ν(s, ω)) ≤ ‖x(k, ω‖2 exp

[

k
∑

s=k0+1

ν(s, ω)

]

.

We now state and prove a comparison theorem which has wide range of appli-

cations in the theory of error estimates and stability analysis of stochastic difference

systems. For this purpose, we consider the following system

∆w(k) = h(k, w(k), ω), w(k0) = w0. (3.46)

Theorem 3.10. Let the hypotheses of Theorem 3.1 be satisfied except LV (p,m(k, p, y)),

V (p,m(k, p, y(p))) and L(k0, m(k, k0, y0)) are replaced by LV (p,m(k, p, y(p)−w(p))),

V (t,m(k, p, y(p) − w(p))) and V (k0, m(k, k0, y0 − w0)), respectively where y(p) =

y(p, k0, y0) and w(p) = w(p, k0, w0) are solution process of (2.1) and (3.46) for

k0 ≤ p ≤ k. Then

V (p,m(k, p, y(p)− w(p))) ≤ r(p, ω) for k0 ≤ p ≤ k, (3.47)

provided

V (k0, m(k, k0, y0 − w0)) ≤ u0. (3.48)
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Moreover, for p = k, (3.47) reduces to

V (k, y(k) − w(k)) ≤ r(k, ω), for k ≥ k0 (3.49)

whenever (3.48) remains valid.

Proof. Let y(p) and w(p) be solution processes of (2.1) and (3.46) through (k0, y0) and

(k0, w0), respectively. By repeating the argument used in the proof of Theorem 3.1,

the proof of the theorem can be constructed, analogously. The details are left to the

reader.

To illustrate the significance of Theorem 3.10, we outline a few particular cases.

Corollary 3.11. Let us suppose that the hypotheses H(2.1) and H(2.2) remain true.

(i) Assume that all the conditions of Corollary 2.9 and Theorem 3.10 remain valid.

Then

V (p, y(p) − w(p)) ≤ r(p, ω) for k0 ≤ p ≤ k

and

V (k, y(k) − w(k)) ≤ r(k, ω) for k ≥ k0 (3.50)

provided

V (k0, y0 − w0) ≤ u0,

LV in Theorem 3.10 is LV (p, y(p) − w(p)) and r(k, ω) is as defined by (3.1).

(ii) If the conditions of Corollary 2.10 and Theorem 3.10, then

V (p,Φ(k, p)(y(p)− w(p))) ≤ r(p, ω) for k0 ≤ p ≤ k

and hence

V (k, y(k) − w(k)) ≤ r(k, ω) for k ≥ k0 (3.51)

provided

V (k0,Φ(k, k0)(y0 − w0)) ≤ u0,

and r(k, ω) is solution process of (3.1).

(iii) If the assumptions of Corollaries 2.8 and 2.9, 3.3(b), then

α‖y(k, k0, y0) − w(k, k0, w0)‖
2 ≤ r(k, k0, ω) for k ≥ k0 (3.52)

whenever

α‖y0 − w0‖
2 ≤ u0.

We note that


















2α(y − w)T [f(p, y, ω)− h(p, w, ω)− F (p, y − w)] ≤ µ(p, ω)‖y − w‖2

α‖f(p, y, ω)− h(p, w, ω) − F (p, y − w)‖2 ≤ ν(p, ω)‖y − w‖2

2µ(p, ω) + ν(p, ω) ≥ −1

(3.53)

and r(k, ω) is the solution process of (3.11).
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(iv) If the assumptions of Corollaries 2.8 and 2.9, then

α(k)‖y(k, k0, y0) − w(k, k0, w0)‖
2 ≤ r(k, ω) for k ≥ k0 (3.54)

when

α(k0)‖Φ(k, k0)(y0 − w0)‖
2 ≤ u.

We remark that






































mT (k, p, y − w)Φ(k, p)(f(p, y, ω)− h(p, w, ω) − F (p, y − w))

≤ µ(p, ω)‖m(k, p, y − w)‖2

‖Φ(k, p)(f(p, y, ω)− h(p, w, ω)− F (p, y − w))‖2

≤ ν(p, ω)‖m(k, p, y − w)‖2 + β(p, ω)

2µ(p, ω) + ν(p, ω) ≥ −1

and r(p, ω) is the solution process of comparison equation (3.1).

(v) If the assumptions of (iv) and with F (k, y) ≡ 0 are fulfilled, then

V (k, y(k) − w(k)) ≤ r(k, ω) for k ≥ k0 (3.55)

provided that V (k0, y0 − w0) ≤ u0(ω).

