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ABSTRACT. We consider an abstract second order semilinear integrodifferential equation in-

volving fractional time derivatives of order between 0 and 2. Well-posedness is established under

appropriate conditions on the initial data and the nonlinearities. These conditions which depend on

the order of the fractional derivatives determine the exact underlying space.
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1. INTRODUCTION

Of concern is the following problem
{

u′′ (t) = Au(t) + f(t) +
∫ t

0
g
(

t, s, u (s) , Dβ1u (s) , . . . , Dβnu (s)
)

ds, t > 0

u (0) = u0 ∈ X, u′ (0) = u1 ∈ X

where 0 < βi ≤ 2, i = 1, . . . , n. Here the prime denotes time differentiation and

Dβi, i = 1, . . . , n denotes fractional time differentiation (in the sense of Riemann-

Liouville or Caputo). The operator A is the infinitesimal generator of a strongly

continuous cosine family C (t), t ≥ 0 of bounded linear operators in the Banach space

X, f and g are nonlinear functions from R+ to X and R+ × R+ × X × · · · × X to

X, respectively, u0 and u1 are given initial data in X.

This problem has been extensively studied in case β1 = · · · = βn = 0 or 1 (see [1-

5,7,8] and references therein, to cite but a few). Well-posedness has been proved using

fixed point theorems and the theory of strongly continuous cosine families in Banach

spaces developed in [15,16]. Several results on classical solutions and mild solutions

have been proved under different conditions on the nonlinearities and the initial data.

In case β1 = β2 = · · · = βn = 1, the natural underlying space where to look for

mild solutions is the space of continuously differentiable functions. In [10] the present

author (with Kirane and Medved) discussed the case where 0 < β1, β2, . . . , βn < 1. A

suitable space for the initial data and a suitable underlying space for the existence of

mild solutions have been found.
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Here we consider the case where 0 < βi < 2, i = 1, . . . , n. This situation is more

delicate as derivatives of order more that 1 will require functions (in the underlying

space) to be more regular than C1. On the other hand, when trying to prove existence

and uniqueness of classical solutions one is tempted to require more regularity on the

cosine family. It seems that the former difficulty cannot be avoided whereas we will

see that we can “throw” part of the requirement of smoothness of the cosine family

on the considered nonlinearities. This observation is valid for mild solutions as well.

For simplicity we will discuss the problem
{

u′′ (t) = Au(t) + f(t) +
∫ t

0
g (t, s, u (s) , Dγu (s)) ds, t > 0

u (0) = u0 ∈ X, u′ (0) = u1 ∈ X
(1.1)

with 1 < γ < 2.

The next section of this paper contains some notation and preliminary results

needed in our proofs. Section 3 treats existence and uniqueness of classical solutions

in appropriate spaces when the fractional derivatives are of Caputo type. Section 4

is devoted to the case of Riemann-Liouville fractional derivatives.

2. PRELIMINARIES

As announced earlier, in this section we present some notation, assumptions and

results needed in our proofs later. We start by the definitions of the different types

of fractional derivatives used in this paper.

Definition 2.1. The integral

(Iα
a+h)(x) =

1

Γ(α)

∫ x

a

h(t)dt

(x − t)1−α
, x > a

is called the Riemann-Liouville fractional integral of h of order α > 0 when the right

side exists.

Here Γ is the usual Gamma function

Γ(z) :=

∫ ∞

0

e−ssz−1ds, z > 0.

In particular, for ν > −1, we find

Iαxν =
Γ(ν + 1)

Γ(α + ν + 1)
xν+α. (2.1)

Definition 2.2. The (left hand) Riemann-Liouville fractional derivative of order

α > 0 is defined by

(Dα
a h)(x) =

1

Γ(n − α)

(

d

dx

)n ∫ x

a

h(t)dt

(x − t)α−n+1
, x > a, n = [α] + 1

whenever the right side is pointwise defined.
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Definition 2.3. The fractional derivative of order α > 0 in the sense of Caputo is

given by

(

CD
α

a h
)

(x) =
1

Γ(n − α)

∫ x

a

h(n)(t)dt

(x − t)α−n+1
, x > a, n = [α] + 1.

