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ABSTRACT. In this paper, some hybrid fixed point theorems concerning the operator inclusions

x ∈ AxBx + Cx in a Banach algebra are proved. They are applied to some first order ordinary

differential inclusions of initial and boundary value problems for proving the existence theorems

under mixed Lipschitz and compactness type conditions. Our results includes the multi-valued

hybrid fixed point theorems of Dhage [1, 2, 3] as special cases.

AMS (MOS) Subject Classification. 47H10, 34A60

1. INTRODUCTION

Krasnoselskii [4] initiated the study of hybrid fixed point theorems in Banach

spaces by combining the well-known metric fixed point theorem of Banach [5, page

16] with the topological fixed point theorem of Schauder [5, page 56] which is known

as the Krasnoselskii fixed point theorem in nonlinear analysis. There are several

extensions and generalizations of Krasnoselskii’s fixed point theorem over the course

of time. See Burton [6], O’Regan [7] and the references therein. Similarly, another

hybrid fixed point theorem similar to that of Krasnoselskii is proved by the present

author [8] in Banach algebras and since then, several extensions and generalizations of

this fixed point theorem have also been proved. See Dhage [8, 9, 10] and the references

therein. A unified generalization of the above two hybrid fixed point theorems of

Krasnoselskii [4] and Dhage [8] has been proved in Dhage [9] and it has been further

developed in various directions. See Dhage [10, 11, 12] and the references given

therein. It is known that these hybrid fixed theorems have some nice applications

to nonlinear integral equations of mixed type that arise in the inversions of certain

nonlinear perturbed differential equations. See for example, Krasnoselskii [4], Zeidler

[5], Granas and Dugundji [13], Dhage [8] and the references therein.

The fixed point theory for multi-valued mappings is an important topic of set-

valued analysis. Several well-known fixed point theorems of single-valued mappings
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such as those of Banach and Schauder have been extended to multi-valued mappings

in Banach spaces. The hybrid fixed point theorems of single-valued mappings are also

not an exception. Very recently, multi-valued analogues of Krasnoselskii fixed point

theorem are obtained in Petrusel [14] and Dhage [3]. In the present paper, we prove

some multi-valued analogues of the unified hybrid fixed point theorem of Krasnoselskii

[4] and Dhage [9] and its variants due the present author [9, 10, 11, 12, 15], and then we

apply them to differential inclusions with initial and periodic boundary conditions to

prove the existence results under generalized Lipschitz and Carathéodory conditions.

2. PRELIMINARIES

Before proving our main hybrid fixed point theorems for multi-valued operators

in Banach algebras, we give some terminologies useful in the sequel.

Let X be a metric space and let T : X → X. A mapping T : X → X is called

Lipschitz if there exists a constant q > 0 such that ‖Tx − Ty‖ ≤ q‖x − y‖ for

all x, y ∈ X. If q < 1, then T is called a contraction on X with the contraction

constant q. Then T is called a compact operator if T (X) is a compact subset of

X. Again, T is called totally bounded if for any bounded subset S of X, T (S) is

a totally bounded set of X. Further, T is called completely continuous if it is a

continuous and totally bounded operator on X. Note that every compact operator is

totally bounded, but the converse may not be true. However, these two notions are

equivalent on a bounded subset of a complete metric space X.

We are interested in the multi-valued analogues of the following types of hybrid

fixed point theorems of Dhage [9] involving three operators in Banach algebras.

Theorem 2.1 (Dhage [9]). Let S be a closed, convex and bounded subset of a Banach

algebra X and let A,C : X → X, and B : S → X be three operators such that

(a) A and C are Lipschitz with the Lipschitz constants q1 and q2 respectively,

(b) B is completely continuous, and

(c) AxBy + Cx ∈ S for all x, y ∈ S.

Then the operator equation AxBx+Cx = x has a solution, whenever Mq1 + q2 < 1,

where M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}.

Note that the above fixed point theorem involves the hypothesis of the com-

plete continuity of the operator B, however, in the case of multi-valued operators

we have different types of continuities, namely, lower semi-continuity and upper semi-

continuity etc. Here, in this present work, we shall formulate the fixed point theorems

for multi-valued mappings for each of these continuity criteria. Below we give some

preliminaries of the multi-valued analysis which will be needed in the sequel.
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Let X be a Banach space and let P(X) denote the class of all subsets of X. We

set

Pp(X) = {A ⊂ X | A is non-empty and has a property p}. (2.1)

Here, p may be p = closed (in short cl) or p = convex (in short cv) or p = bounded

(in short bd) or p = compact (in short cp). Thus Pcl(X), Pcv(X), Pbd(X) and

Pcl(X) denote, respectively, the classes of all closed, convex, bounded and compact

subsets of X. Similarly, Pcl,bd(X) and Pcv,cp(X) denote, respectively, the classes of

closed-bounded and compact-convex subsets of X.

A correspondence T : X → Pp(X) is called a multi-valued operator or multi-

valued mapping on X. A point u ∈ X is called a fixed point of T if u ∈ Tu and the

set of all fixed points of T in X is denoted by FT .

A multi-valued operator T is called lower semi-continuous (in short l.s.c.) if

G is any open subset of X, then the weak inverse

T−(G) = {x ∈ X | Tx ∩G 6= ∅} (2.2)

is an open subset of X. Similarly, the multi-valued operator T is called upper semi-

continuous (in short u.s.c.) if the set

T+(G) = {x ∈ X | Tx ⊂ G}

is open set in X for every open set G in X. Finally, T is called continuous if it is

lower as well as upper semi-continuous on X. A multi-valued map T : X → Pcp(X)

is called compact if T (X) is a compact subset of X. T is called totally bounded if

for any bounded subset S of X, T (S) =
⋃

x∈S Tx is a totally bounded subset of X. It

is clear that every compact multi-valued operator is totally bounded, but the converse

may not be true. However, these two notions are equivalent on a bounded subset of

X. Finally, T is called completely continuous if it is upper semi-continuous and

totally bounded multi-valued operator on X.

Let X be a Banach algebra. Then, for any A,B ∈ Pp(X), let us denote

A± B = {a± b | a ∈ A, b ∈ B},

A ◦B = AB = {ab | a ∈ A, b ∈ B},

and

λA = {λa | a ∈ A}

for λ ∈ R. Similarly, let

‖A‖ = {‖a‖ | a ∈ A}

and

‖A‖P = sup{‖a‖ | a ∈ A}.
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Let A,B ∈ Pcl(X) and let a ∈ A. Let

D(a,B) = inf{‖a− b‖ | b ∈ B}

and

ρ(A,B) = sup{D(a,B) | a ∈ A}.

The function dH : Pcl(X) ×Pcl,bd(X) → R
+ defined by

dH(A,B) = max{ρ(A,B), ρ(B,A)} (2.3)

is a metric and is called the Hausdorff metric on X. It is clear that

dH(0, C) = ‖C‖P = sup{‖c‖ | c ∈ C}

for any C ∈ Pcl(X).

Definition 2.2. Let (X, dX) and (Y, dY ) be two metric spaces. A multi-valued map-

ping F : X → Pp(Y ) is called H-lower semi-continuous at x0 ∈ X if and only if

for ǫ > 0 there exists η > 0 such that F (x0) ⊂ V (F (x), ǫ) for all x ∈ Bη(x0),

where Bη(x0) is an open ball in X centered at x0 of radius ǫ and V (F (x), ǫ) is a

closed neighborhood of F (x) in Y . F is called H-lower semi-continuous on X if it

is H-lower semi-continuous at each point x0 of X. Similarly, F is called H-upper

semi-continuous at x0 ∈ X if and only if for ǫ > 0 there exists η > 0 such that

F (x) ⊂ V (F (x0), ǫ) for all x ∈ Bη(x0). F is called H-upper semi-continuous on X if

it is H-upper semi-continuous at each point x0 of X.

Note that every Lipschitz multi-valued operator F : X → Pp(Y ) is H-lower

semi-continuous as well as H-upper semi-continuous on X.

Remark 2.3. It is known that every upper semi-continuous operator F on X is H-

upper semi-continuous on X, but the converse may not be true. However, converse

holds, if the multi-valued mapping F is compact-valued on X.

Lemma 2.4 (Dhage [20]). Let X be a Banach algebra. If A,B,C ∈ Pbd,cl(X), then

ρ(AC,BC) ≤ dH(0, C) ρ(A,B) and dH(AC,BC) ≤ dH(0, C) dH(A,B).

Definition 2.5. A multi-valued mapping T : X → Pcl(X) is called Lipschitz if there

exists a real number q > 0 such that

dH(Tx, Ty) ≤ q‖x− y‖ (2.4)

for all x, y ∈ X. The real number q is called the Lipschitz constant of T on X. If

q < 1, then T is called a multi-valued contraction on X with the contraction constant

q.

