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ABSTRACT. This article is concerned with the existence of positive solutions for a class of singular

φ−Laplacian boundary value problems posed on the half-line. The nonlinearity depends on the

solution and its derivative, and may exhibit a space-singularity at the origin. Some existence results

are proved using the upper and lower solution technique in a special Banach space. The nonlinearity

obeys sign and growth conditions with respect to the unknown. The singularity is treated by

approximation and truncation.
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1. INTRODUCTION

1.1 The mathematical problem. This paper is devoted to the existence of posi-

tive solutions to the following boundary value problem set on the positive half-line:
{

(φ(x′))′(t) + q(t)f(t, x(t), x′(t)) = 0, t > 0

x(0) = 0, lim
t→+∞

x′(t) = 0.
(1.1)

The function q : I −→ I is continuous and the nonlinearity f : R
+ × I × R −→

R is continuous. Here I := (0,+∞) denotes the set of positive real numbers and

R
+ = [0,+∞). The nonlinear operator φ : R −→ R is a continuous, increasing

homeomorphism such that φ(0) = 0. It extends the usual p-Laplacian operator

ϕp(s) = |s|p−1s for p > 1.

Boundary value problems on infinite intervals appear in many phenomena in

applied mathematics and physics (see e.g. [1]). Second-order boundary value problems

(bvps in short) on positive infinity have been widely investigated in the literature (see

[3, 4, 5, 13] and the references therein).

Received May 11, 2009 1083-2564 $15.00 c©Dynamic Publishers, Inc.



464 S. DJEBALI AND O. SAIFI

In [12], Yan et al. have obtained some existence results of unbounded positive

solution to the bvp

{
x′′(t) + φ(t)f(t, x(t), x′(t)) = 0, t > 0

ax(0) − bx′(0) = x0 ≥ 0, lim
t→+∞

x′(t) = k > 0.
(1.2)

The upper and lower solution method is employed to prove existence of solutions and

the multiplicity is discussed using the fixed point index theory.

In [6], the authors have studied the question of the existence of multiple solutions

to the bvp
{
x′′(t) − k2x(t) = q(t)f(t, x(t), x′(t)) = 0, t > 0

x(0) = x(+∞) = 0

when the nonlinearity is sign-changing; they combined the fixed point index and the

upper and lower solution technique to prove some existence results.

Lian et al. in [8] have considered the following boundary value problem with a

p-Laplacian operator

{
(ϕp(x

′))′(t) + q(t)f(t, x(t), x′(t)) = 0, t > 0

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0.
(1.3)

Using a fixed point theorem in a cone due to Avery and Peterson, the existence of at

least three positive solutions is proved. With a multi-point condition at 0, this bvp

is investigated in [7] with the same method.

In [9], Liang and Zhang have considered the case of a nonlinearity which does

not depend on the first derivative, namely the equation (ϕp(x
′))′(t) + a(t)f(t, x(t)) =

0 associated with a multi-point condition at t = 0 and a Neumann condition at

positive infinity. The p-Laplacian operator of derivation is extended to an increasing

homeomorphism ϕ in Refs. [10, 11].

In this work, we aim to consider the solvability of Problem (1.1) when the non-

linearity depends on the first derivative, is sign-changing, and may be singular at

x = 0. Our investigation mainly rely on the method of upper and lower solutions and

approximation methods; in this respect, the regular and singular cases are studied

separately. The paper is divided into three sections. In this section, we also present

some preliminaries. In Section 2, we prove two existence results to Problem (1.1)

corresponding to the regular case and the singular case respectively. The nonlinearity

is assumed to satisfy a sign condition. The singular problems are approximated by a

family of regular problems together with sequential arguments. Similar results are ob-

tained in Section 3 under a Nagumo-type growth condition for a positive nonlinearity.

Each existence theorem is illustrated by means of an example of application.
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1.2 Auxiliary results.

Definition 1.1. Let E be a Banach space. A mapping A : E → E is said to

be completely continuous if it is continuous and maps bounded sets into relatively

compact sets.

Let

Cl([0,∞),R) = {x ∈ C([0,∞),R) : lim
t→∞

x(t) exists}.

For x ∈ Cl([0,∞),R), define ‖x‖ = sup
t∈R+

|x(t)|. Then Cl is a Banach space. However,

the basic space to study Problem (1.1) is denoted by

E = {x ∈ C1([0,∞),R), lim
t→+∞

|x(t)|

1 + t
exists and lim

t→+∞
x′(t) = 0}.

Then E is a Banach space normed by ‖x‖ = max{‖x‖1, ‖x‖2} with ‖x‖1 = sup
t∈R+

|x(t)|
1+t

and ‖x‖2 = sup
t∈R+

|x′(t)|. The following compactness criterion is a useful tool to deal

with Problem (1.1).

Lemma 1.2 ([2, p. 62]). Let M ⊆ Cl(R
+,R). Then M is relatively compact in

Cl(R
+,R) if the following conditions hold:

(a) M is uniformly bounded in Cl(R
+,R).

(b) The functions belonging to M are equicontinuous on R
+, i.e. equicontinuous on

every compact interval of R
+.

(c) The functions from M are equiconvergent, that is, given ε > 0, there corresponds

T (ε) > 0 such that |x(t) − x(+∞)| < ε for any t ≥ T (ε) and x ∈M .

As a consequence, we state without proof the following criterion:

Lemma 1.3. Let M ⊆ E. Then M is relatively compact in E if the following

conditions hold:

(a) M is bounded in E.