In particular

(Dβ
ah)(x) =

1

Γ(1 − β)

d

dx

∫ x

a

h(t)dt

(x − t)β
, x > a, 0 < β < 1

(

CDβ
ah

)

(x) =
1

Γ(1 − β)

∫ x

a

h′(t)dt

(x − t)β
, x > a, 0 < β < 1 (2.2)

and

(Dγ
ah)(x) =

1

Γ(2 − γ)

(

d

dx

)2 ∫ x

a

h(t)dt

(x − t)γ−1
, x > a, 1 < γ < 2

(

CD
γ

a h
)

(x) =
1

Γ(2 − γ)

∫ x

a

h′′(t)dt

(x − t)γ−1
, x > a, 1 < γ < 2. (2.3)

Remark 2.4. The fractional integral of order α is well defined on Lp, p ≥ 1 (see

[14]). Further, from Definition 2.2, it is clear that the Riemann-Liouville fractional

derivative is defined for any function h ∈ Lp, p ≥ 1 for which kn−α ∗ h is n times

differentiable (where kα(t) := tα−1/Γ(α) and ∗ is the incomplete convolution). In

fact, as domain of Dα
0 = Dα we can take

D(Dα) = {h ∈ Lp(0, T ) : kn−α ∗ h ∈ W n,p(0, T )}

where

W n,p(0, T ) :=

{

u : ∃ϕ ∈ Lp(0, T ) : u(t) =

n−1
∑

k=0

ck

tk

k!
+

∫ t

0

(t − s)n−1

(n − 1)!
ϕ(s)ds

}

.

In particular, we know that the absolutely continuous functions (p = n = 1) are differ-

entiable almost everywhere and therefore the Riemann-Liouville fractional derivative

of order 0 < β < 1 exists a.e. In this case (for an absolutely continuous function)

the derivative is summable (see Lemma 2.2 [13]) and the fractional derivative in the

sense of Caputo of order 0 < β < 1 exists as well. Moreover, we have the following

general relationship between the two types of fractional derivatives

(Dα
a h)(x) =

n−1
∑

k=0

h(k)(a)

Γ(1 + k − α)
(x − a)k−α +

1

Γ(n − α)

∫ x

a

h(n)(t)dt

(x − t)α−n+1

=
n−1
∑

k=0

h(k)(a)

Γ(1 + k − α)
(x − a)k−α +

(

CD
α

a h
)

(x), x > a (2.4)

in case h(x) ∈ ACn[a, b] := {f : [a, b] → R and (Dn−1f)(x) ∈ AC[a, b]}.

See [6,9,11-14] for more on fractional derivatives.

We will assume that
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(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t),

t ∈ R, of bounded linear operators in the Banach space X.

The associated sine family S(t), t ∈ R is defined by

S(t)x :=

∫ t

0

C(s)xds, t ∈ R, x ∈ X.

It is known (see [16,17]) that there exist constants M ≥ 1 and ω ≥ 0 such that

|C(t)| ≤ Meω|t|, t ∈ R and |S(t) − S(t0)| ≤ M

∣

∣

∣

∣

∫ t

t0

eω|s|ds

∣

∣

∣

∣

, t, t0 ∈ R. (2.5)

If we define

E := {x ∈ X : C(t)x is once continuously differentiable on R}

then we have

Lemma 2.5 (see [16,17]). Assume that (H1) is satisfied. Then

(i) S(t)X ⊂ E, t ∈ R,

(ii) S(t)E ⊂ D(A), t ∈ R,

(iii) d
dt

C(t)x = AS(t)x, x ∈ E, t ∈ R,

(iv) d2

dt2
C(t)x = AC(t)x = C(t)Ax, x ∈ D(A), t ∈ R.

Lemma 2.6 (see [16,17]). Suppose that (H1) holds, v : R → X a continuously

differentiable function and q(t) =
∫ t

0
S(t − s)v(s)ds. Then, q(t) ∈ D(A), q′(t) =

∫ t

0
C(t − s)v(s)ds and q′′(t) =

∫ t

0
C(t − s)v′(s)ds + C(t)v(0) = Aq(t) + v(t).

Definition 2.7. A function u ∈ C2(I, X) (I = [0, T ]) is called a classical solution of

(1.1) with Caputo fractional derivative if u(·) ∈ D(A), satisfies the equation in (1.1)

and the initial conditions are verified.