Theorem 3.12. Assume that all the hypotheses of Corollary 3.11 are satisfied with

h = F . Further assume that L in Theorem 3.1 satisfies

V (p,m(k, p, y−w), ω)+LV (p,m(k, p, y−w), ω) ≤ G(p, V (p,m(k, p−w), ω) (3.56)

and

V (k0, m(k, k0, y0 −m0, ω), ω) ≤ u0(ω), (3.57)

where x(k, k0, z0) = x̄(k) is the solution process of either (2.2) or (2.3) depending on

the choice of z0; LV (p,m(k, p, y − w)) = V (p + 1, m(k, p + 1, y − w + f(p, y, ω) −

F (p, y − w)) − V (p,m(k, p, y − w)). Then

V (k, y(k) − w(k), ω) ≤ r(k, k0, u0(ω), ω), k ≥ k0 (3.58)

Proof. Let y(k, ω) and w(k, ω) be the solution processes of (2.1) and (2.3) respectively.

Let m(k) = x(k, k0, x0) be a solution process of either (2.2) or (2.3) depending upon

the choice of z0. Set

v(p+ 1, ω) = V (p+ 1, x(k, p+ 1, y(p+ 1, ω) −m(p+ 1)), ω),

w(k0, ω) = V (k0, m(k, k0, y0 −m0), ω).

By following the proof of Corollary 3.11, the proof of theorem can be completed.

To demonstrate the scope of Theorem 3.10 we present a few examples.
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Example 3.13. We consider the stochastic difference systems (3.37), (3.38) and

∆m(k) = Â(k, e)m(k − 1), m(k0) = m0. (3.59)

Let V (k, x, ω) = ‖x‖2. By following the discussion in Corollary 3.11(iv), we compute

LV (p,m(k, p, y(p) − m(p)) as follows. Since m(k) = Φ(k, k0, e)m0(ω). We assume

that

2mT (k, p, y − w)[f(p, y, ω)− h(p, w, ω)− F (p, y − w)] ≤ µ(p, ω)V (p,m(k, p, y − w)),

‖Φ(k, p)[f(p, y, ω)− h(p, w, ω)− F (p, y − w)]‖2 ≤ ν(p, ω)V (p,m(k, p, y − w)),

and

2µ(p, ω) + ν(p, ω) ≥ −γ.

Hence,

LV (p,m(k, p, y − w), ω) ≤ [2µ(p, ω) + ν(p, ω)]V (p,m(k, p, y − w)) (3.60)

Therefore, the comparison equation is

∆u(k) = 2µ(k, ω) + ν(k, ω)u, u(k0, ω) = u0(ω) (3.61)

where u0(ω) = ‖Φ(k, k0)(y0−w0)‖. By an application of Corollary 3.11(iv), we obtain

‖y(k, ω)−m(k)‖2 ≤ ‖Φ(k, k0)(y0 − v0)‖
2 exp

[

k−1
∑

p=k0

2µ(p, ω) + ν(p, ω)

]

(3.62)

4. STABILITY ANALYSIS

Let y(k, ω) = y(k, k0, y0(ω), ω) be any solution process of (2.1) and let x(k, ω) =

x(k, k0, y0(ω)) be the solution process of (2.3) through (k0, y0(ω)). Furthermore, let

x̄(k) = x(k, k0, z0) be the solution process of either (2.2) or (2.3) depending upon the

choice of z0. Without loss of generality, we assume that f(k, 0, ω) ≡ 0 w.p. 1 and

F (k, 0) ≡ 0 for all k ≥ k0. y(k, ω) ≡ 0, x(k, ω) ≡ 0, x̄(k) ≡ 0 are the unique solutions

of the respective initial value problems.

In the following for the sake of easy reference, we present the qualitative properties

solutions of (2.1). For more details, we refer to Ladde and Sambandham [10].

Definition 4.1. The trivial solution process of (2.1) is said to be

(DSM1): stable in the qth moment, if for each ǫ > 0, k0 ∈ I(k0) and q ≥ 1, there

exists a positive function δ(k0, ǫ) such that the inequality ‖y0(ω)‖q ≤ δ implies

‖y(k, ω)‖q < ǫ, k ≥ k0

where ‖y(k, ω)‖q = (E‖y(k, ω)‖p)1/p;
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(DSM2): asymptotically stable in the qth moment, if it is stable in the qth moment

and if for any ǫ > 0, k0 ∈ I(k0), there exist δ0(k0) and T = T (k0, ǫ) such that

the inequality ‖y0(ω)‖q ≤ δ0 implies

‖y(k, ω)‖q < ǫ, k ≥ k0 + T.