The following fixed point theorem for the multi-valued contraction mappings

appears in Covitz and Nadler [21].
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Theorem 2.6. Let (X, d) be a complete metric space and let T : X → Pcl(X) be a

multi-valued contraction. Then the fixed point set FT of T is a non-empty and closed

subset of X.

Remark 2.7. Note that if the multi-valued mapping T in Theorem 2.6 has compact

values, then the fixed point set FT of T is a non-empty and compact subset of X.

3. MULTI-VALUED HYBRID FIXED POINT THEORY

Before going to the main fixed point results, we state some lemmas useful in the

sequel.

Lemma 3.1 (Lim [25]). Let (X, d) be a complete metric space and let T1, T2 : X →

Pbd,cl(X) be two multi-valued contractions with the same contraction constant k. Then

ρ(FT1
,FT2

) ≤
1

1 − k
sup
x∈X

ρ(T1(x), T2(x)). (3.1)

Lemma 3.2. Let A : X → Pbd(X) be a multi-valued Lipschitz operator. Then for

any bounded subset S of X, we have that A(S) is bounded.

Proof. Let S be a bounded subset of the Banach space X. Then there is constant

r > 0 such that ‖x‖ ≤ r for all x ∈ S. Since A is Lipschitz, we have

‖Ax‖P = dH(Ax, 0)

≤ dH(Ax,A0) + dH(A0, 0)

≤ q ‖x‖ + ‖A0‖P

≤ q r + ‖A0‖P

= δ

for all x ∈ S. Hence A(S) is bounded.

Now we state a key result due to Rybinski [24] that will be useful in the sequel.

Theorem 3.3. Let S be a nonempty and closed subset of a Banach space X and let

Y be a metric space. Assume that the multi-valued operator F : S × Y → Pcl,cv(S)

satisfies

(a) dH(F (x1, y), F (x2, y)) ≤ q‖x1 − x2‖ for all (x1, y), (x2, y) ∈ S × Y , where q < 1,

(b) for every x ∈ S, F (x, ·) is lower semi-continuous (briefly l.s.c.) on Y .

Then there exists a continuous mapping f : S×Y → S such that f(x, y) ∈ F (f(x, y), y)

for each (x, y) ∈ S × Y .

Now we are in a position to formulate the multi-valued hybrid fixed point the-

orems of this paper. Our first fixed point theorem for multi-valued mappings in a

Banach algebra is the following.
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Theorem 3.4. Let S be a closed convex and bounded subset of the Banach algebra X

and let A,C : X → Pcl,cv,bd(X) and B : S → Pcp,cv(X) be three multi-valued operators

such that

(a) A and C are multi-valued Lipschitz operators with the Lipschitz constants q1 and

q2, respectively,

(b) B is l.s.c. and compact,

(c) AxBy + Cx ∈ Pcl,cv(S) for all x, y ∈ S, and

(d) q1M + q2 < 1, where M = ‖ ∪ B(S)‖P = sup{‖B(x)‖P | x ∈ S}.

Then the operator inclusion x ∈ AxBx+ Cx has a solution.

Proof. Define a multi-valued operator T : S × S → Pcl,cv(S) by

T (x, y) = AxBy + Cx, (3.2)

for x, y ∈ S. We will show that T (x, y) is multi-valued contraction in x for each fixed

y ∈ X. Let x1, x2 ∈ X be arbitrary. Then by Lemma 3.2,

dH(T (x1, y), T (x2, y)) = dH(A(x1)B(y) + C(x1), A(x2)B(y) + C(x1))

≤ dH(Ax1, Ax2) dH(0, By) + dH(Cx1, Cx2)

≤ q1‖x1 − x2‖ ‖B(S)‖P + q2‖x1 − x2‖

≤ q1M‖x1 − x2‖ + q2‖x1 − x2‖

= q‖x1 − x2‖

where, q = (q1M + q2) < 1. This shows that the multi-valued operator Ty(·) =

T (·, y) is a multi-valued contraction on S with the contraction constant q. Hence an

application of the Covitz-Nadler fixed point theorem yields that the fixed point set

FTy
= {x ∈ S | x ∈ A(x)B(y) + C(x)} (3.3)

is a nonempty and closed subset of S for each y ∈ S.

Now the operator T (x, y) satisfies all the conditions of Theorem 3.3 and hence an

application of it yields that there exists a continuous mapping f : S×S → S such that

f(x, y) ∈ A(f(x, y))B(y) + C(f(x, y)). Let us define H(y) = FTy
, H : S → Pcl(S).

Let us consider the single-valued operator h : S → S defined by h(x) = f(x, x), for

each x ∈ S. Then h is a continuous mapping having the property that

h(x) = f(x, x) ∈ A(f(x, x))B(x) + C(f(x, x)) = A(h(x))B(x) + C(h(x)) (3.4)

for each x ∈ S.

Now, we will prove that h is compact on S. To do this, it is sufficient to show

that H is compact on S. By Lemma 3.2, there exists a constant δ > 0 such that
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‖Ax‖ ≤ δ for all x ∈ S. Let ǫ > 0. Since B is compact on S, B(S) is compact. Then

there exists Y = {y1, . . . , yn} ⊂ X such that

B(S) ⊂ {w1, . . . , wn} + B
(

0,
1 − (q1M + q2)

δ
ǫ
)

⊂
n
⋃

i=1

B(yi) + B
(

0,
1 − (q1M + q2)

δ
ǫ
)

,

where wi ∈ B(yi) for each i = 1, 2, . . . , n, and B(a, r) is an open ball in X centered

at a ∈ X of radius r. It, therefore, follows that, for each y ∈ S,

B(y) ⊂
n

⋃

i=1

B(yi) + B

(

0,
1 − (q1M + q2)

δ
ǫ

)

,

and hence there exists an element yk ∈ Y such that

ρ(B(y), B(yk)) <
1 − (q1M + q2)

δ
ǫ.

Then

ρ(H(y), H(yk)) = ρ(FTy
,FTyk

)

≤
1

1 − (q1M + q2)
sup
x∈S

ρ(Ty(x), Tyk
(x))

=
1

1 − (q1M + q2)
sup
x∈Y

ρ(A(x)B(y) + C(x), A(x)B(yk) + C(x))

≤
1

1 − (q1M + q2)
sup
x∈Y

ρ(0, Ax)ρ(B(y), B(yk))

<
δ

1 − (q1M + q2)

1 − (q1M + q2)

δ
ǫ

= ǫ. (3.5)

Thus, for each u ∈ H(y) there exists vk ∈ H(yk) such that ‖u − vk‖ < ǫ. Hence,

for each y ∈ Y , one has H(y) ⊂
n

⋃

i=1

B(vi, ǫ), where vi ∈ H(yi), i = 1, 2, . . . , n. This

further implies that h(S) ⊂ H(S) ⊂
n

⋃

i=1

B(vi, ǫ), and so h is a compact operator on

S. Now the mapping h : S → S satisfies all the assumptions of Schauder’s fixed

point theorem and hence h has a fixed point, that is, there is a point u ∈ S such that

u = h(u). From (3.2) it follows that u = h(u) ∈ A(h(u))Bu+C(h(u)) = AuBu+Cu

This completes the proof.

An improvement of Theorem 3.4 under weaker hypothesis (c) thereof is given in

the following multi-valued hybrid fixed point theorem.

Theorem 3.5. Let S be a closed convex and bounded subset of the Banach algebra X

and let A,C : X → Pbd,cl,cv(X) and B : S → Pcp,cv(X) be three multi-valued operators

such that
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(a) A and C are multi-valued Lipschitz with the Lipschitz constants q1 and q2, re-

spectively,

(b) B is l.s.c. and compact,

(c) AxBy + Cx ∈ Pcl,cv(X) and x ∈ AxBy + Cx⇒ x ∈ S for all y ∈ S, and

(d) q1M + q2 < 1, where M = ‖ ∪ B(S)‖ = sup{‖B(x)‖ | x ∈ S}.

Then the operator inclusion x ∈ AxBx+ Cx has a solution in S.

Proof. Let y ∈ S be fixed and define the multi-valued operator Ty : X×S → Pcl,cv(X)

by

Ty(x) = AxBy + Cx, x ∈ X.

Then proceeding as in the proof of Theorem 3.4, it can be proved that Ty is a multi-

valued contraction on X. Now an application of Theorem 2.6 yields that the fixed

point set FTy
of Ty is non-empty and closed in X. Thus we have

FTy
= {u ∈ X | u ∈ AuBy + Cu} ⊂ X

is nonempty and closed for each y ∈ S. From hypothesis (c), it follows that FTy
⊂ S

for all y ∈ S.