Definition 2.8. A continuous solution u, such that CD
γ
u(t) (Dγu(t) in case of

Riemann-Liouville fractional derivative) exists and is continuous, of the integro-

differential equation

u(t) = C(t)u0 + S(t)u1 +

∫ t

0

S(t − s)f(s)ds

+

∫ t

0

S(t − s)

∫ s

0

g(s, τ, u(τ),C Dγu(τ))dτ ds (2.6)

is called mild solution of problem (1.1).

It follows from [15] that, in case of continuity of the nonlinearities, solutions of

(1.1) are solutions of the more general problem in Definition 2.8.
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3. WELL POSEDNESS IN CASE OF CAPUTO DERIVATIVE

In this section we consider fractional derivatives in the sense of Caputo and prove

existence and uniqueness of a classical solution. We will use the space

CC
γ ([0, T ]) :=

{

v ∈ C([0, T ]) : CD
γ
v ∈ C([0, T ])

}

equipped with the norm ‖v‖γ := ‖v‖C +
∥

∥

CD
γ
v
∥

∥

C
where ‖.‖C is the uniform norm

in C([0, T ]).

Let XA be the space D(A) endowed with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖.

We need the following assumptions on f and g

(H2) f : R+ → X is continuously differentiable.

(H3) g : R+ × R+ × XA ×X → X is continuous and continuously differentiable

with respect to its first variable.

(H4) g and g1 (the derivative of g with respect to its first variable) are Lipschitz

continuous, that is

‖g(t, s, x1, y1) − g(t, s, x2, y2)‖ ≤ Ag (‖x1 − x2‖ + ‖y1 − y2‖) ,

‖g1(t, s, x1, y1) − g1(t, s, x2, y2)‖ ≤ Ag1
(‖x1 − x2‖ + ‖y1 − y2‖) ,

for some positive constants Ag and Ag1
.

Lemma 3.1. For 1 < γ < 2, u0 ∈ D(A) and u1 ∈ E we have

CD
γ
C(t)u0 = I2−γC(t)Au0

and

CD
γ
S(t)u1 = I2−γAS(t)u1.

Proof. These relations follow immediately from Definition 2.3 (or relation (2.3)) and

Lemma 2.5. Indeed, as u0 ∈ D(A) and u1 ∈ E, it is clear that

CDγC(t)u0 =
1

Γ(2 − γ)

∫ t

0

(t − s)1−γ d2

dt2
C(s)u0ds

=
1

Γ(2 − γ)

∫ t

0

(t − s)1−γC(s)Au0ds = I2−γC(t)Au0

and

CDγS(t)u1 =
1

Γ(2 − γ)

∫ t

0

(t − s)1−γ d

dt
C(s)u1ds

=
1

Γ(2 − γ)

∫ t

0

(t − s)1−γAS(s)u1ds = I2−γAS(t)u1.
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Lemma 3.2. Suppose that (H1) holds, S(t) is the sine family associated with the

cosine family C(t) and w : R → X a continuously differentiable function. Then, for

1 < γ < 2 and t ∈ [0, T ] we have

(

CD
γ)

(
∫ τ

0

S(τ − s)w(s)ds

)

(t) =

∫ t

0

I2−γC(t − s)w′(s)ds + I2−γC(t)w(0).

