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ABSTRACT. We shall establish some new criteria for the oscillation of the fourth order nonlinear

difference equation

∆2

(

a (k)
(

∆2x (k)
)

α

)

+ q (k) f (x (g (k))) = 0

via comparison with some difference equations of less order whose oscillatory characters are known.

1. INTRODUCTION

Consider the fourth order nonlinear difference equation

∆2
(

a (k)
(

∆2x (k)
)α)

+ q (k) f (x (g (k))) = 0 (1)

where ∆ is the forward difference operator defined by ∆x (k) = x (k + 1)− x (k) and

α is the ratio of positive odd integers. We shall assume that g, a : N (k) → R
+ =

(0,∞) for some k ∈ N = {0, 1, . . .} and N (n0) = {n0, n0 + 1, . . . } where n0 ∈ N,

g ∈ Ḡ := {g : N (k) → N for some k ∈ N : g (k) 6 k, g (k) is non-decreasing and

limk→∞ g (k) = ∞}, and f : R → R is continuous satisfying xf (x) > 0 for x 6= 0 and

f is non-decreasing.

By a solution of equation (1), we mean a nontrivial sequence {x (k)} satisfying

equation (1) for all k ∈ N (K) where K is some nonnegative integer. A solution

{x (k)} is said to be oscillatory if it is neither eventually positive nor eventually

negative and it is nonoscillatory otherwise. Equation (1) is said to be oscillatory if all

its solutions are oscillatory. Determining oscillation criteria for difference equations

has received a great deal of attention in the last two decades, see for example the

Monographs of Agarwal et. al. [1]–[3]. This interest is motivated by the importance
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of difference equations in the numerical solutions of differential equations. Compared

to equations of order less than or equal to two, the study of higher order equations and

in particular fourth order equations, has received considerably less attention see [4]–

[9]. In this paper, we shall establish some new criteria for the oscillation of equation

(1) via comparison with some equations of less order, whose oscillatory characters are

known.

2. MAIN RESULTS

For k > n0 ∈ N, we let

A [k, n0] =

k−1
∑

s=n0

s−1
∑

i=n0

(

i

a (i)

)1/α

.

In the following results, we assume

∞
∑

i=n0

a−1/α (i) = ∞ (2)

and

−f (−xy) > f (xy) > f (x) f (y) for xy > 0. (3)

Now, we prove the following result:

Theorem 1. Let conditions (2) and (3) hold and assume that there exists a non-

decreasing sequence {ξ (k)} such that g (k) < ξ (k) < k for k > n0. If the first order

difference equation

∆y (k) + c1q (k) f (A [g (k) , n0]) f
(

y1/α (g (k))
)

= 0 (4)

for some constant c1, 0 < c1 < 1 is oscillatory and there exists a constant c2, 0 <

c2 < 1, such that all bounded solutions of the second order difference equation

∆2z (k) − c2q (k) f (g (k)) f

(

ξ (k) − g (k)

a1/α (ξ (k))

)

f
(

z1/α (ξ (k))
)

= 0 (5)

is oscillatory, then equation (1) is oscillatory.

Proof. Let {x (k)} be a nonoscillatory solution of equation (1), say x (k) > 0 for

k > n0 ∈ N. There exists an n1 > n0 such that the following two possibilities are

considered:

(I) ∆
(

a (k) (∆2x (k))
α)

> 0,

a (k)
(

∆2x (k)
)α

> 0 and ∆x (k) > 0 for k > n1, (6)

(II) ∆
(

a (k) (∆2x (k))
α)

> 0,

a (k)
(

∆2x (k)
)α

< 0 and ∆x (k) > 0 for k > n1. (7)
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Case (I). There exists an n2 > n1 and a constant b1, 0 < b1 < 1 such that

y (k) > b1k∆y (k) for k > n2, (8)

where y (k) = a (k) (∆2x (k))
α

for k > n2. Thus,

∆2x (k) > b

(

k

a (k)

