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ABSTRACT. The purpose of this paper is to develop monotone technique by introducing the

notion of upper and lower solutions together with the associated monotone iterations for nonlinear

weakly coupled time degenerate parabolic system with initial and boundary conditions. Under

suitable initial iterations and for mixed quasimonotone boundary functions, two monotone sequences

are constructed. It is shown that these two sequences converge monotonically from above and

below respectively to maximal and minimal solutions of Dirichlet initial boundary value problem

for nonlinear weakly coupled time degenerate parabolic system which leads to existence-comparison

and uniqueness results for the solution of the Dirichlet initial boundary value problem for nonlinear

weakly coupled time degenerate parabolic system.

1. INTRODUCTION

Monotone technique is one of the important and widely known method in the

theory of applied nonlinear analysis. It is developed and extensively employed in

the study of various aspects of both elliptic and parabolic boundary value problems,

which arise in physical, chemical and biological phenomena.The method of upper

and lower solutions is employed successfully in the study of existence-comparison

and uniqueness of solutions of initial boundary value problem (IBVP) of a nonlin-

ear partial differential equation.An excellent account of these results are given in the

elegant books by Ladde, Lakshmikantham and Vatsala[4], Leung[5] and Pao[6]. Re-

cently, the monotone technique is developed by Dhaigude, Dhaigude and Dhaigude

[2], for nonlinear time degenerate parabolic IBVP.The qualitative properties such as

existence-comparison and uniqueness of solution of time degenerate problem are stud-

ied. We extend this study by developing monotone technique for system of weakly
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coupled nonlinear time degenerate parabolic problem when the reaction functions are

mixed quasimonotone.Such results for weakly coupled nonlinear uniformly parabolic

problems have been established by Chandra, Dressel and Norman [1].

2.UPPER-LOWER SOLUTIONS

In this section, we state the following Dirichlet IBVP for weakly coupled nonlinear

time degenerate parabolic system

d(1)(x, t)(u1)t − D(1)∇2u1 = f (1)(x, t, u1, u2)

d(2)(x, t)(u2)t − D(2)∇2u2 = f (2)(x, t, u1, u2)
in DT (2.1)

with boundary conditions:

u1(x, t) = g(1)(x, t)

u2(x, t) = g(2)(x, t)
on ST (2.2)

and initial conditions:

u1(x, 0) = u1,0(x)

u2(x, 0) = u2,0(x)
in Ω (2.3)

Here Ω is a bounded domain in Rn(n = 1, 2, . . . ) with boundary ∂Ω, DT := Ω×(O, T ]

is parabolic domain and ST := δΩ × (O, T ], T > 0 is parabolic boundary.

Suppose that the functions d(1)(x, t), d(2)(x, t) are nonnegative in DT .However we

will not assume that d(1)(x, t) and d(2)(x, t) are bounded away from zero.Since we

assume that d(1)(x, t) = 0, d(2)(x, t) = 0 for some (x, t) ∈ DT and hence the system

is time degenerate.Further suppose that D(1) > 0, D(2) > 0 are constants in DT .The

functions f (1)(x, t, u1, u2), f
(2)(x, t, u1, u2) are in general nonlinear in u1, u2 and depend

explicitly on (x, t).The functions f (1)(x, t, u1, u2), f
(2)(x, t, u1, u2), g(1)(x, t), g(2)(x, t)

and u1,0(x), u2,0(x) are Hölder continuous in their respective domains.Suppose that

the reaction functions f (1)(x, t, u1, u2) and f (2)(x, t, u1, u2) are mixed quasimonotone.

Definition 2.1. A C1-function (f (1), f (2)) is said to be mixed quasimonotone in J ⊂

R2, if

∂f (1)

∂u2
≤ 0,

∂f (2)

∂u1
≥ 0; (or vice versa)

for (u1, u2) ∈ J1 × J2 = J .

Definition 2.2. Two functions ũ = (ũ1, ũ2) and û = (û1, û2)in C(DT ) ∩ C2,1(DT )

with the condition (ũ1, ũ2) ≥ (û1, û2)are called ordered upper and lower solutions of
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the Dirichlet IBVP (2.1)-(2.3) if they satisfy the differential inequalities:

d(1)(x, t)(ũ1)t − D(1)∇2ũ1 ≥ f (1)(x, t, ũ1, û2)

d(1)(x, t)(û1)t − D(1)∇2û1 ≤ f (1)(x, t, û1, ũ2)

d(2)(x, t)(ũ2)t − D(2)∇2ũ2 ≥ f (2)(x, t, ũ1, ũ2)

d(2)(x, t)(û2)t − D(2)∇2û2 ≤ f (2)(x, t, û1, û2)

in DT

boundary conditions:
ũ1(x, t) ≥ g(1)(x, t)

û1(x, t) ≤ g(1)(x, t)

ũ2(x, t) ≥ g(2)(x, t)

û2(x, t) ≤ g(2)(x, t)

on ST

and initial conditions:
ũ1(x, 0) ≥ u1,0(x)

û1(x, 0) ≤ u1,0(x)

ũ2(x, 0) ≥ u2,0(x)