Proof. From Definition 2.3 (or relation (2.3)) and Lemma 2.6 applied to w (which is

a continuously differentiable function), we easily derive that

(

CDγ
)

(
∫ τ

0

S(τ − s)w(s)ds

)

(t) =
1

Γ(2 − γ)

∫ t

0

(t − τ)1−γ

(
∫ τ

0

S(τ − z)w(z)dz

)′′

dτ

=
1

Γ(2 − γ)

∫ t

0

(t − τ)1−γ

[
∫ τ

0

C(τ − z)w′(z)dz + C(τ)w(0)

]

dτ

=
1

Γ(2 − γ)

∫ t

0

(t − τ)1−γ

∫ τ

0

C(τ − z)w′(z)dzdτ +
1

Γ(2 − γ)

∫ t

0

(t − τ)1−γC(τ)w(0)dτ

=
1

Γ(2 − γ)

∫ t

0

dz

∫ t

z

(t − τ)1−γC(τ − z)w′(z)dτ + I2−γC(t)w(0)

=
1

Γ(2 − γ)

∫ t

0

dz

∫ t−z

0

(t − z − σ)1−γC(σ)w′(z)dσ + I2−γC(t)w(0)

=

∫ t

0

I2−γC(t − s)w′(s)ds + I2−γC(t)w(0), t ∈ [0, T ].

Now we state and prove the main result of this section.

Theorem 3.3. Assume that (H1)-(H4) hold. If u0 ∈ D(A) and u1 ∈ E then there

exists T > 0 and a unique function u : [0, T ] → X, u ∈ C ([0, T ]; XA) ∩ C2 ([0, T ]; X)

which satisfies (1.1) with Caputo fractional derivative CD
γ
u.

Proof. Let us define, for t ∈ [0, T ] and u ∈ CC
γ ([0, T ]),

(Ku)(t) := C(t)u0 + S(t)u1 +

∫ t

0

S(t − s)f(s)ds

+

∫ t

0

S(t − s)

∫ s

0

g
(

s, τ, u(τ),C Dγu(τ)
)

dτ ds. (3.1)

Notice that C(t)u0 ∈ D(A) because u0 ∈ D(A) and we have AC(t)u0 = C(t)Au0.

From the facts that u1 ∈ E and S(t)E ⊂ D(A) ((ii) Lemma 2.5) it is clear that

S(t)u1 ∈ D(A). Moreover, it follows from Lemma 2.5, (H2) and (H3) that both

integral terms in (3.1) are in D(A). Therefore, Ku ∈ C ([0, T ]; D(A)). In addition to
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that we have from Lemma 2.6,

(AKu)(t) = C(t)Au0 + AS(t)u1 +

∫ t

0

C(t − s)f ′(s)ds + C(t)f(0) − f(t)

+

∫ t

0

C(t − s)

[

g
(

s, s, u(s), CD
γ
u(s)

)

+

∫ s

0

g1

(

s, τ, u(τ), CD
γ
u(τ)

)

]

dτ ds

−

∫ t

0

g
(

t, τ, u(τ),C Dγu(τ)
)

dτ, t ∈ [0, T ]. (3.2)

Next, applying the operator CD
γ

to both sides of (3.1), we get in virtue of Lemma 3.1

CDγ(Ku)(t) = I2−γC(t)Au0 + I2−γAS(t)u1 + CD
γ
∫ t

0

S(t − s)f(s)ds

+ CD
γ
∫ t

0

S(t − s)

∫ s

0

g
(

s, τ, u(τ), CD
γ
u(τ)

)

dτ ds, t ∈ [0, T ]. (3.3)

Regarding the third term in the right hand side of (3.3), we have by Lemma 3.2, for

t ∈ [0, T ]

(

CD
γ)

(
∫ τ

0

S(τ − s)f(s)ds

)

(t) =

∫ t

0

I2−γC(t − s)f ′(s)ds + I2−γC(t)f(0)

and

CD
γ
∫ t

0

S(t − s)

∫ s

0

g
(

s, τ, u(τ), CD
γ
u(τ)

)

dτ ds

=

∫ t

0

I2−γC(t − s)
[

g
(

s, s, u(s), CD
γ
u(s)

)

+

∫ s

0

g1

(

s, τ, u(τ),C Dγu(τ)
)

dτ
]

ds

because of the continuous differentiability of f(s) and
∫ s

0

g
(

s, τ, u(τ), CD
γ
u(τ)

)

dτ.

Therefore Ku ∈ CC
γ ([0, T ]) and K maps CC

γ ([0, T ]) into CC
γ ([0, T ]).