Remark 4.2. We note that depending on the mode of convergence in the probabilistic

analysis, one can formulate other definitions of stability and boundedness. For the

differential equations we refer to Ladde and Lakshmikantham [5].

For our further use we formulate a concept of relative stability.

Definition 4.3. The two systems (2.1) and (3.46) are said to be

(DRM1): relatively stable in qth moment, if for each ǫ > 0, k0 ∈ I(k0) and

q ≥ 1, there exists a positive function δ = δ(k0, ǫ) such that the inequality

‖y0(ω) − w0‖q ≤ δ implies

‖y(k, ω)− w(k)‖q < ǫ, k ≥ k0.

(DRM2): relatively asymptotically stable in the qth moment if it is stable in the qth

moment and if for any ǫ > 0, k0 ∈ I(k0), there exist δ0 = δ0(k0) and T = T (k0, ǫ)

such that the inequality ‖y0 − w0‖ ≤ δ0 implies

‖y(k, ω)− w(k)‖q < ǫ, k ≥ k0 + T.

Remark 4.4. Based on Definition 4.3, a definition relative to (2.1) and (2.2) or (2.3)

can be formulated, analogously.

To study the stability analysis of (2.1) by an application of comparison method

we require the stability of comparison difference system (3.1). The stability concepts

in Definition 4.1 relative to (3.1) will be denoted by (DSM∗

1) and (DSM∗

2). In the

present framework, we need a joint stability property of (3.1) and (2.2), or (3.1) and

(2.3). We remark that this does not imply that each pair of the system (3.1) and

(2.2) (or (3.1) and (2.3)) possesses the same kind of stability property. This property

offers more flexibility in applications than the existing approaches [11].

Let m(k, ω) = m(k, k0, y0(ω)) and u(k, k0, u0) be solutions of (2.3) and (3.1)

through (k0, y0(ω)) and (k0, u0), respectively. Then we define

ν(k, k0, y0(ω)) = u(k, k0, m(k, k0, y0(ω)), ω) (4.1)

and note that ν(k0, k0, y0(ω)) = V (k0, y0(ω)) and V is as defined in Theorem 3.1. We

now formulate stability concepts relative to (2.2) and (3.1).

Definition 4.5. The trivial solution processes m = 0 and u = 0 of (2.2) and (3.1)

are said to be
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(DJM1): jointly stable in the mean, if for ǫ > 0, k0 ∈ I(k0) there exists a δ =

δ(k0, ǫ) > 0 such that

E‖y0(ω)‖q ≤ δ implies

N
∑

i=1

E(νi(k, k0, y0(ω)) < ǫ, k ≥ k0.

(DJM2): jointly asymptotically stable in the mean if it is jointly stable in the mean

and if for any ǫ > 0, k0 ∈ I(k0), there exist δ0 = δ0(k0) > 0 and T = T (k0, ǫ) > 0

such that the inequality E‖y0(ω)‖q ≤ δ0 implies

N
∑

i=1

E[νi(k, k0, y0(ω))] < ǫ, t ≥ t0 + T.

The joint relative stability of (3.1) and (2.2) ((3.1) and (2.3)) is defined as follows.

Definition 4.6. The systems (2.1), (3.46), (2.2) or (2.3) are said to be

(DJR1): jointly relatively sable in the mean if for each ǫ > 0, k0 ∈ I(k0), there

exists δ = δ(k0, ǫ) > 0 such that the inequality E‖y0(ω) − w0‖ ≤ δ implies

N
∑

i=1

E[νi(k, k0, y0(ω)) − w0)] < ǫ, k ≥ k0.

We shall present some stability criteria that assures the stability in the qth mo-

ment of the trivial solution processes of (2.1). Furthermore, some illustrations are

given to show that the stability conditions are connected with the statistical proper-

ties of random rate functions of systems of difference equations. Examples are worked

out to exhibit the advantage of the joint stability concepts.

Theorem 4.7. Let the hypotheses of Theorem 3.1 be satisfied. Further assume that

F (k, 0) ≡ 0, f(k, 0, ω) ≡ 0 and G(k, 0, ω) ≡ 0 w.p. 1, and for (k, x) ∈ I(k0 + 1)×Rn

b(‖y‖)q ≤

N
∑

i=1

Vi(k, y, ω) ≤ a(k, ‖y‖q) (4.2)

whenever b ∈ VK, a ∈ CK, and q ≥ 1. Then

(DJM1): of (3.1) and (2.3) implies (DSM1) of (2.1)

and

(DJM2): of (3.1) and (2.3) implies (DSM2) of (2.1).

