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1. INTRODUCTION

Alexits [1], Sahney and Goel [11], Chandra [2],Qureshi and Neha [9], Leindler

[5] and Rhoades [10] have determined the degree of approximation of a function be-

longing to Lipα class by Cesàro, Nörlund and generalised Nörlund single summability

methods. Working in the same direction Sahney and Rao [12], Khan [4], Quershi [7, 8]

have studied the degree of approximation of a function belonging to Lip(α, r) class

by Nörlund and generalised Nörlund single summability methods. But nothing seems

to have been done so far to obtain the degree of approximation of a function belong-

ing to Lip(ξ(t), r) class by (E, q)(C, 1)product summability method. The Lip(ξ(t), r)

is a generalization of Lipα class and Lip(α, r) class. Therefore, in present paper, a

theorem on degree of approximation of a function belonging to Lip(ξ(t), r) class by

(E, q)(C, 1) product summability means of Fourier series have been established.

2. DEFINITIONS AND NOTATIONS

Let f(x) be periodic with period 2π and integrable in the sense of Lebesgue. The

Fourier series of f(x) is given by

f(x) ∼
a0

2
+

∞
∑

n=1

(an cos nx + bn sin nx) (2.1)
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with nth partial sum sn(f ; x). Lr-norm is defined by

‖f‖r =

{
∫ 2π

0

|f(x)|rdx

}
1
r

, r ≥ 1 (2.2)

and let the degree of approximation of a function be given by Zygmund [14].

En(f) = min ‖tn − f‖r (2.3)

where tn(x) is some nth degree trigonometric polynomial. A function f ∈ Lipα if

f(x + t) − f(x) = O(|t|α) for 0 < α ≤ 1 (2.4)

f ∈ Lip(α, r) if

(
∫ 2π

0

|f(x + t) − f(x)|rdx

)

1

r

= O(|t|α), 0 < α ≤ 1 and r ≥ 1 (2.5)

(definition 5.38 of Mc Fadden [6])

Given a positive increasing function ξ(t) and an integer r ≥ 1, f ∈ Lip(ξ(t), r) if

(
∫ 2π

0

|f(x + t) − f(x)|rdx)

)

1

r

= O(ξ(t)) (2.6)

If ξ(t) = tα then Lip(ξ(t), r) class reduces to the class Lip(α, r) and if r → ∞ then

Lip(α, r) class reduces to the class Lipα.

Let
∑

∞

n=0 un be a given infinite series with the sequence of its nth partial sum

{sn}. The (C, 1) transform is defined as the nth partial sum of (C, 1) summability

tn =
s0 + s1 + s2 + · · · + sn

n + 1

=
1

n + 1

n
∑

k=0

sk → s as n → ∞ (2.7)

then the infinite series
∑

∞

n=0 un is summable to the definite number s by (C, 1)

method. If

(E, q) = Eq
n =

1

(1 + q)n

n
∑

k=0

(

n

k

)

qn−ksk → s as n → ∞ (2.8)

then the infinite series
∑

∞

n=0 un is said to be summable (E, q) to the definite number

s [3]. The (E, q) transform of the (C, 1) transform defines (E, q)(C, 1) transform and

we denote it by Eq
nC

1
n. Thus if

Eq
nC1

n =
1

(1 + q)n

n
∑

k=0

(

n

k

)

qn−k C1
k → s (2.9)
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where Eq
n denotes the (E, q) transform of sn and C1

n denotes the (C, 1) transform of sn.

Then the series
∑

∞

n=0 un is said to be summable by (E, q)(C, 1) means or summable

(E, q)(C, 1) to a definite number s. We use the following notations:

φ(t) = f(x + t) + f(x − t) − 2f(x)

Kn(t) =
1

2π(1 + q)n

n
∑

k=0

{(

n

k

)

qn−k

(

1

1 + k

) k
∑

ν=0

sin(υ + 1
2
)t

sin t
2

}

3. MAIN THEOREM

Theorem 3.1. If a function f, 2π-periodic, means of its Fourier series is given by

‖ Eq
nC

1
n − f ‖r= O

[

(n + 1)
1

r ξ

(

1

n + 1

)]

(3.1)

provided ξ(t) satisfies the following conditions:

{

∫ 1

n+1

0

(

t|φ(t)|

ξ(t)

)r

dt

}
1

r

= O

(

1

n + 1

)

(3.2)

and
{

∫ π

1

n+1

(

t−δ|φ(t)|

ξ(t)

)r

dt

}
1

r

= O
{

(n + 1)δ
}

(3.3)

where δ is an arbitrary number such that s(1 − δ) − 1 > 0, 1
r

+ 1
s

= 1, 1 ≤ r ≤ ∞,

conditions (3.2) and (3.3) hold uniformly in x and Eq
nC

1
n is (E, 1)(C, 1) means of the

series (2.1).

4. LEMMAS

For the proof of our theorem, following lemmas are required.

Lemma 4.1. |Kn(t)| = O(n + 1), for 0 ≤ t ≤ 1
n+1

.