Now we want to prove that K is a contraction on CC
γ endowed with the metric

ρ(u, v) := sup
0≤t≤T

(

‖u(t) − v(t)‖ + ‖A (u(t) − v(t))‖ +
∥

∥

CD
γ
u(t) − CD

γ
v(t)

∥

∥

)

.

For u, v in CC
γ , we have from (3.1),

‖(Ku)(t) − (Kv)(t)‖ ≤

∫ t

0

(
∫ t−s

0

Meωτdτ

)

Ag

∫ s

0

[‖u(τ) − v(τ)‖A

+
∥

∥

CD
γ
u(τ) − CD

γ
v(τ)

∥

∥

]

dτ ds.

Thus,

‖(Ku)(t) − (Kv)(t)‖ ≤
AgT

2M

2

(
∫ T

0

eωτdτ

)

ρ(u, v). (3.4)
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From (3.2) we infer

‖(AKu)(t) − (AKv)(t)‖

≤ MAg

∫ t

0

eω(t−s)
(

‖u(s) − v(s)‖A +
∥

∥

CD
γ
u(s) − CD

γ
v(s)

∥

∥

)

ds

+ MAg1

∫ t

0

eω(t−s)

∫ s

0

(

‖u(τ) − v(τ)‖A +
∥

∥

CD
γ
u(s) − CD

γ
v(s)

∥

∥

)

dτ ds

+ Ag

∫ t

0

(

‖u(s) − v(s)‖A +
∥

∥

CD
γ
u(s) − CD

γ
v(s)

∥

∥

)

ds.

Hence

‖(AKu)(t) − (AKv)(t)‖ ≤ MAg

(
∫ T

0

eω(T−s)ds

)

ρ(u, v)

+ MAg1

T 2

2

(
∫ T

0

eω(T−s)ds

)

ρ(u, v) + AgTρ(u, v)

≤

[

(Ag + Ag1
T 2)M

(
∫ T

0

eω(T−s)ds

)

+ AgT

]

ρ(u, v). (3.5)

Finally, the relations (3.3) and Lemma 3.2 imply that

∥

∥

CD
γ
(Ku)(t) − CD

γ
(Kv)(t)

∥

∥

≤ Ag

∫ t

0

I2−γ |C(t − s)|
[

‖u(s) − v(s)‖A +
∥

∥

CD
γ
u(s) − CD

γ
v(s)

∥

∥

]

ds

+ Ag1

∫ t

0

I2−γ |C(t − s)|

∫ s

0

[

‖u(τ) − v(τ)‖A +
∥

∥

CD
γ
u(τ) − CD

γ
v(τ)

∥

∥

]

dτ ds

or

∥

∥

CD
γ
(Ku)(t) − CD

γ
(Kv)(t)

∥

∥

≤

[

MAgT
2−γ

Γ(3 − γ)

∫ T

0

eωτdτ +
MAg1

T 3−γ

Γ(3 − γ)

∫ T

0

eωτdτ

]

ρ(u, v)

≤
MT 2−γ

Γ(3 − γ)
(Ag + Ag1

T )

(
∫ T

0

eωτdτ

)

ρ(u, v). (3.6)

Choosing T sufficiently small in (3.4)-(3.6) we infer that K is a contraction on

CC
γ ([0, T ]) and hence there exists a unique mild solution u ∈ CC

γ ([0, T ]). Further-

more, it is clear that u ∈ C2 ([0, T ]; X) and satisfies problem (1.1) with Caputo

fractional derivative because

u(t) = C(t)u0 + S(t)u1 +

∫ t

0

S(t − s)f(s)ds

+

∫ t

0

S(t − s)

∫ s

0

g
(

s, τ, u(τ), CD
γ
u(τ)

)

dτ ds
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is twice continuously differentiable and by Lemma 2.6

u′′(t) = AC(t)u0 + AS(t)u1 + A

∫ t

0

S(t − s)f(s)ds + f(t)

+ A

∫ t

0

S(t − s)

∫ s

0

g
(

s, τ, u(τ),C Dγu(τ)
)

dτ ds

+

∫ t

0

g
(

t, τ, u(τ),C Dγu(τ)
)

dτ

= Au(t) + f(t) +

∫ t

0

g
(

t, τ, u(τ),C Dγu(τ)
)

dτ.

