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ABSTRACT. We investigate the dynamical behavior of the following fourth-order rational differ-

ence equation

xn+1 =
xn−1xn−3 + x2

n−1 + a

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . .

where a ∈ [0,∞) and the initial values x
−3, x−2, x−1, x0 ∈ (0,∞). We find that the successive lengths

of positive and negative semicycles of nontrivial solutions of the above equation occur periodically.

We also show that the positive equilibrium of the equation is globally asymptotically stable.

AMS (MOS) Subject Classification.39A10.

1. INTRODUCTION AND PRELIMINARIES

Recently there has been a great interest in studying the qualitative properties of

rational difference equations. For the systematical studies of rational and nonrational

difference equations, one can refer to the monographs [1-18] and references therein.

The study of rational difference equations of order greater than one is quite

challenging and rewarding because some prototypes for the development of the basic

theory of the global behavior of nonlinear difference equations of order greater than

one come from the results for rational difference equations. However, there have

not been any effective general methods to deal with the global behavior of rational

difference equations of order greater than one so far. Therefore, the study of rational

difference equations of order greater than one is worth further consideration.

G. Ladas [4] proposed to study the rational difference equation

xn+1 =
xn + xn−1xn−2 + a

xnxn−1 + xn−2 + a
, n = 0, 1, 2, . . . ()
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From then on, rational difference equations with the unique positive equilibrium x̄ = 1

have received considerable attention, one can refer to [3-5, 7, 14-16, 18, 20] and the

references cited therein.

Recently, Li [20] investigated the global behavior of the following fourth-order

rational difference equation

xn+1 =
xnxn−1xn−3 + xn + xn−1 + xn−3 + a

xnxn−1 + xnxn−3 + xn−1xn−3 + 1 + a
, n = 0, 1, 2, . . . ()

where a ∈ [0,∞) and initial values x
−3, x−2, x−1, x0 ∈ (0,∞).

In this note, we employ the method in Li [20, 21] to consider the following fourth-

order rational difference equation

xn+1 =
xn−1xn−3 + x2

n−1 + a

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . . ()

where a,∈ [0,∞) and initial values x
−3, x−2, x−1, x0 ∈ (0,∞).

It is easy to see that the positive equilibrium x̄ of Eq. (3) satisfies

x̄ =
2x̄2 + a

x̄3 + x̄ + a
()

from which one can see that Eq. (4) has a unique positive equilibrium x̄ = 1.

In the following, we state some main definitions used in this paper.

Definition 1.1. A positive semicycle of a solution {xn}
∞

n=−3 consists of a ”string” of

terms {xl, xl+1, . . . , xm}, all greater than or equal to the equilibrium x, with l ≥ −3

and m ≤ ∞ and such that

either l = −3, or l > −3 and xl−1 < x.

and

either m = ∞, or m < ∞ and xm+1 < x.

A negative semicycle of a solution (xn) consists of a ”string” of terms {xl, xl+1, . . . , xm},

all less than to x, with l ≥ −3 and m ≤ ∞ and such that

either l = −3 or l > −3 and xl−1 ≥ x.

and

either m = ∞ or m < ∞ and xm+1 ≥ x.

The length of a semicycle is the number of the total terms contained in it.

Definition 1.2. A solution {xn}
∞

n=−3 of Eq. (3) is said to be enventually trivial if

xn or x2n or x2n+1 are eventually equal to x̄ = 1; otherwise, the solution is said to be

nontrivial.
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2. TWO LEMMAS

Before to draw a qualitatively clear picture for the positive solutions of Eq. (3),

we first establish two basic lemmas which will play a key role in the proof of our main

results.

Lemma 2.1. A positive solution {xn}
∞

n=−3 of Eq. (3) is eventually trivial if and only

if

(x
−3 − 1)(x

−2 − 1)(x
−1 − 1)(x0 − 1) = 0 ()

Proof. Assume the (5) holds. Then according to Eq. (3), it is easy to see that the

following conclusions hold:

(i) if (x
−3 − 1)(x

−1 − 1)(x1 − 1) = 0, then x2n+1 = 1 for n ≥ 1.

(ii) if (x
−2 − 1)(x0 − 1) = 0, then x2n = 1 for n ≥ 1. Conversely, assume that

(x
−3 − 1)(x

−1 − 1)(x1 − 1) 6= 0 ()

Then one can show that xn 6= 1 for any n > 1. Assume the contrary that for some

N > 1,

xN = 1 and that xn 6= 1 for −3 ≤ n ≤ N − 1 ()

It is easy to see that

1 = xN =
xN−2xN−4 + x2

N−2 + a

x2
N−2xN−4 + xN−2 + a

,

which implies (xN−4 − 1)(xN−2 − 1) = 0. Obviously, this contradicts (7).