(b) The functions belonging to {u : u(t) = x(t)
1+t

, x ∈ M} and to {z : z(t) = x′(t), x ∈

M} are equicontinuous on [0,+∞).

(c) The functions belonging to {u : u(t) = x(t)
1+t

, x ∈ M} and to {z : z(t) = x′(t), x ∈

M} are equiconvergent at +∞.

2. EXISTENCE RESULT UNDER A SIGN CONDITION

2.1 The regular problem. Since the nonlinearity f may have a space-singularity

at x = 0, we first consider a family of regular boundary value problems
{

(φ(x′))′(t) + q(t)f(t, x(t), x′(t)) = 0, t > 0

x(0) = k, lim
t→+∞

x′(t) = 0,
(2.1)
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where k is a positive real number.

Definition 2.1. A function α ∈ C(R+, I)∩C1(I,R) is called a lower solution of (2.1)

if φ ◦ α′ ∈ C1(I,R) and satisfies
{

−(φ(α′(t)))′ ≤ q(t)f(t, α(t), α′(t)), t > 0

α(0) ≤ k, lim
t→+∞

α′(t) ≤ 0.

A function β ∈ C(R+, I) ∩ C1(I,R) is called an upper solution of (2.1) if φ ◦ β ′ ∈

C1(I,R) and satisfies
{

−(φ(β ′(t)))′ ≥ q(t)f(t, β(t), β ′(t)), t > 0

β(0) ≥ k, lim
t→+∞

β ′(t) ≥ 0.

If there exist an upper solution β and a lower solution α of (2.1) with α ≤ β,

then for all t ≥ 0 and for all N > 0 we can define the set

DN
α,β(t) = {(x, y) ∈ R × R : α(t) ≤ x ≤ β(t),−N ≤ y ≤ N}.

Finally, for t ≥ 0, let

δN (t) = 1 + sup
(x,y)∈DN

α,β
(t)

|f(t, x, y)|. (2.2)

For fixed t ≥ 0, DN
α,β(t) is compact and so δN(t) is well defined. Regarding the regular

problem (2.1), we state our main existence result.

Theorem 2.2. Assume that α, β are lower and upper solutions of Problem (2.1)

respectively with α ≤ β, sup
t∈R+

|α′(t)| < ∞ and sup
t∈R+

|β ′(t)| < ∞. Suppose further that

there exists some constant M ≥ max{ sup
t∈R+

|α′(t)|, sup
t∈R+

|β ′(t)|} such that

∫ +∞

0

q(τ)δM(τ)dτ < +∞,

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)δM(τ)dτ

)
ds < +∞ (2.3)

and the following sign condition is satisfied:

(|y| −M)f(t, x, y) < 0, ∀ (t, x, y) ∈ R
+ × I × R \ {−M,M}. (2.4)

Then, Problem (2.1) has at least one solution x ∈ E such that

α(t) ≤ x(t) ≤ β(t) and 0 ≤ x′(t) ≤M, t ∈ R
+.

Proof. Consider the truncation function at level M

TM(y) =






−M, y < −M,

y, −M ≤ y ≤M,

M, M < y,

and the unit-interval retraction

µ(x) =

{
x, |x| ≤ 1,
x
|x|
, |x| ≥ 1.
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Define the modified nonlinearity

f ∗(t, x, y) =






f(t, α(t), TM(y)) − µ(x− α(t)), x < α(t),

f(t, x, TM(y)), α(t) ≤ x ≤ β(t),

f(t, β(t), TM(y)) − µ(x− β(t)), x > β(t),

(2.5)

and the modified problem
{

−(φ(x′))′(t) = q(t)f ∗(t, x(t), x′(t)), t > 0

x(0) = k, lim
t→+∞

x′(t) = 0.
(2.6)

We shall prove that this problem has a solution x such that α ≤ x ≤ β and 0 < x′ < M

in which case f ∗ = f .

Part 1. To show that Problem (2.6) has at least one solution x, let the operator A be

defined on E by

Ax(t) = k +

∫ t

0

φ−1

(∫ +∞

s

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
ds.

In three steps, we prove that A has a fixed point in E.

Step 1. A(E) ⊂ E. For x ∈ E, we have by (2.3)

0 ≤ lim
t→+∞

|Ax(t)|

1 + t
≤ lim

t→+∞

k

1 + t
+

∫ t

0
φ−1(

∫ +∞

s
q(τ)|f ∗(τ, x(τ), x′(τ))|dτ)ds

1 + t

≤ lim
t→+∞

k

1 + t
+

∫ +∞

0
φ−1(

∫ +∞

s
q(τ)δM (τ)dτ)ds

1 + t
= 0

and

lim
t→+∞

|(Ax)′(t)| = lim
t→+∞

|φ−1

(∫ +∞

t

q(τ)f ∗(τ, x(τ), x′(τ))

)
dτ |

≤ lim
t→+∞

φ−1

(∫ +∞

t

q(τ)δM (τ)dτ

)
= 0.

Step 2. A is continuous. Let some sequence {xn}n≥1 ⊆ E be such that lim
n→+∞

xn =

x0 ∈ E. Since |f ∗(τ, xn(τ), x′n(τ)) − f ∗(τ, x0(τ), x
′
0(τ))| ≤ 2δM(τ), then by the conti-

nuity of f ∗ and the Lebesgue dominated convergence theorem, we have for all s ∈ R
+,

∫ +∞

s

q(τ)f ∗(τ, xn(τ), x′n(τ))dτ →

∫ +∞

s

q(τ)f ∗(τ, x0(τ), x
′
0(τ))dτ, as n→ +∞.