Proof. Let ǫ > 0, k0 ∈ I(k0) be given. Assume that (DJM1) holds. Then for b(ǫ) > 0

and k0 ∈ I(k0), there exists a δ = δ(ǫ, k0) such that ‖y0(ω)‖p ≤ δ implies

N
∑

i=1

E(νi(k, k0, y0(ω), ω) < b(ǫq), k ≥ k0 (4.3)

where

ν(k, k0, y0(ω), ω) = r(k, k0, V (k, k0, y0(ω), ω), ω), (4.4)
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r(k, k0, u0, ω) is the solution process of (3.1) andm(k, k0, y0(ω)) is the solution process

of (2.2) through (k0, y0(ω)). Now we claim that if ‖y0(ω)‖q ≤ δ then ‖y(k, ω)‖q <

ǫ, k ≥ k0. Suppose that this is false. Then there would exist a solution process

y(k, k0, y0(ω), ω) with ‖y0(ω)‖q ≤ δ and a k1 > k0 such that

‖y(k1, ω)‖q = ǫ and ‖y(k, ω)‖q ≤ ǫ, k0 ≤ k ≤ k1. (4.5)

On the other hand by Theorem 3.1 in the context of Remark 3.5, we have

V (k, y(k, ω), ω) ≤ r(k, k0, V (k0, m(k, ω), ω), ω), k ≥ k0. (4.6)

From (4.2), (4.4), (4.6) and using convexity of b, we obtain

b(E‖y(k, ω)‖q) ≤
N
∑

i=1

EVi(k, y(k, ω), ω)

≤

N
∑

i=1

νi(k, k0, y0(ω), ω), (4.7)

for k ≥ k0. Equations (4.3), (4.5) and (4.7) lead to the contradiction

b(ǫq) ≤

N
∑

i=1

E(Vi(k1, y(k1, ω), ω))

≤

N
∑

i=1

νi(k1, k0, y0(ω), ω) < b(ǫq).

This proves (DSM1). The proof of (DSM2) can be proved analogously. This completes

the proof of the theorem.

The following example illustrates the scope and the usefulness of joint stability

concept and Theorem 4.7.

Example 4.8. Consider Example 3.6. We further assume that H(k, 0, ω) ≡ 0 w.p. 1.

Furthermore, let λ in (3.24) satisfy

E

[

exp

[

k−1
∑

p=k0

(λ(p, ω))

]]

≤M and

(

∑k−1
p=k0

λ(p, ω)

k − k0

)

→ α

as (k − k0) → ∞ for some positive numbers α,M and independent of y0(ω) with

‖y0(ω)‖2 <∞. It is clear that

ν(k, k0, y0(ω), ω) = |m(k, ω)|2 exp

[

k
∑

s=k0

λ(s, ω)

]

.

This together with the assumptions about H , y0(ω) and λ(k, ω), it follows that the

trivial solution processes m ≡ 0 and u ≡ 0 of (3.24) and (3.26) are jointly stable in

the mean.
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Moreover, from the conditions on λ and y0(ω), one can conclude that m ≡ 0 and

u ≡ 0 of (3.24) and (3.26) are jointly asymptotically stable in the mean. From this

and an application of Theorem 3.1, one can conclude that the trivial solution process

of (3.22) is asymptotically stable in the second moment. We remark that for the

trivial solution of (3.24) is unbounded.

Example 4.9. Consider Example 3.7, where we replace (3.32) by

LV (p, x(k, p, y)) ≤ (ᾱ(p) + η(p, ω))V (p, x(k, p, y)) (4.8)

where λ(p, ω) = ᾱ(p) + η(p, ω) and η(p, ω) is a stationary Gaussian process with

mean E(η(p, ω)) = 0 and the covariance function C(k − p) = E(η(k, ω)η(p, ω)). Let

H(k, 0, ω) ≡ 0 w.p. 1. By following the discussion in Example 3.7, we have

∆u(p, ω) = (ᾱ(p) + η(p, ω))u(p, ω), u(k0, ω) = u0(ω), (4.9)

and

V (k, y(k, ω)) ≤ V (k0, m(k, ω)) exp

[

k
∑

s=k0

(ᾱ(s) + η(s, ω))

]

(4.10)

Let y0(ω) and η(s, ω) be independent processes. By taking expectation on both sides

of (4.10), we obtain

E|y(k, ω)|2 ≤ E|m(k, ω)|2E

(

exp

k
∑

s=k0

(η(s, ω) + ᾱ(s))

)

. (4.11)

From the properties of Gaussian process, we have

E

[

exp
k
∑

s=k0

(η(s, ω) + ᾱ(s))

]

= exp
k
∑

s=k0

[

(ᾱ(s)) +
1

2

k
∑

u=k0

k
∑

s=k0

C(u− s)

]

.