Remark 2.2. If the initial conditions do not satisfy Eq. (5), then, for any solution

{xn} of Eq. (3), xn 6= 1 for n ≥ −3. Here, the solution is a nontrivial one. In this

paper we only consider the behavior of nontrivial solutions of Eq. (3).

Lemma 2.3. Let {xn}
∞

n=−3 be a nontrivial positive solution of Eq. (3). Then the

following conclusions are true for n ≥ 0.

(a) (xn+1 − 1)(xn−1 − 1)(xn−3 − 1) < 0

(b) (xn+1 − xn−1)(xn−1 − 1) < 0.

(c) (xn+1 − xn−3)(xn−3 − 1) < 0.

(d) (xn+1 −
1

xn−1

)(xn−1 − 1) > 0.

(e) (xn+1 −
1

xn−3

)(xn−3 − 1) > 0.

Proof. It follows in light of Eq. (3) that

xn+1 − 1 =
xn−1(1 − xn−1)(xn−3 − 1)

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . .
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and

xn+1 − xn−1 =
(1 − xn−1)[xn−1xn−3(1 + xn−1) + a]

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . .

and

xn+1 − xn−3 =
(1 − xn−3)[x

2
n−1(1 + xn−3) + a]

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . .

and

xn+1 −
1

xn−1

=
(xn−1 − 1)[xn−1(xn−1 + 1) + a]

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . .

and

xn+1 −
1

xn−3
=

(xn−3 − 1)[xn−3(xn−3 + 1) + a]

x2
n−1xn−3 + xn−1 + a

, n = 0, 1, 2, . . .

3. MAIN RESULTS

First we analyze the structure of the semicycles of nontrivial solutions of Eq. (3).

Here we confine us to consider the situation of the strictly oscillatory solution of Eq.

(3).

Theorem 3.1. Let {xn}
∞

n=−3 be a strictly oscillatory solution of Eq. (3). Then the

rule for the lengths of positive and negative semicycles of this solution to successively

occur is

or , . . . , 1−, 2+, 1−, 2+, 1−, 2+, 1−, 2+, . . .

or , . . . , 1+, 1−, 1+, 3−, 1+, 1−, 1+, 3−. . .

or , . . . , 4+, 2−, 4+, 2−, 4+, 2−, 4+, 2−. . .

Proof. Based on the strictly oscillatory character of the solution, we see that, for some

integer p ≥ 0, one of the following four cases must occur:

Case 1: xp−3 > 1, xp−2 < 1, xp−1 > 1 and xp > 1.

Case 2: xp−3 > 1, xp−2 < 1, xp−1 > 1 and xp < 1.

Case 3: xp−3 > 1, xp−2 < 1, xp−1 < 1 and xp > 1.

Case 4: xp−3 > 1, xp−2 < 1, xp−1 < 1 and xp < 1.

If case 1 occurs, it follows from Lemma 2.2 (a) that

xp+1 < 1, xp+2 > 1, xp+3 > 1, xp+4 < 1, xp+5 > 1, xp+6 > 1, xp+7 < 1,

xp+8 > 1, xp+9 > 1, xp+10 < 1, xp+11 > 1, xp+12 > 1, . . .

It means that the rule for the length of positive and negative semicycles of the solu-

tion of Eq. (3) to occur successively is . . . , 1−, 2+, 1−, 2+, 1−, 2+, 1−, 2+, . . .

If the case 2 and case 3 occurs, it follows from Lemma 2.2 (a) implies that

xp+1 < 1, xp+2 < 1, xp+3 > 1, xp+4 < 1, xp+5 > 1, xp+6 < 1, xp+7 < 1, xp+8 < 1,

xp+9 > 1, xp+10 < 1, xp+11 > 1, xp+12 < 1, xp+13 < 1, xp+14 < 1, xp+15 > 1,

xp+16 < 1, xp+17 > 1, xp+18 < 1, . . .

This shows the rule for the numbers of terms of positive and negative semicycles of the
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solution of Eq. (3) to successively occur is . . . , 1+, 1−, 1+, 3−, 1+, 1−, 1+, 3−, 1+, 1−, 1+, 3−, . . .