Note that the function T (x, y) satisfies all the conditions of Theorem 3.3 and

hence an application of it yields that there is a continuous function f : X × S → S

satisfying

f(x, y) ∈ T (f(x, y), y) = A(f(x, y))By + C(f(x, y))

for each y ∈ S. Now define a multi-valued operator H : S → S by H(y) = FTy
.

Consider the single-valued mapping h : S → X by

h(y) = f(y, y) ∈ A(f(y, y))Bx+ C(f(y, y)) = A(h(y))By + C(h(y)).

Clearly h is continuous and maps S into itself. Obviously h(y) ∈ H(y) for each y ∈ S.

Again proceeding with the arguments as in the proof of Theorem 3.4, it can be shown

that h is compact on S. Now the desired conclusion follows by an application of

Schauder’s fixed point principle to the mapping h on S. This completes the proof.

The Kuratowskii and Hausdorff measures α and β of noncompactness of a bounded

set S in a Banach space are the nonnegative real numbers α(S) and β(S) defined by

α(S) = inf
{

r > 0 : S ⊆
n

⋃

i=1

Si, diam (Si) ≤ r ∀ i
}

, (3.6)

and

β(S) = inf
{

r > 0 : S ⊂
n

⋃

i=1

Bi(xi, r), for some xi ∈ X
}

, (3.7)

where, Bi(xi, r) = {x ∈ X | d(x, xi) < r}.

Discussion of Kuratowskii and Hausdorff measures of noncompactness appear in

Akhmerov et al. [16], Zeidler [5] and the references therein.
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Remark 3.6. It is known that β(S) ≤ α(S) ≤ 2β(S) for every bounded subset S of

the Banach space X.

Remark 3.7. (Deimling [17]) It is known that if T : X → Pcp(X) is a multi-

valued contraction with a contraction constant k, then β(T (S)) ≤ k β(S) for all

S ∈ Pcl,bd(X). Similarly, if T is a single-valued contraction on X with a contraction

constant k, then α(T (S)) ≤ kα(S) for S ∈ Pbd(X).

Definition 3.8. A mapping T : X → Pcl,bd(X) is called condensing if for any bounded

subset S of X, T (S) is bounded and β(T (S)) < β(S) for β(S) > 0.

Note that contractions and completely continuous mappings are condensing but

the converse may not be true. The following fixed point theorem for condensing multi-

valued mappings is well-known. See Hu and Papageorgiou [18] and the references

therein.

Theorem 3.9. Let S be a closed convex and bounded subset of a Banach space X

and let T : S → Pcp,cv(S) be a upper semi-continuous and β-condensing multi-valued

operator. Then T has a fixed point point.

We need the following result in the sequel.

Lemma 3.10 (Banas and Lecho [19]). Let X be a Banach algebra. If S1, S2 ∈ Pbd(X),

then

β(S1 ◦ S2) ≤ β(S1)‖S2‖P + β(S2)‖S1‖P .

Now we apply Theorem 3.9 in conjunction with Lemma 3.10 to yield the following

fixed point theorem.

Theorem 3.11. Let S be a closed, convex and bounded subset of the Banach algebra

X and let A,B,C : S → Pcp,cv(X) be three multi-valued operators satisfying

(a) A and C are Lipschitz with the Lipschitz constants q1 and q2, respectively,

(b) B is compact and upper semi-continuous,

(c) AxBx+ Cx ∈ Pcv(S) for each x ∈ S, and

(d) Mq1 + q2 < 1, where M = ‖ ∪ B(S)‖P = sup{‖B(x)‖P | x ∈ S}.

Then the operator inclusion x ∈ AxBx+ Cx has a solution.

Proof. Define the mapping T : S → Pp(S) by

Tx = AxBx+ Cx, x ∈ S. (3.8)

We shall show that T satisfies all the conditions of Theorem 2.6 on S.
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Step I: First we claim that T defines a multi-valued map T : S → Pcp,cv(S).

Obviously, Tx is a convex subset of S for each x ∈ S in view of hypothesis (c). From

Lemma 3.10 and Remark 3.2, it follows that

β(Tx) ≤ β(Ax · Bx) + β(Cx)

≤ β(Ax).‖B(x)‖P + β(Bx).‖A(x)‖P + β(Cx)

≤ q1β({x}) ‖B(x)‖P + 0 + q2β({x})

= 0

for every x ∈ S and the claim follows immediately.

Step II: Next, we shall show that the mapping T is an upper semi-continuous

on S. Since S is a bounded set in X and A is a multi-valued Lipschitz operator, by

hypothesis (a), there exists a constant δ > 0 such that ‖Ax‖P ≤ δ for all x ∈ S.

Let {xn} be a sequence in S converging to the point x∗ ∈ S and let {yn} be

sequence defined by yn ∈ Txn converging to the point y∗. It is enough to prove that

y∗ ∈ Tx∗. Now for any x, y ∈ S, we have

ρ(Tx, Ty) ≤ ρ(AxBx,AyBy) + dH(Cx,Cy)

≤ dH(AxBx,AyBx) + ρ(AyBx,AyBy) + dH(Cx,Cy)

≤ dH(Ax,Ay)dH(0, Bx) + dH(0, Ay) ρ(Bx,By) + dH(Cx,Cy)

≤ q1 ‖x− y‖‖B(S)‖P + δρ(Bx,By) + dH(Cx,Cy)

≤Mq1 ‖x− y‖ + δρ(Bx,By) + q2‖x− y‖

≤ (Mq1 + q2) ‖x− y‖ + δρ(Bx,By) (3.9)

Since B is u.s.c., it is H-upper semi-continuous and consequently

ρ(Bxn, Bx
∗) → 0 whenever xn → x∗.

Therefore,

ρ(Txn, Tx
∗) ≤ (Mq1 + q2)‖xn − x∗‖ + δρ(Bxn, Bx

∗) → 0 as n→ ∞.

This shows that the multi-valued operator T is H-upper semi-continuous on S. Since

the multi-valued map T is compact-valued, it is upper semi-continuous on S in view

of Remark 2.1.

Step III: Finally, we show that that T is β-condensing on S. Let G ⊂ S be

arbitrary. Then G is bounded. Also A(G) and C(G) are bounded in view of Lemma

3.2. Since B compact, the set B(G) is compact and hence bounded in X. Therefore,

the set A(G)B(G)+C(G) is bounded. As T (G) ⊂ A(G)B(G)+C(G), we have that

T (G) is a bounded set in X for each G ⊂ S. Hence by Lemma 3.10,

β(T (G)) ≤ β(A(G)B(G)) + β(C(G))
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≤ β(A(G))‖B(G)‖P + β(B(G))‖A(G)‖P + β(C(G))

≤Mq1β(G) + q1β(G)

≤ kβ(G)

for all G ⊂ S, where k = Mq1 + q2 < 1. This shows that T is β-condensing multi-

valued mapping on S into itself. Now an application of Theorem 3.9 yields that T

has a fixed point. This further implies that the operator inclusion x ∈ AxBx + Cx

has a solution. This completes the proof.

A special case of Theorem 3.11, useful in applications to differential and integral

inclusions is given in the following theorem.

Theorem 3.12. Let S be a closed, convex and bounded subset of the Banach algebra

X and let A,C : S → X and B : S → Pcp,cv(X) be three multi-valued operators

satisfying

(a) A and C are single-valued Lipschitz with the Lipschitz constant q1 and q2 respec-

tively,

(b) B is compact and upper semi-continuous,

(c) AxBx+ Cx ⊂ S for each x ∈ S, and

(d) Mq1 + q2 < 1/2, where M = ‖B(S)‖P = sup{‖B(x)‖P | x ∈ S}.

Then the operator inclusion x ∈ AxBx+ Cx has a solution.

Proof. It is clear in view of Remark 3.1 that every single-valued Lipschitz mapping

with a Lipschitz constant k is multi-valued Lipschitz mapping with the Lipschitz

constant 2k (see Hu and Papageorgiou [18] and the references therein). Again,

AxBx+ Cx is a convex subset of X for each x ∈ S in view of the fact that aK + b

is a convex subset of X for all a, b ∈ R and a convex set K in X. Again, the set

aK + b is closed if K is a closed subset of X. Now the desired conclusion follows by

an application of Theorem 3.11.

4. LERAY-SCHAUDER TYPE FIXED POINT PRINCIPLE

4.1. Nonlinear Alternatives. In this section we obtain multi-valued analogues

of the following nonlinear alternative of Leray-Schauder type due to Dhage [15].