4. THE CASE OF R-L DERIVATIVE

Here we are concerned about solutions of problem (2.6) with Riemann-Liouville

fractional derivative. The admissible space for the initial data would be “larger” than

the one for classical solutions ((u0, u1) ∈ D(A) × E) as expected. However, initial

data here must be “more regular” than the one existing in the literature with a first

order derivative in the nonlinearity ((u0, u1) ∈ E × X). For 0 < λ < 2, we define

Eλ := {x ∈ X : DλC(t)x is continuous on R+}

and

CRL
γ ([0, T ]) := {v ∈ C([0, T ]) : Dγv ∈ C([0, T ])}

equipped with the norm ‖v‖γ := ‖v‖C + ‖Dγv‖C where ‖.‖C is the uniform norm in

C([0, T ]).

We will need the following assumptions

(H5) f : R+ → X is a continuous function such that Dγ−1f ∈ C([0, T ]), that is

f ∈ CRL
γ−1([0, T ])

(H6) g : R+ ×R+ ×X ×X → X is continuous and continuously differentiable with

respect to its first variable.

We will need the result below which is the analogue to Lemma 3.2 for the case

of Riemann-Liouville derivatives.

Lemma 4.1. Suppose that (H1) holds, S(t) is the sine family associated with the

cosine family C(t) and w : R → X a function in CRL
γ−1([0, T ]). Then, for 1 < γ < 2,

we have

(Dγ)

(
∫ τ

0

S(τ − s)w(s)ds

)

(t) =

∫ t

0

C(σ)Dγ−1w(t − σ)dσ, t ∈ [0, T ].
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Proof. From Definition 2.2 and Lemma 2.6 applied to w which is a continuous function

such that Dγ−1w ∈ C([0, T ]), we easily derive that

(Dγ)

(
∫ τ

0

S(τ − s)w(s)ds

)

(t) =
1

Γ(2 − γ)

(

d

dt

)2 ∫ t

0

(t − τ)1−γ

∫ τ

0

S(τ − s)w(s)dsdτ

=
1

Γ(2 − γ)

(

d

dt

)2 ∫ t

0

∫ t

s

(t − τ)1−γS(τ − s)w(s)dτ ds

=
1

Γ(2 − γ)

(

d

dt

)2 ∫ t

0

ds

∫ t−s

0

(t − s − σ)1−γS(σ)w(s)dσ

=
1

Γ(2 − γ)

d

dt

∫ t

0

d

dt

(
∫ t−s

0

σ1−γS(t − s − σ)w(s)dσ

)

ds

=
1

Γ(2 − γ)

d

dt

∫ t

0

(
∫ t−s

0

σ1−γC(t − s − σ)w(s)dσ

)

ds

=
1

Γ(2 − γ)

d

dt

∫ t

0

(
∫ s

0

(s − σ)1−γC(σ)w(t − s)dσ

)

ds

=
1

Γ(2 − γ)

d

dt

∫ t

0

C(σ)

∫ t−σ

0

(t − σ − v)1−γw(v)dvdσ

=

∫ t

0

C(σ)Dγ−1w(t− σ)dσ + C(t)I2−γw(0)

=

∫ t

0

C(σ)Dγ−1w(t− σ)dσ

The following result can be found in [14] (Remark 2.4 (2.68)).

Lemma 4.2. Let α > 0, β < 0 and ϕ ∈ L1(a, b) be such that In+βϕ ∈ ACn([a, b]).

Then

Iα
a+Iβ

a+ϕ = Iα+β
a+ ϕ −

n−1
∑

k=0

ϕ
(n−k−1)
n+β (a)

Γ(α − k)
(x − a)α−k−1

where ϕn+β(x) = In+β
a+ ϕ(x) and n = [−β] + 1

Here is the main result of this section

Theorem 4.3. Assume that (H1) and (H4)-(H6) hold. If (u0, u1) ∈ Eγ × Eγ−1,

then there exists T > 0 and a unique solution u ∈ CRL
γ ([0, T ]) of problem (2.6) with

Riemann-Liouville fractional derivative.