Proof. For 0 ≤ t ≤ 1
n+1

, sin nt ≤ n sin t

|Kn(t)| =
1

2π (1 + q)n

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k

(

1

1 + k

) k
∑

υ=0

sin(υ + 1
2
)t

sin t
2

]
∣

∣

∣

∣

∣

≤
1

2π (1 + q)n

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k

(

1

1 + k

) k
∑

υ=0

(2υ + 1) sin t
2

sin t
2

]
∣

∣

∣

∣

∣

≤
1

2π (1 + q)n

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k (k + 1)

]
∣

∣

∣

∣

∣

= O

[

(n + 1)

(1 + q)n

n
∑

k=0

{(

n

k

)

qn−k

}]
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= O(n + 1) since

n
∑

k=0

(

n

k

)

qn−k = (1 + q)n

Lemma 4.2. |Kn(t)| = O
(

1
t

)

, for 1
n+1

≤ t ≤ π.

Proof. For 1
n+1

≤ t ≤ π, by applying Jordan’s lemma sin t
2
≥ t

π
and sin nt ≤ 1

|Kn(t)| =
1

2π (1 + q)n

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k

(

1

1 + k

) k
∑

υ=0

sin(υ + 1
2
)t

sin t
2

]∣

∣

∣

∣

∣

≤
1

2π (1 + q)n

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k

(

1

1 + k

) k
∑

υ=0

1

t/π

]
∣

∣

∣

∣

∣

=
1

2(1 + q)n t

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k

(

1

1 + k

) k
∑

υ=0

(1)

]
∣

∣

∣

∣

∣

=
1

2(1 + q)n t

∣

∣

∣

∣

∣

n
∑

k=0

[(

n

k

)

qn−k

]
∣

∣

∣

∣

∣

= O

(

1

t

)

since
n
∑

k=0

(

n

k

)

qn−k = (1 + q)n

5. PROOF OF THE THEOREM

Following Titchmarsh [13] and using Riemann-Lebesgue theorem, sn(f ; x) of the

series (2.1) is given by

sn(f ; x) − f(x) =
1

2π

∫ π

0

φ(t)
sin(n + 1

2
)t

sin t
2

dt

Therefore using (2.1), the (C, 1) transform C1
n of sn(f ; x) is given by

C1
n − f(x) =

1

2π(n + 1)

∫ π

0

φ(t)

n
∑

k=0

sin(k + 1
2
)t

sin t
2

dt

Now denoting (E, q)(C, 1) transform of sn(f ; x) by Eq
nC1

n, we write

Eq
nC

1
n − f(x) =

1

2π(1 + q)n

n
∑

k=0

[(

n

k

)

qn−k

∫ π

0

φ(t)

sin t
2

(

1

k + 1

)

{

k
∑

υ=0

sin

(

υ +
1

2

)

t

}

dt

]

=

∫ π

0

φ(t) Kn(t) dt

=

[

∫ 1

n+1

0

+

∫ π

1

n+1

]

φ(t)Kn(t) dt

= I1 + I2 (say) (5.1)
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We consider,

|I1| ≤

∫ 1

n+1

0

|φ(t)||Kn(t)|dt

Using Hölder’s inequality and the fact that φ(t) ∈ Lip(ξ(t), r),

|I1 ≤

[

∫ 1

n+1

0

{

t|φ(t)|

ξ(t)

}r

dt

]
1

r

[

∫ 1

n+1

0

{

ξ(t)|Kn(t)|

t

}s

dt

]
1

s

= O

(

1

n + 1

)

[

∫ 1

n+1

0

{

ξ(t)|Kn(t)|

t

}s

dt

]
1

s

by (3.2)

= O

(

1

n + 1

)

[

∫ 1

n+1

0

{

(n + 1) ξ(t)

t

}s

dt

]
1

s

by Lemma 1

Since ξ(t) is a positive increasing function and using second mean value theorem for

integrals

I1 = O

{

ξ

(

1

n + 1

)}

[

∫ 1

n+1

∈

dt

ts

]
1

s

for some 0 <∈<
1

n + 1

= O

{

ξ

(

1

n + 1

)}

[

{

t−s+1

−s + 1

}
1

n+1

ǫ

]

1

s

= O

{

ξ

(

1

n + 1

)}

{

(n + 1)1− 1

s

}

= O

{

(n + 1)
1

r ξ

(

1

n + 1

)}

since
1

r
+

1

s
= 1 (5.2)

Now we consider,

|I2| ≤

∫ π

1

n+1

|φ (t) | |Kn (t)| dt

Using Hölder’s inequality,

|I2| ≤

[

∫ π

1

n+1

{

t−δ |φ (t) |

ξ (t)

}r

dt

]
1

r

[

∫ π

1

n+1

{

ξ (t) |Kn (t)|

t−δ

}s

dt

]
1

s

= O
{

(n + 1)δ
}

[

∫ π

1

n+1

{

ξ (t) |Kn (t)|

t−δ

}s

dt

]
1

s

by (3.3)

= O
{

(n + 1)δ
}

[

∫ π

1

n+1

{

ξ (t)

t1−δ

}s

dt

]

by Lemma 2

Now putting t = 1
y
,

I2 = O
{

(n + 1)δ
}





∫ n+1

1

π







ξ
(

1
y

)