)1/α

(∆y (k))1/α for k > n2, (9)

where b = b
1/α
1 . Summing this inequality twice, one can easily get

x (k) > bA [k, n2] (∆y (k))1/α for k > n2. (10)

Now, there exists an n3 > n2 such that g (k) > n2 for k > n3 and

x (g (k)) > bA [g (k) , n2] (∆y (g (k)))1/α for k > n3. (11)

Using (3) and (11) in equation (1), we get

∆z (k) + f (b) q (k) f (A [g (k) , n2]) f
(

z1/α (g (k))
)

6 0 for k > n3, (12)

where z (k) = ∆y (k) for k > n3. Summing both sides of (12) from k + 1 > n0 to u

and letting u → ∞, we have

z (k) > f (b)
∞
∑

j=k+1

q (j) f (A [g (j) , n2]) f
(

z1/α (g (k))
)

.

The sequence {z (k)} is obviously non-increasing for k > n3. Hence by a result in

[3], we conclude that there exists a positive solution {y (k)} of equation (4) with

lim
k→∞

y (k) = 0, which is a contradiction.

Case (II). There exist a constant c, 0 < c < 1 and an n2 > n1 such that

x (g (k)) > cg (k) ∆x (g (k)) for k > n2. (13)

Using (3) and (13) in equation (1), we obtain

∆2 (a (k) (∆y (k))α) + c̄f (g (k)) f (y (g (k))) 6 0 for k > n2, (14)

where y (k) = ∆x (k) for k > n2, c̄ = f (c). Clearly, we see that y (k) > 0, ∆y (k) < 0

and ∆ (a (k) (∆y (k))α) > 0 for k > n2. Now, for t > s > n2 we have

y (s) > (t − s) (−∆y (t)) .

Replacing s and t by g (k) and ξ (k) respectively, we find

y (g (k)) > (ξ (k) − g (k)) (−∆y (ξ (k)))

:=
ξ (k) − g (k)

a1/α (ξ (k))
(−a (ξ (k)) (∆y (ξ (k)))α)

1/α
for k > n3 > n2. (15)

Using (3) and (15) in (14) we get

∆2z (k) > c̄q (k) f (g (k)) f

(

ξ (k) − g (k)

a1/α (ξ (k))

)

f
(

z1/α (ξ (k))
)

for k > n3, (16)
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where z (k) = −a (k) (∆y (k))α for k > n3. The rest of the proof is similar to that in

[3] and hence is omitted.

Next, we let

Q (k) =

(

1

a (k)

∞
∑

s=k+1

∞
∑

j=s+1

q (j)

)1/α

for k > n0 ∈ N

and establish the following result.

Theorem 2. Let the hypothesis of Theorem 1 hold except that we replace “all bounded

solutions of equation (5) are oscillatory” with the equation

∆2z (k) + Q (k) f 1/α (z (g (k))) = 0 (17)

is oscillatory. Then the conclusion of Theorem 1 holds.

Proof. Let {x (k)} be a nonoscillatory solution of equation (1), say x (k) > 0 for

k > n0 ∈ N. As in the proof of Theorem 1, there are two cases to consider (I) and

(II). The proof of Case (I) is similar to that of Theorem 1 - Case (I) and hence is

omitted.

Case (II). Summing equation (1) twice from k + 1 > n0 to u and letting u → ∞,

we get

−∆2x (k) >

(

1

a (k)

∞
∑

s=k+1

∞
∑

j=s+1

q (j) f (x (g (k)))

)1/α

> Q (k) f 1/α (x (g (k))) for k > n0. (18)

Summing both sides of (5) from k + 1 > n0 to u and letting u → ∞, we find

∆x (k) >

∞
∑

j=k+1

Q (j) f 1/α (x (g (j))) . (19)

Summing both sides of (19) from n0 to k − 1 > n0, we have

x (k) > x (n0) +
k−1
∑

s=n0

∞
∑

j=s+1

Q (j) f 1/α (x (g (j))) .