Moreover, the continuity of φ−1 implies that, as n→ +∞

φ−1

(∫ +∞

s

q(τ)f ∗(τ, xn(τ), x′n(τ))dτ

)
→ φ−1

(∫ +∞

s

q(τ)f ∗(τ, x0(τ), x
′
0(τ))dτ

)
.

As a consequence

sup
t∈R+

|Axn(t) −Ax0(t)|

1 + t

= sup
t∈R+

∣∣∣
∫ t

0
(φ−1(

∫ +∞

s
q(τ)f ∗(τ, xn(τ), x′n(τ))dτ))ds−

∫ t

0
φ−1(

∫ +∞

s
q(τ)f ∗(τ, x0(τ), x

′
0(τ))dτ)ds

∣∣∣
1 + t
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≤ sup
t∈R+

∫ t

0

∣∣∣φ−1(
∫ +∞

s
q(τ)f ∗(τ, xn(τ), x′n(τ))) − φ−1(

∫ +∞

s
q(τ)f ∗(τ, x0(τ), x

′
0(τ))dτ)

∣∣∣ ds
1 + t

→ 0, as n→ +∞

and

|φ(Axn)′(t) − φ(Ax0)
′(t)|

= |

∫ +∞

t

q(τ)[f ∗(τ, xn(τ), x′n(τ)) − f ∗(τ, x0(τ), x
′
0(τ))]dτ |

≤

∫ +∞

0

q(τ)|f ∗(τ, xn(τ), x′n(τ)) − f ∗(τ, x0(τ), x
′
0(τ))|dτ

→ 0, as n→ +∞.

Hence A : E → E is continuous.

Step 3. A(E) is relatively compact.

(a) A(E) is uniformly bounded. For x ∈ E, we have

sup
t∈R+

|Ax(t)|

1 + t
≤ sup

t∈R+

k +
∫ t

0
φ−1

(∫ +∞

s
q(τ)|f ∗(τ, x(τ), x′(τ))|dτ

)
ds

1 + t

≤ sup
t∈R+

k +
∫ +∞

0
φ−1

(∫ +∞

s
q(τ)δM (τ)dτ

)
ds

1 + t

≤ k +

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)δM(τ)dτ

)
ds < +∞

and

sup
t∈R+

|(Ax)′(t)| = sup
t∈R+

∣∣∣φ−1
(∫ +∞

t
q(τ)f ∗(τ, x(τ), x′(τ))dτ

)∣∣∣

≤ φ−1
(∫ +∞

0
q(τ)δM(τ)dτ

)
< +∞.

Then A(E) is bounded.

(b) For a given T > 0, x ∈ E, and t, t′ ∈ [0, T ] (t > t′), we have the estimations
∣∣∣∣
Ax(t)

1 + t
−
Ax(t′)

1 + t′

∣∣∣∣ ≤ k

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣

+
∣∣∣
∫ t

0
φ−1(

∫ +∞

s
q(τ)f ∗(τ, x(τ), x′(τ))dτ)ds

1 + t

−

∫ t′

0
φ−1(

∫ +∞

s
q(τ)f ∗(τ, x(τ), x′(τ))dτ)ds

1 + t′

∣∣∣

≤ k

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣ +

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣

∣∣∣∣
∫ +∞

0

φ−1

(∫ +∞

s

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
ds

∣∣∣∣

+
∣∣∣
∫ +∞

t′
φ−1(

∫ +∞

s
q(τ)f ∗(τ, x(τ), x′(τ))dτ)ds

1 + t′
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−

∫ +∞

t
φ−1(

∫ +∞

s
q(τ)f ∗(τ, x(τ), x′(τ))dτ)ds

1 + t

∣∣∣

≤ k

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣ +

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣
∣∣∣∣
∫ +∞

0

φ−1

(∫ +∞

s

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
ds

∣∣∣∣

+

∣∣∣∣
1

1 + t′
−

1

1 + t

∣∣∣∣

∣∣∣∣
∫ +∞

t

φ−1

(∫ +∞

s

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
ds

∣∣∣∣

+
1

1 + t′

∣∣∣∣
∫ t

t′
φ−1

(∫ +∞

s

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
ds

∣∣∣∣

≤ k

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣ + 2|
1

1 + t
−

1

1 + t′
|

∫ +∞

0

φ−1

(∫ +∞

s

q(τ) |f ∗(τ, x(τ), x′(τ))| dτ

)
ds

+
1

1 + t′

∫ t

t′
φ−1(

∫ +∞

s

q(τ) |f ∗(τ, x(τ), x′(τ))| dτ)ds

≤ k

∣∣∣∣
1

1 + t
−

1

1 + t′

∣∣∣∣ + 2|
1

1 + t
−

1

1 + t′
|

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)δM(τ)dτ

)
ds

+
1

1 + t′

∫ t

t′
φ−1(

∫ +∞

s

q(τ)δM(τ)dτ)ds

and

|φ(Ax)′(t) − φ(Ax)′(t′)| =
∣∣∣
∫ +∞

t

q(τ)f ∗(τ, x(τ), x′(τ))dτ

−

∫ +∞

t′
q(τ)f ∗(τ, x(τ), x′(τ)dτ)

∣∣∣ ≤
∫ t

t′
q(τ)δM(τ)dτ.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that |Ax(t)
1+t

− Ax(t′)
1+t′

| < ε and

|(Ax)′(t) − (Ax)′(t′)| < ε for all t, t′ ∈ [0, T ] with |t− t′| < δ.