Proof. For t ∈ [0, T ], consider the operator

(Ku)(t) := C(t)u0 + S(t)u1 +

∫ t

0

S(t − s)f(s)ds

+

∫ t

0

S(t − s)

∫ s

0

g(s, τ, u(τ), Dγu(τ))dτ ds. (4.1)
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If u ∈ CRL
γ ([0, T ]) then clearly Ku ∈ C([0, T ]; X). Moreover, applying the operator

Dγ to both sides of (4.1) and using Lemma 4.2 to the third and fourth terms in the

right hand side of (4.1), we find

Dγ(Ku)(t) = DγC(t)u0 + Dγ−1C(t)u1 +

∫ t

0

C(t − s)Dγ−1f(s)ds

+

∫ t

0

C(t − s)Dγ−1

(
∫ s

0

g(s, τ, u(τ), Dγu(τ))dτ

)

ds. (4.2)

Here we have used the relation

DγS(t)u1 =
1

Γ(2 − γ)

(

d

dt

)2 ∫ t

0

(t − τ)1−γS(τ)u1dτ

=
1

Γ(2 − γ)

(

d

dt

)2 ∫ t

0

τ 1−γS(t − τ)u1dτ

=
1

Γ(2 − γ)

d

dt

∫ t

0

τ 1−γC(t − τ)u1dτ +
1

Γ(2 − γ)

d

dt
t1−γS(0)u1

= Dγ−1C(t)u1.

For the last term in (4.2), we can write with the help of (2.2)

Dγ−1

(
∫ s

0

g(s, τ, u(τ), Dγu(τ))dτ

)

=
1

Γ(2 − γ)

∫ s

0

(s − σ)1−γ d

dσ

(
∫ σ

0

g(σ, τ, u(τ), Dγu(τ))dτ

)

dσ

=
1

Γ(2 − γ)

∫ s

0

(s − σ)1−γ

[
∫ σ

0

g1(σ, τ, u(τ), Dγu(τ))dτ + g(σ, σ, u(σ), Dγu(σ))

]

dσ

= I2−γ

∫ s

0

g1(s, τ, u(τ), Dγu(τ))dτ + I2−γg(s, s, u(s), Dγu(s)).

Therefore

Dγ(Ku)(t) = DγC(t)u0 + Dγ−1C(t)u1 +

∫ t

0

C(t − s)Dγ−1f(s)ds

+

∫ t

0

C(t − s)

[

I2−γ

∫ s

0

g1(s, τ, u(τ), Dγu(τ))dτ + I2−γg(s, s, u(s), Dγu(s))

]

ds.

(4.3)

This relation (4.3), together with our assumptions on the initial data, f , g, g1 and

the properties of the cosine family, shows that K maps CRL
γ ([0, T ]) to CRL

γ ([0, T ]).

Furthermore, for u, v ∈ CRL
γ ([0, T ]), we see that

‖(Ku)(t) − (Kv)(t)‖

≤ MAg

∫ t

0

(
∫ t−s

0

eωτdτ

)
∫ s

0

(‖u(τ) − v(τ)‖ + ‖Dγu(τ) − Dγv(τ)‖) dτ ds

≤ MAg

(
∫ T

0

eωτdτ

)

T 2

2
‖u(t) − v(t)‖γ .
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Finally,

‖(DγKu)(t) − (DγKv)(t)‖

≤ Ag1

∫ t

0

|C(t − s)| I2−γ

∫ s

0

(‖u(τ) − v(τ)‖ + ‖Dγu(τ) − Dγv(τ)‖) dτ ds

+ Ag

∫ t

0

|C(t − s)| I2−γ (‖u(s) − v(s)‖ + ‖Dγu(s) − Dγv(s)‖) ds

≤
MT 2−γ

Γ(3 − γ)
(Ag + Ag1

T )

(
∫ T

0

eω(T−s)ds

)

‖u(t) − v(t)‖γ .

We conclude that, for T sufficiently small, K is a contraction on the complete metric

space CRL
γ ([0, T ]) and hence there exists a unique mild solution to (1.1).
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