Theorem 4.1. Let U and U be respectively open-bounded and closed-bounded subsets

of a Banach algebra X such that 0 ∈ U and let A,B,C : U → X be three operators

satisfying

(a) A and C are Lipschitz with the Lipschitz constants q1 and q2, respectively,

(b) B is upper semi-continuous and compact, and

(c) Mq1 + q2 < 1, where M = ‖B(U)‖P = sup
{

‖B(x)‖P : x ∈ U
}

.
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Then, either

(i) the equation AxBx + Cx = x has a solution in U , or

(ii) there is an element u ∈ ∂U such that u = λ[AuBu + Cu] for some λ ∈ (0, 1),

where ∂U is the boundary of U in X.

We need the following Leray-Schauder principle in the sequel.

Theorem 4.2. Let U and U be respectively open-bounded and closed-bounded subsets

of a Banach space X such that 0 ∈ U . Let T : U → X be a continuous and compact

mapping. Then either

(i) the equation Tx = x has a solution in U , or

(ii) there is an element u ∈ ∂U such that u = λTu for some λ ∈ (0, 1), where ∂U is

the boundary of U in X.

The underlined principle of Theorem 4.2 will be used to prove the following fixed

point theorem.

Theorem 4.3. Let U and U be respectively open-bounded and closed-bounded subsets

of a Banach algebra X such that 0 ∈ U and let A,C : X → Pcl,cv,bd(X) and B : U →

Pcp,cv(X) be three operators satisfying

(a) A and C are multi-valued Lipschitz with the Lipschitz constants q1 and q2, re-

spectively,

(b) B is l.s.c. and compact,

(c) AxBy + Cx ∈ Pcl,cv(X) for all x, y ∈ U , and

(d) Mq1 + q2 < 1, where M = ‖ ∪ B(U)‖P = sup
{

‖B(x)‖P : x ∈ U
}

.

Then either

(i) the equation x ∈ AxBx+ Cx has a solution in U , or

(ii) there is an element u ∈ ∂U such that µu ∈ A(µu)Bu+ C(µu) for some µ > 1,

where ∂U is the boundary of U in X.

Proof. Let y ∈ U be fixed and define the multi-valued operator Ty : X×U → Pcl,cv(X)

by

Ty(x) = AxBy + Cx, x ∈ X.

Then proceeding as in the proof of Theorem 3.4, it can be proved that Ty is a multi-

valued contraction on X. Now an application of Theorem 2.6 yields that the fixed

point set FTy
of Ty is non-empty and closed in X. Thus, we have

FTy
= {u ∈ X | u ∈ AuBy + Cu} ⊂ X

is nonempty and closed for each y ∈ U .



OPERATOR INCLUSIONS IN BANACH ALGEBRAS AND DIFFERENTIAL INCLUSIONS 579

Note that the function T (x, y) satisfies all the conditions of Theorem 3.3 and

hence an application of it yields that there is a continuous function f : X × U → U

satisfying

f(x, y) ∈ T (f(x, y), y) = A(f(x, y))By + C(f(x, y))

for each y ∈ U . Now define a multi-valued operator H : U → X by H(y) = FTy
.

Consider the single-valued mapping h : U → X defined by

h(y) = f(y, y) ∈ A(f(y, y))Bx+ C(f(y, y)) = A(h(y))By + C(h(y)).

Clearly h is continuous and maps U into X. Obviously h(y) ∈ H(y) for each y ∈ U .

Again, proceeding with arguments as in the proof of Theorem 3.4 shows that that h

is compact on U . Now an application of Theorem 4.2 yields that either

(i) the equation x = hx has a solution in U , or

(ii) there is an element u ∈ ∂U such that u = λhu for some λ ∈ (0, 1), where ∂U is

the boundary of U in X.

Furthermore, the definition of h implies that either

(i) the operator equation x ∈ AxBx + Cx has a solution, or

(ii) there exists an u ∈ ∂U such that µu ∈ A(hu)Bu+ C(hu) = A(µu)Bu+ C(µu)

for µ > 1, where ∂U is the boundary of U in X.

This completes the proof.

Corollary 4.4. Let Br(0) and Br(0) denote respectively the open and closed balls

centered at the origin 0 of radius r in a Banach algebra X and let A,C : X →

Pcl,cv,bd(X) and B : Br(0) → Pcp,cv(X) be three multi-valued operators such that

(a) A and C are multi-valued Lipschitz with the Lipschitz constants q1 and q2 re-

spectively,

(b) B is l.s.c. and compact,

(c) AxBy + Cx ∈ Pcl,cv,bd(X) for all x, y ∈ Br(0), and

(d) Mq1 + q2 < 1, where M = ‖ ∪ Br(0)‖P = sup
{

‖B(x)‖P : x ∈ Br(0)
}

.

Then either

(i) the operator inclusion x ∈ AxBx+ Cx has a solution in Br(0), or

(ii) there exists an u ∈ X with ‖u‖ = r satisfying µu ∈ A(µu)Bu+ C(µu) for some

µ > 1.

A nonlinear alternative for condensing multi-valued mappings useful in the appli-

cations to differential and integral inclusions is the following variant of a fixed point

theorem of O’Regan [7].
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Theorem 4.5. Let U and U be respectively the open-bounded and closed-bounded

subsets of a Banach space X such that 0 ∈ U and let T : U → Pcp,cv(X) be an upper

semi-continuous and condensing mapping such that T (U) is bounded. Then either

(i) T has a fixed point, or

(ii) there exists an element u ∈ ∂U such that λu ∈ Tu for some λ > 1, where ∂U

is the boundary of U in X..

As an application of Theorem 4.5 we obtain the following hybrid fixed point

theorem.

Theorem 4.6. Let U and U be respectively open-bounded and closed-bounded subsets

of a Banach algebra X such that 0 ∈ U and let A,B,C : U → Pcp,cv(X) be three

multi-valued operators satisfying

(a) A and C are multi-valued Lipschitz with the Lipschitz constants q1 and q2 re-

spectively,

(b) B is upper semi-continuous and compact,

(c) AxBx+ Cx ∈ Pcv(X) for all x ∈ U , and

(d) Mq1 + q2 < 1, where M = ‖
⋃

U‖P = sup
{

‖B(x)‖P : x ∈ U
}

.

Then either

(i) the operator inclusion x ∈ AxBx+ Cx has a solution in U , or

(ii) there exists an u ∈ ∂U such that µu ∈ AuBu+ Cu for some µ > 1, where ∂U

is the boundary of U in X.

Proof. Define the multi-valued mapping T : U → Pcp,cv(X) by

Tx = AxBx+ Cx, x ∈ U. (4.1)

It can be shown as in the proof of Theorem 3.11 that T is upper semi-continuous

and β-condensing on U . We just show that T (U) is bounded. Since A and C are

multi-valued Lipschitz, there are constants δ1 > 0 and δ1 > 0 such that ‖A(U)‖P ≤ δ1

and ‖C(U)‖P ≤ δ2. Again, the multi-valued map B is compact, so the set B(U) is

bounded and there is a constant δ3 > 0 such that ‖B(U)‖P ≤ δ3. As a result, we

have

‖T (U)‖P ≤ ‖A(U)‖P ‖B(U)‖P + ‖C(U)‖P ≤ δ1δ2 + δ3 = δ.

Hence, T (U) is bounded and now the desired result follows by an application of

Theorem 3.5.

Corollary 4.7. Let Br(0) and Br(0) denote respectively open and closed balls centered

at origin of radius r in a Banach algebra X and let A,B,C : Br(0) → Pcp,cv(X) be

three multi-valued operators such that
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(a) A and C are multi-valued Lipschitz with the Lipschitz constants q1 and q2, re-

spectively,

(b) B is u.s.c. and compact,

(c) AxBx+ Cx ∈ Pcv(X) for each x ∈ Br(0), and

(d) Mq1 + q2 < 1, where M = ‖B(Br(0))‖P = sup{‖B(x)‖P | x ∈ Br(0)}.

Then either

(i) the operator inclusion x ∈ AxB + Cx has a solution, or

(ii) there exists an u ∈ X with ‖u‖ = r such that µu ∈ AuBu+Cu for some µ > 1.

The following special case is useful in applications to differential and integral

inclusions in Banach algebras for proving existence results under mixed conditions.

Theorem 4.8. Let Br(0) and Br(0) denote respectively the open and closed balls

centered at the origin 0 of radius r in a Banach algebra X and let A,C : Br(0) → X

and B : Br(0) → Pcp,cv(X) be three operators such that

(a) A and C are single-valued Lipschitz with the Lipschitz constants q1 and q2, re-

spectively,

(b) B is u.s.c. and compact, and

(c) Mq1 + q2 < 1/2, where M = ‖B(Br(0))‖P = sup{‖B(x)‖P | x ∈ Br(0)}.