(c) For any x ∈ E, we have lim
t→+∞

Ax(t)
1+t

= lim
t→+∞

(Ax)′(t) = 0. Therefore

sup
x∈E

∣∣∣∣
Ax(t)

1 + t
− lim

t→+∞

Ax(t)

1 + t

∣∣∣∣ = sup
x∈E

∣∣∣∣∣
k

1 + t
+

∫ t

0
φ−1(

∫ +∞

s
q(τ)f ∗(τ, x(τ), x′(τ))dτ)ds

1 + t

∣∣∣∣∣

≤ sup
x∈E

k

1 + t
+

∫ +∞

0
φ−1(

∫ +∞

s
q(τ)δM (τ)dτ)ds

1 + t

→ 0, as t→ +∞

and

sup
x∈E

|(Ax)′(t) − lim
t→+∞

(Ax)′(t)| = sup
x∈E

|φ−1

(∫ +∞

t

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
|

≤ φ−1

(∫ +∞

t

q(τ)δM (τ)dτ

)

→ 0, as t→ +∞.



470 S. DJEBALI AND O. SAIFI

By Lemma 1.3, A(E) is relatively compact. Finally the Schauder’s fixed point theorem

implies that A has at least one fixed point x ∈ E, which is a solution to Problem

(2.6).

Part 2. To prove that α(t) ≤ x(t) ≤ β(t), ∀ t ∈ R
+, we argue by contradiction

assuming that some point t∗ ∈ R
+ exists and satisfies x(t∗) > β(t∗). Define

t1 = inf{t < t∗ : x(s) > β(s), ∀s ∈ [t, t∗]},

t2 = sup{t > t∗ : x(s) > β(s), ∀s ∈ [t∗, t]}.

Since x(0) ≤ β(0) then t1 ≥ 0, x(t1) = β(t1) and x′(t1) > β ′(t1). In the other hand

since lim
t→+∞

(x′ − β ′)(t) ≤ 0, there are two cases to consider.

(a) If t2 < +∞, then there exists t0 ∈ (t1, t2) such that (x− β)(t0) = max
t∈[t1,t2]

(x− β)(t).

Since x′(t0) = β ′(t0) and |x′(t0)| = |β ′(t0)| ≤M , then

(φ(x′(t0)))
′ − (φ(β ′(t0)))

′

≥ −q(t0)f
∗(t0, x(t0), x

′(t0)) + q(t)f(t0, β(t0), β
′(t0))

= −q(t0)[f(t0, β(t0), β
′(t0)) − µ(x(t0) − β(t0)) − f(t0, β(t0), β

′(t0))]

= q(t0)µ(x(t0) − β(t0)) > 0.

The continuity of (φ(x′))′−(φ(β ′))′ implies that there exists δ > 0 such that (φ(x′))′(t)−

(φ(β ′))′(t) > 0, ∀ t ∈ [t0, t0 + δ]; hence x′ − β ′ is increasing on [t0, t0 + δ] which is a

contradiction to (x− β)(t0) = max
t∈[t1,t2]

(x− β)(t).

(b) If t2 = +∞, then lim
t→+∞

(x′ − β ′)(t) = 0 and there are again two cases to consider.

(b1) There exists T > t∗ such that (x′ − β ′)(t) = 0 in [T,+∞). Then x′(T ) = β ′(T )

and (x− β)(T ) = max
t∈[T,+∞)

(x− β)(t). As in case (a), we reach a contradiction.

(b2) There exists T > 0 such that x′(t) − β ′(t) > 0 on [T,+∞). Then there exists

l > 0 such that x(t) − β(t) = |x(t) − β(t)| > l, for all t > T . In this case we have

µ(x(t) − β(t)) > min{1, l} = l, for all t > T . Since lim
t→+∞

x′(t) = 0 and lim
t→+∞

x′(t) −

β ′(t) = 0, then lim
t→+∞

β ′(t) = 0. From the continuity of f , we can choose T large

enough such that, for all t > T , we have −M ≤ x′(t) ≤M and

|f(t, β(t), β ′(t)) − f(t, β(t), x′(t))| ≤ |f(t, β(t), β ′(t)) − f(t, β(t), 0)|

+ |f(t, β(t), 0) − f(t, β(t), x′(t))| ≤
l

2
·

Consequently, for all t > T , we have the estimates

0 > φ(β ′(t)) − φ(x′(t))

=

∫ +∞

t

(φ(x′))′(s) − (φ(β ′))′(s)ds
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≥

∫ +∞

t

q(s)[f(s, β(s), β ′(s)) − f ∗(s, x(s), x′(s))]ds

≥

∫ +∞

t

q(s)[f(s, β(s), β ′(s)) − f(s, β(s), TM(x′(s))) + µ(x(s) − β(s))]ds

≥

∫ +∞

t

q(s)[f(s, β(s), β ′(s)) − f(s, β(s), x′(s)) + µ(x(s) − β(s))]ds.

≥
l

2

∫ +∞

t

q(s)ds > 0,

which is a contradiction. In the same way, we can prove that α ≤ x, which completes

the proof.