The trivial solution of (3.31) and (4.9) are jointly stable in mean if ‖y0‖2 <∞, and

1

(k − k0)

[

k
∑

s=k0

ᾱ(s) +
1

2

k
∑

u=k0

k
∑

s=k0

C(u− s)

]

< −1 for k ≥ k0. (4.12)

From this and (4.10) we conclude that the trivial solution of (3.29) is stable in mean

square. Moreover, it is asymptotically stable in the 2nd moment.

Remark 4.10. Example 4.9 shows that the trivial solution process m ≡ 0 of (3.31)

is unstable (exponentially with base 2) in the mean square sense. However joint

stability is guaranteed by Theorem 4.7 provides a greater advantage to study the

stability problems.



298 G. S. LADDE AND M. SAMBANDHAM

5. ERROR ESTIMATES AND RELATIVE STABILITY

By using the comparison results, we present results concerning error estimates

and relative stability.

Theorem 5.1. Let the hypotheses of Theorem 3.1 be satisfied. Further assume that

b(‖y‖q) ≤

m
∑

i=1

vi(k, y, w) (5.1)

where b ∈ k, q ≥ 1. Then

b(‖m(k, p, y(p) − w(p))‖q) ≤

N
∑

i=1

E[ri(p, ω)], k0 ≤ p ≤ k (5.2)

and

b(E[‖y(k, ω)− w(k)‖q) ≤

N
∑

i=1

E[ri(k, ω)], k ≤ p ≤ k0. (5.3)

Proof. By the choice of u0 = v(k0, m(k, k0, y0 − w0)), (3.47) reduces to

N
∑

i=1

vi(p,m(k, p, y(p)− w(p))) ≤
N
∑

i=1

ri(p, w).

This together with (5.1) and the convexity of b yields

b(E[‖m(k, p, y(p) − w(p))‖q ≤
N
∑

i=1

E[ri(p, w)]. (5.4)

Moreover, for p = k, (5.4) reduces to (5.3). This completes the proof of the theorem.

Remark 5.2. By Using Theorem 5.1, one can easily find error estimate results with

regard to solution process of (3.59). The details are left to the reader. Moreover,

from Corollary 3.11 and Theorem 5.1 one can obtain the corresponding error estimate

results.

In the following, we present relative stability results by use of comparison method.

Theorem 5.3. Later the hypotheses of Theorem 5.1 be satisfied except (5.1) is re-

placed by

b(‖y‖q) ≤
N
∑

i=1

vi(k, y, w) ≤ a(k, ‖y‖q) (5.5)

where b and q are as defined in (5.1) and ???.

(DJM1): of (3.1) and (2.3) implies (DRM1) of (2.1)

(DJM2): of (3.1) and (2.3) implies (DRM2) of (2.1)

Proof. The proof of the theorem can be formulated by following the argument used

in the proofs of Theorems 4.7 and 5.1. The details are left to the reader.
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APPENDIX I

A.1. Fundamental Results in System of Iterative Process

Let us consider the nonlinear system of difference equations with random param-

eters

xk = h(k − 1, xk−1, A(ω)), xk0
= x0, k ≥ k0 + 1 (A.1.1)

where x0 ∈ R
n and A ∈ R

m are random vectors defined on a complete probability

space, (Ω,F , P ). It is also assumed that h(k, x, a) is continuously differentiable with

respect to (x, a)T . We denote by xk = x(k, k0, x0, A) a solution process of (A.1.1).

The system can be rewritten as follows:

zk = H(k − 1, zk−1), zk0
= z0, k ≥ k0 + 1 (A.1.2)

where zk ∈ R
n+m, zk = [xT

k , A
T ]T , H = [hT , AT ]T , and z0 = [xT

0 , A
T ]T . We establish

the differentiability of the solution process, zk of (A.1.2) with respect to the initial

data z0. This theorem stochasticizes (Ladde/Lak book 1980) and also provides a

rigorous and systematic proof.

Theorem A.1 Let h be a continuously differentiable function with respect to

z = (xT , AT ) satisfying (A.1.2). Then for 1 ≤ i ≤ m + n, ∂z
∂z0i

exists and, moreover
∂z

∂z0i

is a solution of the following linear difference equation

yk = Hz(k − 1, zk−1)yk−1, yk0
= y0 = ei, (A.1.3)

where zk = z(k, k0, z0)

Hz =
∂H

∂z
, ei ∈ R

n+m,

zk = z(k, k0, z0) is the solution process of (A.1.2), and ei is the vector with i-th

component 1 and 0 elsewhere.