Then either

(i) the operator inclusion x ∈ AxB + Cx has a solution, or

(ii) there exists an u ∈ X with ‖u‖ = r such that µu ∈ AuBu+Cu for some µ > 1.

Proof. The proof is similar to Theorem 3.12 and now the conclusion follows by an

application of Corollary 4.7.

4.2. Schaefer type multi-valued hybrid fixed point theory. It is common

knowledge that Schaefer type fixed point theory for single as well as multi-valued

mappings provides powerful tools in the theory of differential equations and inclusions

for proving existence theorems under suitable conditions. The method is also known

as an “a priori bound method” for differential equations and inclusions. Here,

we prove some the multi-valued analogues of some hybrid fixed point theorems of

Schaefer type due to the present author [10]. We need the following fixed point

theorem in the sequel.

Theorem 4.9 ([5, page 245]). Let X be a Banach space and let T : X → X be

completely continuous. Then, either

(i) the operator equation x = Tx has a solution, or

(ii) the set E = {u ∈ X | u = λTu, 0 < λ < 1} is unbounded.
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Theorem 4.9 will be used in the proof of following fixed point theorem.

Theorem 4.10. Let X be a Banach algebra and let A,C : X → Pbd,cl,cv(X) and

B : X → Pcp,cv(X) be three multi-valued operators such that

(a) A and C are Lipschitz with the Lipschitz constants q1 and q2, respectively,

(b) B is l.s.c. and compact,

(c) AxBy + Cx ∈ Pcl,cv(X) for each x, y ∈ X, and

(d) Mq1 + q2 < 1, where M = ‖B(X)‖P .

Then either

(i) the operator inclusion x ∈ AxBx+ Cx has a solution, or

(ii) the set E = {u ∈ X | µu ∈ A(µu)Bu+ C(µu), µ > 1} is unbounded.

Proof. Let S be a bounded subset of the Banach algebra X and define the multi-

valued mapping T : X × S → Pcl,cv(X) by (3.2). It can be shown as in the proof of

Theorem 3.4 that the multi-valued map T satisfies all the conditions of Theorem 3.3.

Hence there is a continuous function f : X × S → X such that

f(x, y) ∈ A(f(x, y))By + C(f(x, y)).

Now define a function h : S → X by

h(y) = f(y, y) ∈ A(h(y))By + C(h(y)).

Again proceeding as in the proof of Theorem 3.4 we can show that the function h is

completely continuous on S into X. As a result, an application of Theorem 4.8 yields

the desired result. The proof of the theorem is complete.

To prove our final Schaefer type fixed point result, we need the following gener-

alization of the Schaefer principle.

Theorem 4.11 (Martelli [23]). Let X be a Banach space and let T : X → Pcp,cv(X)

be an upper semi-continuous and β-condensing multi-valued operator. Then either

(i) the operator inclusion x ∈ Tx has a solution, or

(ii) the set E = {u ∈ X | λu ∈ Tu, λ > 1} is unbounded.

An application of Theorem 4.11 yields the following fixed point theorem.

Theorem 4.12. Let X be a Banach algebra and let A,B,C : X → Pcp,cv(X) be three

multi-valued operators satisfying

(a) A and C are Lipschitz with the Lipschitz constants q1 and q2 respectively,

(b) B is compact and upper semi-continuous,

(c) AxBx+ Cx is a convex subset of X for each x ∈ X, and

(d) Mq1 + q2 < 1, where M = ‖
⋃

B(X)‖P .
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Then either

(i) the operator inclusion x ∈ AxBx+ Cx has a solution, or

(ii) the set E = {u ∈ X | µu ∈ AuBu+ Cu, µ > 1} is unbounded.

Proof. Let S be a bounded subset of the Banach algebraX and define the multi-valued

map T : S → Pp(X) by (3.8). Now it can be shown as in the proof of Theorem 3.11

that T defines a upper semi-continuous multi-valued mapping T : S → Pcp,cv(X)

satisfying β(T (S)) < β(S) for β(S) > 0. This is true for every bounded set S in

X. Therefore, T is an upper semi-continuous and β-condensing map on X. Now the

desired conclusion follows by an application of Theorem 4.11.

An interesting hybrid fixed point principle of Schaefer type in a form applicable

to the differential inclusions is the following.

Theorem 4.13. Let X be a Banach algebra and let A,C : X → X be two single-

valued and B : X → Pcp,cv(X) be multi-valued operator, satisfying

(a) A and C are Lipschitz with the Lipschitz constants q1 and q2, respectively,

(b) B is compact and upper semi-continuous, and

(c) Mq1 + q2 < 1/2, where M = ‖
⋃

B(X)‖P .

Then either

(i) the operator inclusion x ∈ AxBx+ Cx has a solution, or

(ii) the set E = {u ∈ X | µu ∈ AuBu+ Cu, µ > 1} is unbounded.

Proof. The proof is similar to Theorem 3.12 and now the conclusion follows by an

application of Theorem 4.12.

Remark 4.14. If C ≡ 0 in Theorems 3.2, 3.3, 3.5, 4.3, 4.5 and 4.10, then they reduce

to the multi-valued hybrid fixed point theorems of Dhage [20, 1, 2]. Therefore, the

hybrid fixed point theorems of this paper are new to the literature in the multi-valued

case of nonlinear analysis.

In the following section, we apply the abstract results of this section to first order

differential inclusions with initial and periodic boundary conditions for proving the

existence results under generalized Lipschitz and Carathéodory conditions.

5. DIFFERENTIAL INCLUSIONS

5.1. Multi-valued initial value problems. First we consider the quadratic initial

value problems (in short IVP) for first order ordinary differential inclusions. Given a

closed and bounded interval J = [0, a] in R for some a ∈ R, a > 0, consider the IVP
(

x(t) − k(t, x(t))

f(t, x(t))

)′

∈ G(t, x(t)) a.e. t ∈ J,

x(0) = x0 ∈ R,











(5.1)
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where f : J × R → R − {0}, k : J × R → R and G : J × R → Pcp,cv(R).

By a solution to IVP (5.1) we mean a function x ∈ AC(J,R) that satisfies

(i) the function t 7→

(

x(t) − k(t, x(t))

f(t, x(t))

)

is differentiable, and

(ii)

(

x(t) − k(t, x(t))

f(t, x(t))

)′

= v(t), t ∈ J for some v ∈ L1(J,R) such that v(t) ∈

G(t, x(t)) a.e. t ∈ J satisfying x(0) = x0,

where AC(J,R) is the space of all absolutely continuous real-valued functions on J .

The IVP (5.1) is new in the theory of differential inclusions and special cases of

it have been discussed in the literature extensively. For example, if f(t, x) = 1, then

the IVP (5.1) reduces to IVP

x′(t) ∈ G(t, x(t)) a.e. t ∈ J,

x(0) = x0 ∈ R.







(5.2)

There is a considerable work available in the literature for the IVP (5.2). See Aubin

and Cellina [22], Deimling [17] and Hu and Papageorgiou [18], etc. Similarly, in the

special case when G(t, x) = {g(t, x)}, we obtain the differential equation
(

x(t) − k(t, x(t))

f(t, x(t))

)′

= g(t, x(t)) a.e. t ∈ J,

x(0) = x0 ∈ R.











(5.3)

The differential equation (5.3) has been studied recently in Dhage [10, 11] for the

existence of solutions. Therefore, it of interest to discuss the the IVP (5.3) for various

aspects of its solution under suitable conditions. In this section, we shall prove

the existence of solutions for the IVP (5.1) under mixed generalized Lipschitz and

Carathéodory conditions.

Define a norm ‖ · ‖ and a multiplication “ · ” in the Banach algebra C(J,R) of

continuous and real-valued functions on J by

‖x‖ = sup
t∈J

|x(t)|

and

(x · y)(t) = (xy)(t) = x(t)y(t), t ∈ J

for all x, y ∈ C(J,R). Then, C(J,R) is a Banach algebra with respect to the above

norm and multiplication in it.

We need the following definitions in the sequel.

Definition 5.1. A multi-valued mapping F : J → Pcp(R) is said to be measurable if

for any y ∈ X, the function t 7→ d(y, F (t)) = inf{|y − x| : x ∈ F (t)} is measurable.
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Definition 5.2. A multi-valued function F : J ×R → Pcp(R) is called Carathéodory

if

(i) t 7→ F (t, x) is measurable for each x ∈ E, and

(ii) x 7→ F (t, x) is an upper semi-continuous almost everywhere for t ∈ J.

Again a Carathéodory multi-valued function F is called L1-Carathéodory if

(iii) for each real number r > 0 there exists a function hr ∈ L1(J,R) such that

‖F (t, x)‖P ≤ h(t) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

Further, a Carathéodory multi-valued function F is called L1
X -Carathéodory if

(iv) there exists a function h ∈ L1(J,R) such that

‖F (t, x)‖P ≤ h(t) a.e. t ∈ J

for all x ∈ R, and the function h is called a growth function of F on J × R.