Now, we define a sequence {ym (k)} by

y0 (k) = x (k)

ym+1 (k) = x (n0) +
k−1
∑

s=n0

∞
∑

j=s+1

Q (j) f 1/α (ym (g (j))) , m = 0, 1, . . . , k > n0.

It is easy to check that the sequence {ym (k)} is well-defined as an increasing sequence

and satisfies

x (n0) 6 ym (k) 6 x (k) for k > n0 and m = 0, 1, . . . .
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Hence, there exists a sequence {y (k)} for k > n0 such that

lim
m→∞

ym (k) = y (k) ,

and

x (n0) 6 y (k) 6 x (k) for k > n0.

From the Lebesge Convergence Theorem, it follows that

x (k) = x (n0) +

k−1
∑

s=n0

∞
∑

j=s+1

Q (j) f 1/α (x (g (j))) , for k > n0.

Taking the difference twice, we conclude that {x (k)} is a nonoscillatory solution of

equation (17), a contradiction. This completes the proof.

Next, we establish the following comparison result:

Theorem 3. Let the hypotheses of Theorem 2 hold except that we replace “the equa-

tion (17) is oscillatory” with the first order difference equation

∆w (k) + θQ (k) f 1/α (g (k)) f 1/α (w (g (k))) = 0 (20)

is oscillatory for every θ, 0 < θ < 1. Then the conclusion of the Theorem 2 holds.

Proof. Let {x (k)} be a nonoscillatory solution of equation (1), say x (k) > 0 for

k > n0 ∈ N. As in the proof of Theorem 1, we consider the two Cases (I) and (II).

The proof of Case (I) is similar to that of Theorem 1 - Case (I) and hence is omitted.

Case (II). Proceeding as in the proof of Theorem 2 - Case (II) and obtain the

inequality (18). Now, there exist a constant c, 0 < c < 1 and an n1 > n0 such that

x (g (k)) > cg (k) (∆x (g (k))) for k > n1. (21)

Using (21) in (18) we get

∆w (k) + c̄Q (k) f 1/α (g (k)) f 1/α (w (g (k))) 6 0 for k > n1,

where c̄ = f 1/α (c) and w (k) = ∆x (k) for k > n1. The rest of the proof is similar to

that of Theorem 1- Case (I) and hence is omitted.

We may combine equations (4) and (20) in one by letting

Q̃ (k) > min
{

Q (k) f 1/α (g (k)) , q (k) f (A [g (k) , n0])
}

for k > n0,

and

f 1/α (u) = f
(

u1/α
)

for u 6= 0.

Thus, we get

Theorem 4. Let conditions (2) and (3) hold. If the equation

∆v (k) + θQ̃ (k) f
(

v1/α (g (k))
)

= 0 (22)

is oscillatory for every constant θ, 0 < θ < 1, then equation (1) is oscillatory.
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As an example, we consider a special case of equation (1), namely the equation

∆2
(

a (k)
(

∆2x (k)
)α)

+ q (k) xβ (k − τ + 1) = 0 (23)

where τ > 1 is a real number and β is the ratio of positive odd integers. Clearly

Q̃ (k) > min







gβ/α (k)

(

1

a (k)

∞
∑

s=k+1

∞
∑

j=s+1

q (j)

)1/α

, q (k)

(

k−τ−2
∑

s=n0

s−1
∑

i=n0

(

i

a (i)

)1/α
)β






.

Now, we have the following immediate result.

Corollary 5. Let condition (2) hold. Equation (23) is oscillatory if one of the fol-

lowing conditions holds:

(O1) α = β and lim
k→∞

∑k−1

i=k−τ Q̃ (i) >
(

τ
τ+1

)τ−1
;

(O2) 0 < β < α and
∑

∞

i=n0∈N
Q̃ (i) = ∞.

Remark 6. We note that the results presented in this paper are not applicable to

equations of type (1) when g (k) = k.

Remark 7. The results of this paper can be extended easily to dynamic equations

on time-scales of the type
(

a (t)
(

x∆∆ (t)
)α)∆∆

+ q (t) f (x (g (t))) = 0.

The details are left to the reader.
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