Part 3. We prove that 0 ≤ x′(t) ≤ M , ∀ t ∈ R
+. Since α ≤ x ≤ β, then the sign

condition (2.4) yields f ∗(t, x(t), x′(t)) = f(t, x(t), TM(x(t))) ≥ 0. This implies that

x′ is nonincreasing and since lim
t→+∞

x′(t) = 0, then x′(t) ≥ 0, ∀ t ∈ R
+. Now suppose

that there exists t0 ∈ R
+ such that x′(t0) > M ; hence x′(t) > M, ∀ t ∈ [0, t0]. Let

t̄ = sup{t > t0 : x′(s) > M, ∀ s ∈ [0, t]}.

Then x′(t̄) = M and x′(t) > M for any t ∈ [0, t̄). This implies that for any t ∈ [0, t̄],

we have

(φ(x′(t)))′ = −q(t)f ∗(t, x(t), x′(t)) = −q(t)f(t, x(t),M) = 0.

Indeed, the continuity of f both with the sign condition (2.4) imply that f(t, x,M) =

f(t, x,−M) = 0. Hence there exists a constant λ such that x′(t) = λ, ∀ t ∈ [0, t̄].

Since x′(t̄) = M , then x′(t) = M, ∀ t ∈ [0, t̄], which is a contradiction. Therefore x is

a solution of Problem (1.1).

2.2 The singular problem. Define the function

ρ(t) =





t, t ∈ [0, 1]

1
t
, t ∈ (1,+∞),

let ρ̃(t) = ρ(t)
1+t

, and F (t, x, y) = f(t, (1+ t)x, y). Assume that the following hypotheses

hold.

(H1) There exists a constant M > 0 such that

(|y| −M)f(t, x, y) < 0, ∀ (t, x, y) ∈ R
+ × I × R \ {−M,M}.

(H2) There exist p ∈ C(R+,R+) and g ∈ C(I×R,R+) such that g(·, y) is nonincreas-

ing and g(x, ·) is a nondecreasing with

|F (t, x, y)| ≤ p(t)g(x, y), ∀ (t, x, y) ∈ R
+ × I × R (2.7)

and for each c > 0, ∫ +∞

0

q(τ)p(τ)g(cρ̃(τ),M)dτ < +∞,
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and

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)p(τ)g(cρ̃(τ),M)dτ

)
ds < +∞.

(H3) For each δ ∈ (0,M), there exists a ψδ ∈ C(R+,R+) such that ψδ(t) > 0 in

[1,+∞) and

|F (t, x, y)| ≥ ψδ(t), ∀ t ∈ R
+, ∀ (x, y) ∈ (0,M ] × [0,M − δ]

with ∫ +∞

0

q(τ)ψδ(τ)dτ < +∞. (2.8)

Using Theorem 2.2, we will prove the following one.

Theorem 2.3. Under Assumptions (H1)− (H3), Problem (1.1) has at least one pos-

itive solution.

Proof. We argue using an approximation method. First choose a decreasing sequence

(εn)n≥1 with lim
n→+∞

εn = 0 and ε1 < M . Then, consider the sequence of regular

boundary value problems
{

(φ(x′))′(t) + q(t)f(t, x(t), x′(t)) = 0, t > 0

x(0) = εn, lim
t→+∞

x′(t) = 0.
(2.9)

Step 1. For each n ≥ 1, we claim that Problem (2.9) has at least one solution xn. To

this end, let αn(t) = εn; then |α′
n(t)| = 0 < M and Assumption (H1) implies that

f(t, αn(t), α′
n(t)) = f(t, αn(t), 0) > 0. Then

{
−(φ(α′

n(t)))′ = −φ(0) = 0 ≤ q(t)f(t, αn(t), α′
n(t)), t > 0

α(0) ≤ εn, lim
t→+∞

α′
n(t) = 0.

Then, for any n ≥ 1, αn is a lower solution for Problem (2.9). Let β(t) = Mt + M ;

then β ′(t) = M and Assumption (H1) implies that

{
−(φ(β ′(t)))′ = 0 = f(t, β(t), β ′(t)), t > 0

β(0) = M ≥ εn lim
t→+∞

β ′(t) = M ≥ 0.

Then β is an upper solution for (2.9). Furthermore for any t ∈ R
+ and (x, y) ∈

[αn(t), β(t)] × [−M,M ], we have by (H2)

|f(t, x, y)| = |F (t,
x

1 + t
, y)|

≤ p(t)g(
x

1 + t
, y)

≤ p(t)g(
εn

1 + t
,M)

≤ p(t)g(εnρ̃(t),M) := δM(t)
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with
∫ +∞

0
q(τ)δM(τ)dτ < +∞ and

∫ +∞

0
φ−1

(∫ +∞

s
q(τ)δM (τ)dτ

)
ds < +∞. Then all

conditions of Theorem 2.2 are met and so, for any n ≥ 1, Problem (2.9) has at least

one solution xn such that

αn(t) ≤ xn(t) ≤ β(t) and 0 ≤ x′n(t) ≤M, ∀ t ∈ R
+.

Step 2. The sequence (xn)n≥1 is relatively compact in E.

(a) The sequence (xn)n≥1 is bounded in E. By Step 1, we have, for all n ≥ 1,

‖xn‖ = max{‖xn‖1, ‖xn‖2} ≤ max{‖β‖1,M} = M.