If the case 4 happen, it follows from Lemma 2.2 (a) implies that

xp+1 > 1, xp+2 > 1, xp+3 > 1, xp+4 < 1, xp+5 < 1, xp+6 > 1, xp+7 > 1, xp+8 > 1,

xp+9 > 1, xp+10 < 1, xp+11 < 1, xp+12 > 1, xp+13 > 1, xp+14 > 1, xp+15 > 1,

xp+16 < 1, xp+17 < 1, xp+18 > 1, . . .

It means that the rule for the lengths of positive and negative semicycles of the solu-

tion of Eq. (3) to occur successively is . . . , 4+, 2−, 4+, 2−, 4+, 2−, . . .

Therefore, the proof is complete.

Next, we state the second main result in this note.

Theorem 3.2. Assume that a ∈ [0,∞). Then the positive equilibrium of Eq. (3) is

globally asymptotically stable.

Proof. We must prove that the positive equilibrium point x̄ of Eq. (3) is both locally

asymptotically stable and globally attractive. The linearized equation of Eq. (3)

about the positive equilibrium x̄ = 1 is

yn+1 = 0.yn + 0.yn−1 + 0.yn−2 + 0.yn−3, n = 0, 1, 2, . . .

By virtue of ([2], Remark 1.3.7), x̄ is locally asymptotically stable. It remains to

verify that every positive solution {xn}
∞

n=−3 of Eq. (3) converges to x̄ = 1 as n → ∞.

Namely, we want to prove

lim
n→∞

xn = x̄ = 1 ()

If the initial values of the solution satisfy (5), then Lemma 2.1 says the solution is

eventually trivial and we do not consider it. Therefore, we assume in the following

that the initial values of the solution do not satisfy (5). Then, Remark 2.1 we know,

for any solution {xn}
∞

n=−3 of Eq. (3), xn 6= 1 for n ≥ −3.

If the solution {xn}
∞

n=−3 of Eq. (3) is nonoscillatory about the positive equilibrium

point x̄ = 1, then we know from Lemma 2.2 (b) that the solution is monotic and

bounded. So, the limits lim
n→∞

x2n = M and lim
n→∞

x2n+1 = L exist and are finite.

Take the limits on both sides of Eq. (3), we obtain

L =
2L2 + a

L3 + L + a
⇒ L = 1

or

M =
2M2 + a

M3 + M + a
⇒ M = 1

Thus, we have (8). It suffices to prove that (8) holds for the solution to be the strictly

oscillatory.

Assume now {xn}
∞

n=−3 is strictly oscillatory about the possitive equilibrium point

x̄ of Eq. (3). By virtue of Thoerem 3.1, one understands that the rule for the lengths

of positive and negative semicycles which occur successively is
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or, . . . , 1−, 2+, 1−, 2+, 1−, 2+, 1−, 2+, . . .

or , . . . , 1+, 1−, 1+, 3−, 1+, 1−, 1+, 3−. . .

or , . . . , 4+, 2−, 4+, 2−, 4+, 2−, 4+, 2−. . .

First, we investigate the case where the rule for the lengths of positive and neg-

ative semicycles which occur successively is . . . , 1−, 2+, 1−, 2+, 1−, 2+, 1−, 2+, . . .

For simplicity, we denote by {xp+6n}
− the term of a negative semicycle of length

one, followed by {xp+6n+1, xp+6n+2}
+ the terms of a positive semicycles of length

two. Namely, the rule for the lengths of positive and negative semicycles to occur

successively can be periodically expressed as follows:

{xp+6n}
−, {xp+6n+1, xp+6n+2}

+, {xp+6n+3}
−, {xp+6n+4, xp+6n+5}

+, . . . , n = 0, 1, 2, . . .

According to Lemma 2.2 (c), we can get:

1 < xp+6n+5 < xp+6n+1 = xp+6(n−1)+7 < xp+6(n−1)+5

So {xp+6n+5} is decreasing and bounded with lower bound 1, we have lim
n→∞

xp+6n+5 =

lim
n→∞

xp+6n+1 = L. Similarly, we obtain:

xp+6n+4 < xp+6n+2 = xp+6(n−1)+8 < xp+6(n−1)+4

and we also have: lim
n→∞

xp+6n+4 = lim
n→∞

xp+6n+2 = M .

Noting that

xp+6n+6 =
xp+6n+4xp+6n+2 + x2

p+6n+4 + a

x2
p+6n+4xp+6n+2 + xp+6n+4 + a

, n = 0, 1, 2, . . .

Taking the limit on both sides of this equation, we have that the limit lim
n→∞

xp+6n+6 is

finite and exists:

lim
n→∞

xp+6n+6 =
2M2 + a

M3 + M + a
= H.