Set

S1
F (x) = {v ∈ L1(J,R) | v(t) ∈ F (t, x(t)) a.e. t ∈ J}.

Then we have the following lemmas due to Lasota and Opial [26].

Lemma 5.3. Let E be a Banach space. If dim (E) <∞ and F : J ×E → Pcp(E) is

L1-Carathéodory, then S1
F (x) 6= ∅ for each x ∈ E.

Lemma 5.4. Let E be a Banach space, F a Carathéodory multi-valued operator with

S1
F 6= ∅, and let L : L1(J,E) → C(J,E) be a continuous linear mapping. Then the

composite operator

L ◦ S1
F : C(J,E) → Pbd,cl(C(J,E))

is a closed graph operator on C(J,E) × C(J,E).

We consider the following hypotheses in the sequel.

(H0) The function x 7→
x− k(0, x)

f(0, x)
is increasing in R.

(H1) The function f : J × R → R − {0} is continuous and there exists a bounded

function ℓ1 : J → R with bound ‖ℓ1‖ satisfying

|f(t, x) − f(t, y)| ≤ ℓ1(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.

(H2) The function k : J × R → R is continuous and there exists a bounded function

ℓ2 : J → R with bound ‖ℓ2‖ satisfying

|k(t, x) − k(t, y)| ≤ ℓ2(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.
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(H3) The multi-valued operator G : J × R → Pcp,cv(R) is L1
R
-Carathéodory with

growth function h.

Theorem 5.5. Assume that the hypotheses (H0)–(H3) hold. If

‖ℓ1‖

(
∣

∣

∣

∣

x0 − k(0, x0)

f(0, x0)

∣

∣

∣

∣

+ ‖h‖L1

)

+ ‖ℓ2‖ < 1/2, (5.4)

then the IVP (5.1) has a solution on J .

Proof. Let X = C(J,R). Define three mappings A, B and C on X by

Ax(t) = f(t, x(t)), (5.5)

Bx =

{

u ∈ X
∣

∣

∣
u(t) =

x0

f(0, x0)
+

∫ t

0

v(s) ds, v ∈ S1
G(x)

}

(5.6)

and

Cx(t) = k(t, x(t)) (5.7)

for all t ∈ J . Then the IVP (5.1) is equivalent to the operator inclusion

x(t) ∈ Ax(t)Bx(t) + Cx(t), t ∈ J. (5.8)

We will show that the multi-valued operators A, B and C satisfy all the conditions of

Theorem 4.13. Clearly the operator B is well defined since S1
G(x) 6= ∅ for each x ∈ X.

Step I: We first show that the operators A and C define single-valued operators

A,C : X → X and B : X → Pcp,cv(X). The claim concerning A and C is obvious,

because the functions f and k are continuous on J ×R. We only prove the claim for

the multi-valued operator B on X. First, we show that B has compact values on X.

Observe that the operator B is equivalent to the composition K◦S1
G of two operators

on L1(J,R), where K : L1(J,R) → X is the continuous operator defined by

Kv(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v(s) ds. (5.9)

To show B has compact values, it then suffices to prove that the composition operator

K ◦ S1
G has compact values on X. Let x ∈ X be arbitrary and let {vn} be a sequence

in S1
G(x). Then, by the definition of S1

G, vn(t) ∈ G(t, x(t)) a.e. for t ∈ J . Since

G(t, x(t)) is compact, there is a convergent subsequence of vn(t) (for simplicity call

it vn(t) itself) that converges in measure to some v(t), where v(t) ∈ G(t, x(t)) a.e.

for t ∈ J . From the continuity of L, it follows that Kvn(t) → Kv(t) pointwise on J

as n → ∞. In order to show that the convergence is uniform, we need to show that

{Kvn} is an equi-continuous sequence. Let t, τ ∈ J ; then

|Kvn(t) −Kvn(τ)| ≤

∣

∣

∣

∣

∫ t

0

vn(s) ds−

∫ τ

0

vn(s) ds

∣

∣

∣

∣

≤
∣

∣

∣

∫ τ

t

|vn(s)| ds
∣

∣

∣
. (5.10)
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Since vn ∈ L1(J,R), the right hand side of (5.10) tends to 0 as t → τ . Hence, the

sequence {Kvn} is equi-continuous, and an application of the Ascoli theorem implies

that there is a uniformly convergent subsequence. We then have Kvnj
→ Kv ∈

(K ◦ S1
G)(x) as j → ∞, and so (K ◦ S1

G)(x) is a compact set for all x ∈ X. Therefore,

B is a compact-valued multi-valued operator on X.

Again let u1, u2 ∈ Bx. Then there are v1, v2 ∈ S1
G(x) such that

u1(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v1(s) ds, t ∈ J,

and

u2(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v2(s) ds, t ∈ J.

Now for any γ ∈ [0, 1],

γu1(t) + (1 − γ)u2(t) = γ

(

x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v1(s) ds

)

+ (1 − γ)

(

x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v2(s) ds

)

=
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

[γv1(s) + (1 − γ)v2(s)] ds

=
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v(s) ds

where v(t) = γv1(t)+(1−γ)v2(s) ∈ G(t, x) for all t ∈ J . Hence γu1 +(1−γ)u2 ∈ Bx

and consequently Bx is convex for each x ∈ X. As a result B defines a multi-valued

operator B : X → Pcp,cv(X).

Step II: Next we show A and C are single-valued Lipschitz operators on X.

Let x, y ∈ S. Then

‖Ax−Ay‖ = sup
t∈J

|f(t, x(t)) − f(t, y(t))| ≤ sup
t∈J

ℓ1(t)|x(t) − y(t)| ≤ ‖ℓ1‖‖x− y‖,

which shows that A is a multi-valued Lipschitz operator on X with the Lipschitz

constant ‖ℓ1‖. Similarly, it can be proved that C is again a Lipschitz operator on X

with the Lipschitz constant ‖ℓ2‖.

Step III: Next we show that B is completely continuous on X. Let S be a

bounded subset of X. Then there is a constant r > 0 such that ‖x‖ ≤ r for all x ∈ S.

First we prove that B is compact operator on S. To do this, it is enough to prove that

B(S) is a uniformly bounded and equi-continuous set in X. To see this, let u ∈ B(S)

be arbitrary. Then there is a v ∈ S1
G(x) such that

u(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v(s) ds
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for some x ∈ S. Hence, by (H3),

|u(t)| ≤
∣

∣

∣

x0 − k(0, x0)

f(0, x0)

∣

∣

∣
+

∫ t

0

|v(s)| ds

≤
∣

∣

∣

x0 − k(0, x0)

f(0, x0)

∣

∣

∣
+

∫ t

0

‖G(s, x(s))‖P ds

≤
∣

∣

∣

x0 − k(0, x0)

f(0, x0)

∣

∣

∣
+

∫ t

0

h(s)ds

=
∣

∣

∣

x0 − k(0, x0)

f(0, x0)

∣

∣

∣
+ ‖h‖L1

for all x ∈ S and so B(S) is a uniformly bounded set in X. Again proceeding with

the arguments as in Step I, we see that that

|u(t) − u(τ)| ≤ |p(t) − p(τ)|

where p(t) =

∫ t

0

h(s)ds.

Notice that p is a continuous function on J, so it is uniformly continuous on J.

As a result, we have that

|u(t) − u(τ)| → 0 as t→ τ.

This shows that B(S) is an equi-continuous set in X.

Next we show that B is a upper semi-continuous multi-valued mapping on X.

Let {xn} be a sequence in X such that xn → x∗. Let {yn} be a sequence such that

yn ∈ Bxn and yn → y∗. We shall show that y∗ ∈ Bx∗. Since yn ∈ Bxn, there exists a

vn ∈ S1
G(xn) such that

yn(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

vn(s) ds, t ∈ J.

We must prove that there is a v∗ ∈ S1
G(x∗) such that

y∗(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v∗(s) ds, t ∈ J.

Consider the continuous linear operator L : L1(J,R) → C(J,R) defined by

Lv(t) =

∫ t

0

v(s) ds, t ∈ J.

Now
∥

∥

∥

∥

(

yn −
x0 − k(0, x0)

f(0, x0)

)

−

(

y∗ −
x0 − k(0, x0)

f(0, x0)

)
∥

∥

∥

∥

→ 0 as n→ 0.