Let δ ∈ (0,M). Since lim
t→+∞

x′n(t) = 0, then there exists t∗ > 1 such that

0 ≤ x′n(t) ≤M − δ, ∀ t ≥ t∗

and since 0 < xn(t)
1+t

≤ M for all t ∈ R
+, then by (H3) there exists ψδ ∈ C(R+,R+)

such that

f(t, xn(t), x′n(t)) = F (t,
xn(t)

1 + t
, x′n(t)) ≥ ψδ(t), for t ∈ R

+. (2.10)

Note that 0 ≤ x′ ≤M yields the positivity of f . Let

c∗ = φ−1

(∫ +∞

t∗
q(τ)ψδ(τ)dτ

)
> 0.

Then we distinguish between two cases.

(a1) If t ∈ [0, t∗], then

xn(t) ≥

∫ t

0

φ−1

(∫ +∞

s

q(τ)f(τ, xn(τ), x′n(τ))dτ

)
ds

≥

∫ t

0

φ−1

(∫ +∞

s

q(τ)F (τ,
xn(τ)

1 + τ
, x′n(τ))dτ

)
ds

≥

∫ t

0

φ−1

(∫ +∞

t∗
q(τ)ψδ(τ)dτ

)
ds

= tφ−1

(∫ +∞

t∗
q(τ)ψδ(τ)dτ

)

≥ tc∗ ≥ ρ(t)c∗.

(a2) If t ∈ (t∗,+∞), then

xn(t) ≥

∫ t

0

φ−1

(∫ +∞

s

q(τ)f(τ, xn(τ), x′n(τ))dτ

)
ds

≥

∫ t∗

0

φ−1

(∫ +∞

s

q(τ)f(τ, xn(τ), x′n(τ))dτ

)
ds

≥

∫ t∗

0

φ−1

(∫ +∞

t∗
q(τ)f(τ, xn(τ), x′n(τ))dτ

)
ds

≥

∫ t∗

0

φ−1

(∫ +∞

t∗
q(τ)ψδ(τ)dτ

)
ds
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= t∗φ−1

(∫ +∞

t∗
q(τ)ψδ(τ)dτ

)
ds

= t∗c∗ ≥ c∗ ≥ ρ(t)c∗.

To sum up, for any t ∈ R
+ and n ≥ 1, we have proved that xn(t) ≥ ρ(t)c∗. Using

(H1) and the monotonicity of g, we infer the estimates

q(s)f(s, xn(s), x
′
n(s)) = q(s)F

(
s,
xn(s)

1 + s
, x′n(s)

)

≤ q(s)p(s)g

(
xn(s)

1 + s
, x′n(s)

)

≤ q(s)p(s)g(c∗ρ̃(s),M).

(b) For any T > 0 and t, t′ ∈ [0, T ] (t > t′), the following estimates hold

|
xn(t)

1 + t
−
xn(t′)

1 + t′
| ≤ εn|

1

1 + t
−

1

1 + t′
|

+
∣∣∣
∫ t

0
φ−1(

∫ +∞

s
q(τ)f(τ, xn(τ), x′n(τ))dτ)ds

1 + t

−

∫ t′

0
φ−1(

∫ +∞

s
q(τ)f(τ, xn(τ), x′n(τ))dτ)ds

1 + t′

∣∣∣

≤ εn|
1

1 + t
−

1

1 + t′
| + 2|

1

1 + t
−

1

1 + t′
|

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)f(τ, xn(τ), x′n(τ))dτ

)
ds

+
1

1 + t′

∫ t

t′
φ−1

(∫ +∞

s

q(τ)f(τ, xn(τ), x′n(τ))dτ

)
ds

≤M |
1

1 + t
−

1

1 + t′
| + 2|

1

1 + t
−

1

1 + t′
|

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)p(τ)g(c∗ρ̃(τ),M)dτ

)
ds

+
1

1 + t′

∫ t

t′
φ−1

(∫ +∞

s

q(τ)p(τ)g(c∗ρ̃(τ),M)dτ

)
ds

and

|φ(x′n(t)) − φ(x′n(t′))| = |

∫ t

t′
q(τ)fn(τ, xn(τ), x′n(τ))dτ)|

≤

∫ t

t′
q(τ)p(τ)g(c∗ρ̃(τ),M)dτ.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that for all t, t′ ∈ [0, T ] and

|t− t′| < δ, |xn(t)
1+t

− xn(t′)
1+t′

| < ε and |x′n(t) − x′n(t′)| < ε.

(c) For any n ≥ 0, (H2) implies that lim
t→+∞

xn(t)
1+t

= lim
t→+∞

x′n(t) = 0. Therefore

sup
n≥1

|
xn(t)

1 + t
− 0| = sup

n≥1

εn +
∫ t

0
φ−1(

∫ +∞

s
q(τ)f(τ, xn(τ), x′n(τ))dτ)ds

1 + t

≤
M +

∫ +∞

0
φ−1(

∫ +∞

s
q(τ)p(τ)g(c∗ρ̃(τ),M)dτ)ds

1 + t
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→ 0, as t→ +∞

and

sup
n≥n0

|x′n(t) − 0| = sup
n≥n0

φ−1(

∫ +∞

t

q(τ)fn(τ, xn(τ), x′n(τ))dτ)

≤ φ−1(

∫ +∞

t

p(τ)g(c∗ρ̃(τ),M)dτ)

→ 0, as t→ +∞.