From the equation:

xp+6n+4 =
xp+6n+2xp+6n + x2

p+6n+2 + a

x2
p+6n+2xp+6n + xp+6n+2 + a

, n = 0, 1, 2, . . .

Taking the limit on both sides, we get:

M =
M.H + M2 + a

M2.H + M + a
⇒ M = 1

and H = lim
n→∞

xp+6n = 1. From the equation:

xp+6n+3 =
xp+6n+1xp+6n−1 + x2

p+6n+1 + a

x2
p+6n+1xp+6n−1 + xp+6n+1 + a

, n = 0, 1, 2, . . .

we have:

lim
n→∞

xp+6n+3 =
2L2 + a

L3 + L + a
= K
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From the equation:

xp+6n+5 =
xp+6n+3xp+6n+1 + x2

p+6n+3 + a

x2
p+6n+3xp+6n+1 + xp+6n+3 + a

, n = 0, 1, 2, . . .

we have:

L =
L.K + K2 + a

L.K2 + K + a
⇒ L = 1 = K

Up to now, we have shown

lim
n→∞

xp+6n+k = 1; k = 0, 1, 2, 3, 4, 5.

So,

lim
n→∞

xn = 1

Next, we investigate the case where the rule for the lengths of positive and neg-

ative semicycles which occur successively is: . . . , 1+, 1−, 1+, 3−, 1+, 1−, 1+, 3− . . .

For the convenience of the statement, we denote the rule for the lengths of positive

and negative semicycles to occur successively as following:

. . . , {xp+6n}
+, {xp+6n+1}

−, {xp+6n+2}
+, {xp+6n+3, xp+6n+4, xp+6n+5}

−, . . .

From Lemma 2.2 (b) we have:

xp+6n+1 < xp+6n+3 < xp+6n+5 < xp+6n+7

By the above similar method we have:

lim
n→∞

xp+6n+1 = lim
n→∞

xp+6n+3 = lim
n→∞

xp+6n+5 = M

We also have:

xp+6n+2 < xp+6n < xp+6(n−1)+2

lim
n→∞

xp+6n+2 = lim
n→∞

xp+6n = L

Noting that:

xp+6n+5 =
xp+6n+3xp+6n+1 + x2

p+6n+3 + a

x2
p+6n+3xp+6n+1 + xp+6n+3 + a

, n = 0, 1, 2, . . .

Taking the limits on both sides, we have:

M =
2M2 + a

M3 + M + a
⇒ M = 1

and from the equation:

xp+6n+4 =
xp+6n+2xp+6n + x2

p+6n+2 + a

x2
p+6n+2xp+6n + xp+6n+2 + a

, n = 0, 1, 2, . . .

we obtain:

lim
n→∞

xp+6n+4 =
2L2 + a

L3 + L + a
= H
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From the equation:

xp+6n+6 =
xp+6n+4xp+6n+2 + x2

p+6n+4 + a

x2
p+6n+4xp+6n+2 + xp+6n+4 + a

, n = 0, 1, 2, . . .

we also obtain:

L =
H.L + H2 + a

H2.L + H + a
⇒ L = 1 = H

we complete this case. We investigate the last case . . . , 4+, 2−, 4+, 2−, 4+, 2−, 4+, 2−. . .

We consider the rule for the lengths of positive and negative semicycles to occur

successively as following:

. . . , {xp+6n, xp+6n+1, xp+6n+2, xp+6n+3}
+, {xp+6n+4, xp+6n+5}

−, . . .

It is easy to see that:

xp+6n+2 < xp+6n < xp+6(n−1)+2,

xp+6n+3 < xp+6n+1 < xp+6(n−1)+3,

lim
n→∞

xp+6n+2 = lim
n→∞

xp+6n = L,

lim
n→∞

xp+6n+3 = lim
n→∞

xp+6n+1 = M,

From the equation:

xp+6n+4 =
xp+6n+2xp+6n + x2

p+6n+2 + a

x2
p+6n+2xp+6n + xp+6n+2 + a

, n = 0, 1, 2, . . .

we obtain:

lim
n→∞

xp+6n+4 =
2L2 + a

L3 + L + a
= K

From the equation:

xp+6n+6 =
xp+6n+4xp+6n+2 + x2

p+6n+4 + a

x2
p+6n+4xp+6n+2 + xp+6n+4 + a

, n = 0, 1, 2, . . .

we also obtain:

L =
K.L + K2 + a

K2.L + K + a
⇒ L = 1

By the similar method we also get:

lim
n→∞

xp+6n+5 = lim
n→∞

xp+6n+3 = lim
n→∞

xp+6n+1 = 1

The proof is complete.
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