From Lemma 5.4, it follows that L ◦ S1
G is a closed graph operator. Also from

the definition of L we have

yn(t) −
x0 − k(0, x0)

f(0, x0)
∈ L ◦ S1

G(xn).
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Since yn → y∗, there is a point v∗ ∈ S1
G(x∗) such that

y∗(t) =
x0 − k(0, x0)

f(0, x0)
+

∫ t

0

v∗(s) ds, t ∈ J.

This shows that B is a upper semi-continuous operator on X. Thus, B is an up-

per semi-continuous and compact and hence is completely continuous multi-valued

operator on X.

Step IV: Finally, we show that the conclusion (ii) of Theorem 4.13 does not

hold. Let u be any solution of the IVP (5.1) such that µu ∈ AuBu + Cu for some

µ > 1. Then there is a v ∈ S1
G(u) such that

u(t) = λk(t, u(t)) + λ
[

f(t, u(t))
]

(

x0

f(0, x0)
+

∫ t

0

v(s) ds

)

for all t ∈ J , where λ = 1
µ
< 1. Therefore, we have

|u(t)| ≤ |k(t, u(t))| +
∣

∣

∣

[

f(t, u(t))
]

∣

∣

∣

∣

∣

∣

∣

(

x0

f(0, x0)
+

∫ t

0

v(s) ds

)
∣

∣

∣

∣

≤ |k(t, u(t)) − k(t, 0)| + k(t, 0)|

+
[

|f(t, u(t)) − f(t, 0)| + f(t, 0)|
]

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+

∫ t

0

|v(s)| ds

)

≤ ℓ2(t)|u(t)| +K + ℓ1(t)|u(t)|

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+

∫ t

0

|v(s)| ds

)

+ F

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+

∫ t

0

|v(s)| ds

)

≤ ‖ℓ2‖‖u‖ +K + ‖ℓ1‖‖u‖

(∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+

∫ t

0

h(s) ds

)

+ F

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+

∫ t

0

h(s) ds

)

≤ ‖ℓ1‖

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+ ‖h‖L1

)

‖u‖ + ‖ℓ2‖‖u‖

+K + F

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+ ‖h‖L1

)

for all t ∈ J , where F = supt∈J |f(t, 0)| and K = supt∈J |k(t, 0)|. Taking the supre-

mum over t in the above inequality, we obtain a constant M > 0 such that

‖u‖ ≤M =
K + F

(
∣

∣

∣

x0

f(0,x0)

∣

∣

∣
+ ‖h‖L1

)

1 − ‖ℓ1‖
(
∣

∣

∣

x0

f(0,x0)

∣

∣

∣
+ ‖h‖L1

)

− ‖ℓ2‖

which is a contradiction since ‖ℓ1‖

(
∣

∣

∣

∣

x0

f(0, x0)

∣

∣

∣

∣

+ ‖h‖L1

)

+ ‖ℓ2‖ < 1/2. As a result,

the conclusion (ii) of Theorem 4.13 does not hold. Hence, the conclusion (i) holds and

consequently the problem (5.1) has a solution u on J . This completes the proof.
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5.2. Multi-valued periodic boundary value problems of first order. Given

a closed and bounded interval J = [0, T ] in R, consider the periodic boundary value

problem (in short PBVP) for the first order ordinary differential inclusion,
(

x(t) − k(t, x(t))

f(t, x(t))

)′

∈ G(t, x(t)) a.e. t ∈ J,

x(0) = x(T ),











(5.11)

where f : J × R → R − {0}, k : J × R → R− and G : J × R → Pcp,cv(R).

By a solution of the PBVP (5.11) we mean a function x ∈ AC(J,R) satisfying

(i) the function t 7→

(

x(t) − k(t, x(t))

f(t, x(t))

)

is absolutely continuous, and

(ii) there exists a function v ∈ L1(J,R) such that

v(t) ∈ G(t, x(t)) a.e. t ∈ J

satisfying
(

x(t) − k(t, x(t))

f(t, x(t))

)′

= v(t), x(0) = x(T ),

where AC(J,R) is the space of absolutely continuous real-valued functions on J .

The PBVP (5.11) is new to the theory of differential inclusions and none of the

special cases in the form of differential inclusion involving the product of two functions

has been discussed in the literature.

The following useful lemma is obvious and the details may be found in Nieto [27].

Lemma 5.6. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the differ-

ential equation

x′ + h(t)x(t) = σ(t) a. e. t ∈ J

x(0) = x(T ),

}

(5.12)

if and only if it is a solution of the integral equation

x(t) =

∫ T

0

gh(t, s)σ(s) ds (5.13)

where

gh(t, s) =















eH(s)−H(t)

1 − e−H(T )
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)−H(T )

1 − e−H(T )
, 0 ≤ t < s ≤ T,

(5.14)

where H(t) =

∫ t

0

h(s) ds.

Notice that the Green’s function gh is nonnegative on J × J and the number

Mh := max {|gh(t, s)| : t, s ∈ [0, T ]}
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exists for all h ∈ L1(J,R+). Note also that H(t) > 0 for all t > 0 provided that h is

not the identically zero function.

We will use the following hypotheses in the sequel.

(H4) The functions t 7→ f(t, x) and t 7→ k(t, x) are periodic of period T for all x ∈ R.

(H5) The function x 7→
x− k(0, x)

f(0, x)
is injective in R.

Note that hypotheses (H4) through (H5) are common in the literature on the theory

of nonlinear differential equations. Actually, the function f : J × R → R defined by

f(t, x) = α + βx for some α, β ∈ R, α + βx 6= 0 satisfies the hypotheses (H4)–(H5).

Now consider the following PBVP with some perturbations,
(x(t) − k(t, x(t))

f(t, x(t))

)′

+ h(t)
(x(t) − k(t, x(t))

f(t, x(t))

)

∈ Gh(t, x(t)) a.e. t ∈ J,

x(0) = x(T ),











(5.15)

where h ∈ L1(J,R+) is bounded and the multi-valued function Gh : J × R × R →

Pcp(R) is defined by

Gh(t, x) = G(t, x) + h(t)
(x− k(t, x)

f(t, x)

)

. (5.16)

Remark 5.7. Note that the PBVP (5.11) is equivalent to the PBVP (5.15) and a

solution to the PBVP (5.11) is the solution for the PBVP (5.15) on J and vice versa.

Remark 5.8. If the function f is continuous on J × R and the hypothesis (B1)

holds, then the multi-valued function Gh defined by (5.16) is Carathéodory on J×R.

Similarly, if G has convex values on J ×R, then Gh has also convex values on J ×R.

Lemma 5.9. Assume that hypotheses (H4) and (H5) hold. Then for any bounded

h ∈ L1(J,R+), x is a solution to the differential inclusion (5.15) if and only if it is a

solution of the integral equation

x(t) ∈ k(t, x(t)) +
[

f(t, x(t))
]

(
∫ T

0

gh(t, s)Gh(s, x(s))

)

(5.17)

where the Green’s function gh(t, s) is defined by (5.16).

Proof. Let y(t) =
x(t) − k(t, x(t))

f(t, x(t))
. Since f(t, x) and k(t, x) are periodic in t of period

T for all x ∈ R, we have

y(0) =
x(0) − f(0, x(0))

f(0, x(0))
=
x(T ) − k(T, x(T ))

f(T, x(T ))
= y(T ).

Now an application of Lemma 5.3 yields that the solution to differential equation

(5.16) is the solution to integral equation (5.17). Conversely, suppose that x is any

solution to the integral equation (5.17), then

x(0) − k(0, x(0))

f(0, x(0))
= y(0) = y(T ) =

x(T ) − k(0, x(T ))

f(0, x(T ))
.



592 B. C. DHAGE

Since the function x 7→
x− k(0, x(0))

f(0, x)
is injective, one has x(0) = x(T ) and so, x is a

solution to PBVP (5.15). The proof of the lemma is complete.

We make use of the following hypotheses in the sequel.

(H6) The multi-valued operator G : J × R → Pcp,cv(R) is Carathéodory.

(H7) There exists a function γ ∈ L1(J,R+) with γ(t) > 0 a.e. t ∈ J and a continuous

and nondecreasing function ψ : R
+ → R

+ such that

‖Gh(t, x)‖P ≤ γ(t)ψ(|x|) a.e. t ∈ J

for each x ∈ R.

Theorem 5.10. Assume that the hypotheses (H1)–(H2) and (H4)–(H7) hold. Further

if there exists a real number r > 0 such that

r >
K + F (Mh‖γ‖L1ψ(r))

1 − ‖ℓ1‖ [Mh‖γ‖L1ψ(r)] − ‖ℓ2‖
(5.18)

where, ‖q1‖Mh‖γ‖L1ψ(r) + ‖ℓ2‖ < 1/2, F = supt∈J |f(t, 0)| and K = supt∈J |k(t, 0)|,

then the PBVP (5.11) has a solution on J .