As a consequence (xn)n≥1 is relatively compact in E by Lemma 1.3; hence there exists

a subsequence (xnk
)k≥1 with lim

k→+∞
xnk

= x0. Since xnk
(t) ≥ ρ̃(t)c∗, ∀ k ≥ 1, we have

x0(t) ≥ ρ̃(t)c∗, ∀ t ∈ R
+. The continuity of f and φ−1 and the Lebesgue dominated

convergence theorem, imply that, for all t ∈ R
+,

x0(t) = lim
k→+∞

xnk
(t)

= lim
k→+∞

[
εnk

+

∫ t

0

φ−1

(∫ +∞

s

q(τ)f(τ, xnk
(τ), x′nk

(τ))dτ

)
ds

]

=

∫ t

0

φ−1(

∫ +∞

s

q(τ)f(τ, x0(τ), x
′
0(τ))dτ)ds.

Therefore x0 is a positive solution of Problem (1.1), which completes the proof of

Theorem 2.3.

Example 2.4. Consider the singular boundary value problem
{

(φ((x′(t)))′ + q(t)f(t, x(t), x′(t)) = 0, t > 0

x(0) = 0, lim
t→+∞

x′(t) = 0,
(2.11)

where φ(t) = t5, q(t) = e−t and

f(t, x, y) = m(t)

{
ey−e−3

x
, y < −3

3−|y|
x
, y ≥ −3

where m(t) =

{
t, t ∈ [0, 1]
1
t
, t ∈ (1,+∞).

(H1) It is clear that the function f : R
+ × I × R −→ R is continuous and satisfies

(|y| − 3)f(t, x, y) < 0, ∀ (t, x, y) ∈ R
+ × I × R \ {−3, 3}.

(H2) F (t, x, y) = f(t, x(1 + t), y) = m(t)
1+t

{
ey−e−3

x
, y < −3

3−|y|
x
, y ≥ −3.

Let

p(t) =
m(t)

1 + t
and g(x, y) =

{
3
x
, y < 3

y

x
, y ≥ 3.

Then p ∈ C(R+,R+) and g ∈ C(I ×R,R+) where g(·, y) is nonincreasing, g(x, ·) is a

nondecreasing and

|F (t, x, y)| ≤ p(t)g(x, y), ∀ (t, x, y) ∈ R
+ × I × R.
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Therefore, for any c > 0
∫ +∞

0

q(τ)p(τ)g(cρ̃(τ),M)dτ =
3

c
<∞,

and

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)p(τ)g(cρ̃(τ),M)dτ

)
ds = 5

(
3

c

) 1

5

<∞.

(H3) For any δ ∈ (0, 3) and (x, y) ∈ (0, 3] × [0, 3 − δ], we have that

|F (t, x, y)| ≥
δ

3
p(t) := ψδ(t)

and ∫ +∞

0

q(τ)ψδ(τ)dτ <∞.

Therefore all conditions of Theorem 2.3 are satisfied and thus Problem (2.11) has at

least one positive solution.

3. EXISTENCE RESULT UNDER A NAGUMO CONDITION

In this section, we consider Problem (1.1) with a positive nonlinearity f : R
+ ×

I × R → R
+.

Definition 3.1. A function α ∈ C(R+,R+) ∩ C1(I,R) is called a lower solution of

(1.1) if φ ◦ α′ ∈ C1(I,R) with α(t) > 0, ∀ t > 0 and
{

−(φ(α′(t)))′ ≤ q(t)f(t, α(t), α′(t)), t > 0

α(0) = 0, lim
t→+∞

α′(t) ≤ 0.

A function β ∈ C(R+,R+) ∩ C1(I,R) is called an upper solution of (1.1) if φ ◦ β ′ ∈

C1(I,R) with β(t) > 0, ∀ t > 0 and
{

−(φ(β ′(t)))′ ≥ q(t)f(t, β(t), β ′(t)), t > 0

β(0) ≥ 0, lim
t→+∞

β ′(t) ≥ 0.

Let α and β be a lower and upper solution of (1.1) respectively with α ≤ β. Then

for all t ∈ R
+ and for all N > 0, we may define DN

α,β(t) and δN(t) as in (2.2). Our

main existence result in this section is

Theorem 3.2. Assume that α, β are lower and upper solution of (1.1) respectively

with α ≤ β and suppose that the following conditions are satisfied

(H1)
′ There exist a nondecreasing ψ ∈ C(R+,R+) and l ∈ C(R+,R+) such that

f(t, x, y) ≤ l(t)ψ(|y|), ∀ t ∈ R
+, ∀x ∈ [α(t), β(t)], ∀ y ∈ R

with ∫ +∞

0

φ−1(s)

ψ(φ−1(s))
ds > l0(M −m) +M

∫ +∞

0

q(τ)l(τ)dτ, (3.1)
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where l0 = sup
t∈R+

q(t)(1 + t)l(t), M = sup
t∈R+

β(t)
1+t

and m = inf
t∈R+

α(t)
1+t

·

(H2)
′ For all N > 0,
∫ +∞

0

q(τ)δN (τ)dτ < +∞ and

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)δN (τ)dτ

)
ds < +∞.

Then Problem (1.1) has at least one positive solution.

Proof. Since lim
t→+∞

φ(t) = +∞, then by (3.1), we can choose some

N > max{ sup
t∈R+

|α′(t)|, sup
t∈R+

|β ′(t)|}

such that ∫ φ(N)

0

φ−1(s)

ψ(φ−1(s))
ds > l0(M −m) +M

∫ +∞

0

q(τ)l(τ)dτ. (3.2)

Let µ, f ∗ and TN be as in the proof of Theorem 2.2 and consider the auxiliary problem
{

(φ(x′))′(t) + q(t)f ∗(t, x(t), x′(t)) = 0, t > 0

x(0) = 0, lim
t→+∞

x′(t) = 0.
(3.3)

For x ∈ E, define the operator A by

Ax(t) =

∫ t

0

φ−1

(∫ +∞

s

q(τ)f ∗(τ, x(τ), x′(τ))dτ

)
ds.