(y)δ−1







dy

y2





1

s
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Since ξ(t) is a positive increasing function and using second mean value theorem for

integrals,

I2 = O

{

(n + 1)δ ξ

(

1

n + 1

)}[
∫ n+1

η

dy

ys(δ−1)+2

]

1

s

for some
1

π
≤ η ≤ n + 1

= O

{

(n + 1)δ ξ

(

1

n + 1

)}[
∫ n+1

1

dy

ys(δ−1)+2

]

1

s

for some
1

π
≤ 1 ≤ n + 1

= O

{

(n + 1)δ ξ

(

1

n + 1

)}

[

{

ys(1−δ)−1

s (1 − δ) − 1

}n+1

1

]
1

s

= O

{

(n + 1)δ ξ

(

1

n + 1

)}

[

(n + 1)(1−δ)− 1

s

]

= O

{

ξ

(

1

n + 1

)}

[

(n + 1)1−
1

s

]

= O

{

(n + 1)
1

r ξ

(

1

n + 1

)}

since
1

r
+

1

s
= 1 (5.3)

Combining (5.1), (5.2) and (5.3),

∣

∣Eq
nC

1
n − f (x)

∣

∣ = O

{

(n + 1)
1

r ξ

(

1

n + 1

)}

(5.4)

Now, using Lr-norm, we get

∥

∥Eq
nC

1
n − f (x)

∥

∥

r
=

{
∫ 2π

0

∣

∣Eq
nC

1
n − f (x)

∣

∣

r
dx

}

1

r

= O

[

{
∫ 2π

0

{

(n + 1)
1

r ξ

(

1

n + 1

)}r

dx

}

1

r

]

= O

{

(n + 1)
1

r ξ

(

1

n + 1

)}

[

{
∫ 2π

0

dx

}

1

r

]

= O

{

(n + 1)
1

r ξ

(

1

n + 1

)}

This completes the proof of the theorem.

6. APPLICATIONS

Following corollaries can be derived from our main theorems.

Corollary 6.1. If ξ (t) = tα, 0 < α ≤ 1, then the class Lip (ξ (t) , r) , r ≥ 1,

reduces to the class Lip (α, r) and the degree of approximation of a function f ∈

Lip (α, r) , 1
r

< α < 1, is given by

∣

∣Eq
nC1

n − f
∣

∣ = O

(

1

(n + 1)α− 1

r

)
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Proof. We have

∥

∥Eq
nC

1
n − f

∥

∥

r
= O

{
∫ 2π

0

∣

∣Eq
nC1

n − f
∣

∣

r
dx

}

1

r

or
{

(n + 1)
1

r ξ

(

1

n + 1

)}

= O

{
∫ 2π

0

∣

∣Eq
nC1

n − f
∣

∣

r
dx

}

1

r

or

O(1) = O

{
∫ 2π

0

∣

∣Eq
nC1

n − f
∣

∣

r
dx

}

1

r

O







1

O
{

(n + 1)
1

r ξ
(

1
n+1

)

}







Hence
∣

∣Eq
nC

1
n − f

∣

∣ = O

{

(n + 1)
1

r ξ

(

1

n + 1

)}

for if not the right-hand side will be O(1), therefore

∣

∣Eq
nC

1
n − f

∣

∣ = O

{(

1

n + 1

)α

(n + 1)
1

r

}

= O

(

1

(n + 1)α− 1

r

)

Corollary 6.2. If r → ∞ in corollary 1, then the class Lip (α, r) reduces to the class

f ∈ Lipα and the degree of approximation of a function f ∈ Lipα, 0 < α < 1, is

given by

‖ Eq
nC

1
n − f ‖∞= O

{

1

(n + 1)α

}

Corollary 6.3. If ξ (t) = tα, 0 < α ≤ 1, then the class Lip (ξ (t) , r) , r ≥ 1, reduces

to the class Lip (α, r) and if q=1 then (E, q) summability reduces to (E, 1) summability

and the degree of approximation of a function f ∈ Lip (α, r) , 1
r

< α < 1, is given by

∣

∣(EC)1
n − f

∣

∣ = O

(

1

(n + 1)α− 1

r

)

Corollary 6.4. If r → ∞ in corollary 3, then the class Lip (α, r) reduces to the class

f ∈ Lipα and the degree of approximation of a function f ∈ Lipα, 0 < α < 1, is

given by

∥

∥(EC)1
n − f

∥

∥

∞
= O

{

1

(n + 1)α

}

Remark 6.5. Independent proofs of above corollaries 1 and 3 can be obtained along

the same lines of our theorem.



614 H. K. NIGAM

ACKNOWLEDGEMENT

I am thankful to my parents for their encouragement and support during prepa-

ration of this paper. I also express my sincere thanks to the referee for his valuable

and kind suggestions for improvement of this paper. My sincere thanks are also due

to the editor for his kind help during communication.

REFERENCES

[1] G. Alexits, Convergence problems of orthogonal series, Translated from German by I Földer.
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