Proof. Let X = C(J,R) and define an open ball Br(0) in X centered at origin of

radius r, where the real number r satisfies the inequality (5.18). Now consider three

mappings A,C : Br(0) → X and B : Br(0) → Pp(R) defined by

Ax(t) = f(t, x(t)), (5.19)

Bx =

{

u ∈ X
∣

∣

∣
u(t) =

∫ T

0

gh(t, s)v(s) ds, v ∈ S1
Gh

(x)

}

(5.20)

and

Cx(t) = k(t, x(t)), (5.21)

for all t ∈ J . Then the PBVP (5.11) is equivalent to the operator inclusion

x(t) ∈ Ax(t)Bx(t) + Cx(t), t ∈ J. (5.22)

We shall show that the multi-valued operators A, B and C satisfy all the conditions

of Theorem 4.8. Clearly the operator B is well defined since S1
Gh

(x) 6= ∅ for each

x ∈ Br(0).

Step I: We first show that the operators A and B define, respectively, single-

valued and multi-valued operators A,C : Br(0) → X and B : Br(0) → Pcp,cv(X).

The claim for A and C is obvious, because the functions f and k are continuous on

J × R. We only prove the claim for the operator B. It is shown as in the Step III

below that the multi-valued operator B has compact values on Br(0).

Again, let u1, u2 ∈ Ax. Then there are v1, v2 ∈ S1
Gh

(x) such that

u1(t) =

∫ T

0

gh(t, s)v1(s) ds, t ∈ J,
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and

u2(t) =

∫ T

0

gh(t, s)v2(s) ds, t ∈ J.

Now for any γ ∈ [0, 1],

λu1(t) + (1 − λ)u2(t) = λ

(
∫ T

0

gh(t, s)v1(s) ds

)

+ (1 − λ)

(
∫ T

0

gh(t, s)v2(s) ds

)

=

∫ T

0

[λgh(t, s)v1(s) + (1 − λ)gh(t, s)v2(s)] ds

=

∫ T

0

gh(t, s)v(s) ds,

where v(t) = λv1(t)+(1−λ)v2(s) ∈ Gh(t, x(t)) for all t ∈ J . Hence, λu1 +(1−λ)u2 ∈

Bx and consequently Bx is convex for each x ∈ X. As a result, B defines a multi-

valued operator B : Br(0) → Pcp,cv(X).

Step II: Here, it can be shown as in the Step II of the proof of Theorem 5.5

that the single-valued operators A and C are Lipschitz with the Lipschitz constants

‖ℓ1‖ and ‖ℓ2‖, respectively.

Step III: Next, we show that B is completely continuous on Br(0). First we

prove that B(Br(0)) is a totally bounded subset of X. To do this, it is enough to

prove that B(Br(0)) is a uniformly bounded and equi-continuous set in X. To see

this, let u ∈ B(Br(0)) be arbitrary. Then there is a v ∈ S1
Gh

(x) such that

u(t) =

∫ T

0

gh(t, s)v(s) ds

for some x ∈ Br(0). Hence,

|u(t)| ≤

∫ T

0

gh(t, s)|v(s)| ds

≤

∫ T

0

gh(t, s)
∥

∥Gh(s, x(s)))
∥

∥

P
ds

≤

∫ T

0

gh(t, s)γ(s)ψ(r) ds

= Mh‖γ‖L1ψ(r)

for all t ∈ J and so B(Br(0)) is a uniformly bounded set in X.

Next, we show that B(Br(0)) is an equi-continuous set. To finish, it is enough to

show that u′ is bounded on [0, T ]. Now for any t ∈ [0, T ], one has

|u′(t)| =
∣

∣

∣

∫ T

0

∂

∂t
gh(t, s)v(s) ds

∣

∣

∣

=
∣

∣

∣

∫ T

0

(−h(s))gh(t, s)v(s) ds
∣

∣

∣

≤ HMh‖γ‖L1ψ(r)
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= c,

where H = maxt∈J h(t). Hence, for any t, τ ∈ [0, T ] one has

|Bx(t) − Bx(τ)| ≤ c |t− τ | → 0 as t→ τ.

This shows that B(Br(0)) is a equi-continuous set in X. Hence, B(Br(0)) is compact

by Arzelá-Ascoli theorem. Thus, we have B : Br(0) → Pcp,cv(X) is totally bounded.

Next we show that B is a upper semi-continuous multi-valued mapping on X.

Let {xn} be a sequence in X such that xn → x∗. Let {yn} be a sequence such that

yn ∈ Bxn and yn → y∗. We shall show that y∗ ∈ Bx∗. Since yn ∈ Bxn, there exists a

vn ∈ S1
Gh

(xn) such that

yn(t) =

∫ T

0

gh(t, s)vn(s) ds, t ∈ J.

We must prove that there is a v∗ ∈ S1
Gh

(x∗) such that

y∗(t) =

∫ T

0

gh(t, s)v∗(s) ds, t ∈ J.

Consider the continuous linear operator L : L1(J,R) → C(J,R) defined by

Lv(t) =

∫ T

0

gh(t, s)v(s) ds, t ∈ J.

Now we have ‖yn − y∗‖ → 0 as n → 0. From Lemma 5.4, it follows that L ◦ S1
Gh

is

a closed graph operator. Also, from the definition of L, we have yn ∈ (L ◦ S1
Gh

)(xn).

Since yn → y∗, there is a point v∗ ∈ S1
Gh

(x∗) such that

y∗(t) =

∫ T

0

gh(t, s)v∗(s)ds, t ∈ J.

This shows that B is a completely continuous operator on Br(0). Thus, B is an upper

semi-continuous and compact operator on Br(0).

Step IV: Finally, from condition (5.18) it follows that

Mq1 + q2 = ‖ℓ1‖Mh‖γ‖L1ψ(r) + ‖ℓ2‖ < 1/2.

Thus all the conditions of Theorem 4.8 are satisfied and hence a direct application of

it yields that either the conclusion (i) or the conclusion (ii) holds. We show that the

conclusion (ii) is not possible. Let u ∈ X be such that ‖u‖ = r and assume that the

conclusion (ii) holds.. Then, for any µ = 1
λ
> 1, for some λ ∈ (0, 1) one has

µu(t) ∈ k(t, u(t)) + [f(t, u(t))]

(
∫ T

0

gh(t, s)Gh(t, u(t)) ds

)

for all t ∈ J . Therefore, there is a v ∈ S1
Gh

(u) such that

u(t) = λk(t, u(t)) + λ
[

f(t, u(t))
]

(

∫ T

0

gh(t, s)v(s) ds
)
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for all t ∈ J . Hence, for any t ∈ J , we have

|u(t)| ≤ |k(t, u(t))| +
∣

∣

∣
λ
[

f(t, u(t))
]

∣

∣

∣

∣

∣

∣

∣

∫ T

0

gh(t, s)v(s) ds

∣

∣

∣

∣

≤ |k(t, u(t))| +
∣

∣

∣

[

f(t, u(t))
]

∣

∣

∣

(

∫ T

0

gh(t, s)|v(s)| ds
)

≤ |k(t, u(t)) − k(t, 0)| + |k(t, 0)| +
[

|f(t, u(t))− f(t, 0)| + |f(t, 0)|
]

×
(

∫ T

0

gh(t, s)
∥

∥Gh(s, x(s)))
∥

∥

P
ds

)

≤ |q2(t)| |u(t)| +K + |q1(t)| |u(t)|

(
∫ T

0

gh(t, s)γ(s)ψ(r) ds

)

+ F
(

∫ T

0

gh(t, s)γ(s)ψ(r) ds
)

≤ ‖ℓ2‖ ‖u‖ +K + ‖ℓ1‖ ‖u‖ (Mh‖γ‖L1ψ(r)) + F (Mh‖γ‖L1ψ(r))

≤
K + FMh‖γ‖L1ψ(r)

1 − ‖ℓ1‖ [Mh‖γ‖L1ψ(r)] − ‖ℓ2‖
. (5.23)

Taking the supremum over t in the above inequality (5.23), we obtain

‖u‖ ≤
K + FMh‖γ‖L1ψ(r)

1 − ‖ℓ1‖ [Mh‖γ‖L1ψ(r)] − ‖ℓ2‖

or,

r ≤
K + FMh‖γ‖L1ψ(r)

1 − ‖ℓ1‖ [Mh‖γ‖L1ψ(r)] − ‖ℓ2‖

which is a contradiction to (5.18). Hence, the conclusion (ii) of Theorem 4.8 does not

hold. Therefore, the operator inclusion x ∈ AxBx+Cx, and consequently the PBVP

(5.11), has a solution in Br(0) defined on J . This completes the proof.
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