As in Parts 1, 2 of the proof of Theorem 2.2, we can show that A has a fixed point x ∈

E such that α(t) ≤ x(t) ≤ β(t), ∀ t ∈ R
+. It remains to show that |x′(t)| ≤ N, ∀ t ∈

R
+. Since α ≤ x ≤ β, then f ∗(t, x(t), x′(t)) = f(t, x(t), TN (x(t))) ≥ 0, which implies

that x′ is nonincreasing. In addition, since lim
t→+∞

x′(t) = 0, then x′(t) ≥ 0, ∀ t ∈ R
+

and there exists T > 0 such that 0 ≤ x′(t) < N, ∀ t > T . Suppose that there exists

t0 ∈ R
+ such that x′(t0) > N and let

t′ = inf{t < T, x′(s) < N, ∀ s ∈ [t,+∞)}.

Then x′(t′) = N and for all t > t′, 0 ≤ x′(t) < N . From (H1)
′, we have

(φ(x′(t)))′ = −q(t)f(t, x(t), x′(t))

≥ −q(t)l(t)ψ(|x′(t)|).

Thus, for all t > t′, we have

x′(t)(φ(x′(t)))′

ψ(|x′(t)|)
≥ −q(t)l(t)x′(t)

≥ −q(t)l(t)

[(
x(t)

1 + t

)′

(1 + t) +
x(t)

1 + t

]

= −q(t)l(t)

(
x(t)

1 + t

)′

(1 + t) − q(t)l(t)
x(t)

1 + t
·
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An integration from t′ to +∞ yields

∫ φ(N)

0

φ−1(s)

ψ(φ−1(s))
ds =

∫ φ(x′(t′))

φ(x′(+∞))

φ−1(s)

ψ(|φ−1(s)|)
ds = −

∫ +∞

t′

x′(τ)(φ(x′(τ)))′

ψ(|x′(τ)|)
dτ

≤

∫ +∞

t′
q(τ)l(τ)(

x(τ)

1 + τ
)′(1 + τ)dτ +

∫ +∞

t′
q(τ)l(τ)

x(τ)

1 + τ
dτ

≤ sup
τ∈R+

q(τ)(1 + τ)l(τ)

∫ +∞

t′

(
x(τ)

1 + τ

)′

dτ

+ sup
τ∈R+

x(τ)

1 + τ

∫ +∞

0

q(τ)l(τ)dτ

≤ l0(M −m) +M

∫ +∞

0

q(τ)l(τ)dτ

which is a contradiction to (3.2). Hence x is positive solution of (1.1).

Example 3.3. Consider the singular boundary value problem

{
((x′(t))3)′ + 7t

(1+t)5
|(x(t)−1)x′(t)|

|x(t)|
= 0, t > 0

x(0) = 0, lim
t→+∞

x′(t) = 0.
(3.4)

Here φ(t) = t3, q(t) = 7
(1+t)5

and f(t, x, y) = t|y(x−1)|
|x|

·

Let α(t) = t
1+t

· Then α(t) > 0, ∀ t > 0, α(0) = 0, α′(+∞) = 0 and q(t)f(t, α(t), α′(t)) =
7

(1+t)7
which imply that

−(φ(α′(t)))′ = −

(
φ

(
1

(1 + t)2

))′

=
6

(1 + t)7
≤ q(t)f(t, α(t), α′(t)).

Hence α is a lower solution of (3.4). Let β(t) = 1. It is clear that β is an upper

solution of (3.4) and α(t) ≤ β(t), ∀t ≥ 0.

(H1)
′ For t ∈ R

+, x ∈ [α(t), β(t)] and y ∈ R, we have

f(t, x, y) =
t|y(x− 1)|

|x|
≤
t(1 − t

1+t
)|y|

t
1+t

= |y| = l(t)ψ(|y|),

where l(t) = 1 and ψ(y) = y. It is clear that ψ ∈ C(R+,R+) is nondecreasing and

l ∈ C(R+,R+). Moreover, we have

l0 = sup
t∈R+

q(t)(1 + t)l(t) = 7, M = sup
t∈R+

β(t)

1 + t
= 1, m = inf

t∈R+

α(t)

1 + t
= 0,

and ∫ +∞

0

q(τ)l(τ)dτ =

∫ +∞

0

7

(1 + τ)5
dτ < +∞.

Then
∫ +∞

0

φ−1(s)

ψ(φ−1(s))
ds =

∫ +∞

0

ds = +∞ > l0(M −m) +M

∫ +∞

0

q(τ)l(τ)dτ.
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(H2)
′ For all N > 0 and t ∈ R

+, we have δN (t) = sup
(x,y)∈DN

α,β
(t)

f(t, x, y) + 1 = N + 1

and ∫ +∞

0

q(τ)δN (τ)dτ =

∫ +∞

0

7(N + 1)

(1 + τ)5
< +∞,

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)δN(τ)dτ

)
ds =

(
7(N + 1)

4

) 1

3
∫ +∞

0

ds

(1 + s)
4

3

< +∞.

Then all conditions of Theorem 3.2 are met. Hence Problem (3.4) has at least one

solution x such that
t

1 + t
≤ x(t) ≤ 1, ∀ t ∈ R

+.
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