û2(x, 0) ≤ u2,0(x)

in Ω

Definition 2.3. Let ũ = (ũ1, ũ2) and û = (û1, û2) be any two functions with

(ũ1, ũ2) ≥ (û1, û2) then we define the sector

〈û, ũ〉 = { (u1, u2) ∈ C(DT ) : (û1, û2) ≤ (u1, u2) ≤ (ũ1, ũ2) }

Assume that (f (1), f (2)) satisfies the one sided Lipschitz condition then there

exists nonnegative constants c1 and c2 such that for every pair of (u1, u2), (v1, v2) in

the sector 〈û, ũ〉,

f (1)(x, t, u1, u2) − f (1)(x, t, v1, u2) ≥ −c1(u1 − v1) for û ≤ v1 ≤ u1 ≤ ũ

f (2)(x, t, u1, u2) − f (2)(x, t, u1, v2) ≥ −c2(u2 − v2) for û ≤ v2 ≤ u2 ≤ ũ

(2.4)

which ensure the existence of a solution of Dirichlet IBVP (2.1)-(2.3). Further assume

that

F (1)(x, t, u1, u2) = c1 + f (1)(x, t, u1, u2)

F (2)(x, t, u1, u2) = c2 + f (2)(x, t, u1, u2)

are Hölder continuous in DT × 〈û, ũ〉.

Lemma 2.4. Suppose (u1, u2) and (v1, v2) are any two functions in the sector 〈û, ũ〉

such that (u1, u2) ≥ (v1, v2). Assume that (f (1), f (2)) is mixed quasimonotone and

satisfy Lipchitz conditions (2.4).Then

F (1)(x, t, u1, u2) ≥ F (1)(x, t, v1, v2)

F (2)(x, t, u1, u2) ≥ F (2)(x, t, v1, v2)
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Proof: The Lipschitz conditions (2.4)and mixed quasimonotone property of

(f (1), f (2)), implies

F (1)(x, t, u1, v2) − F (1)(x, t, v1, u2) = [c1(u1 − v1) + f (1)(x, t, u1, v2) − f (1)(x, t, v1, v2)]

+ [f (1)(x, t, v1, v2) − f (1)(x, t, v1, u2)] ≥ 0.

Thus, F (1)(x, t, u1, v2)−F (1)(x, t, v1, u2) ≥ 0. Similarly we can prove F (2)(x, t, u1, u2)−

F (2)(x, t, v1, v2) ≥ 0

Lemma 2.5 (Positivity Lemma. Dhaigude, Dhaigude and Dhaigude [2]). Suppose

that u ∈ C(DT ) ∩ C2,1(DT ) and satisfies the inequalities

(i) d(x, t)ut − D(x, t)∇2u + c(x, t)u ≥ 0 in DT

(ii) α(x)∂u
∂ν

+ β(x)u ≥ 0 on ST

(iii) u(x, 0) ≥ 0 in Ω

where d(x, t) ≥ 0, D(x, t) > 0, c(x, t) ≥ 0 in DT

Then u(x, t) ≥ 0 in DT .

3. MONOTONE ITERATIVE TECHNIQUE

In this section, we develop monotone method for time degenerate parabolic

Dirichlet IBVP (2.1)-(2.3); by introducing the notion of upper and lower solutions.

The operators L1 and L2 are

L1[u1] ≡ d(1)(x, t)(u1)t − D(1)∇2u1 + c1u1

L2[u2] ≡ d(2)(x, t)(u2)t − D(2)∇2u2 + c2u2

in DT

then the differential equations in (2.1) are equivalent to

L1[u1] = c1u1 + f (1)(x, t, u1, u2)

L2[u2] = c2u2 + f (2)(x, t, u1, u2)

Monotone Iterative Process. The monotone iterative processes are given by

L1[u
(k)
1 ] = c1u

(k−1)
1 + f (1)(x, t, u

(k−1)
1 , u

(k−1)
2 )

u
(k)
1 (x, t) = g(1)(x, t) (3.1)

u
(k)
1 (x, 0) = u1,0(x)

where k = 1, 2, . . .

L1[u
(k)
1 ] = c1u

(k−1)
1 + f (1)(x, t, u

(k−1)
1 , u

(k−1)
2 )

u
(k)
1 (x, t) = g(1)(x, t)

u
(k)
1 (x, 0) = u1,0(x)

(3.2)

where k = 1, 2, . . .
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L2[u
(k)
2 ] = c2u

(k−1)
2 + f (2)(x, t, u

(k−1)
1 , u

(k−1)
2 )

u
(k)
2 (x, t) = g(2)(x, t)

u
(k)
2 (x, 0) = u2,0(x)

(3.3)

where k = 1, 2, . . .

L2[u
(k)
2 ] = c2u

(k−1)
2 + f (2)(x, t, u

(k−1)
1 , u

(k−1)
2 )

u
(k)
2 (x, t) = g(2)(x, t)

u
(k)
2 (x, 0) = u2,0(x)

(3.4)

where k = 1, 2, . . .

For k = 1, we start with (u
(0)
1 , u

(0)
2 ) = (û1, û2) as an initial iteration in the iteration

process (3.3) and applying the existence theory for linear time degenerate parabolic

initial boundary value problem Ippolito [3], we get u
(1)
2 .

Similarly, we start with (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2) as an initial iteration in the iteration

process (3.4) and applying the existence theory for linear time degenerate parabolic

initial boundary value problem Ippolito [3], we get u
(1)
2 .

Now, we start with (u
(0)
1 , u

(0)
2 ) = (û1, ũ2) as an initial iteration in the iteration

process (3.1) and applying the existence theory for linear time degenerate parabolic

initial boundary value problem Ippolito [3], we get u
(1)
1 .

Similarly, consider initial iterations as (u
(0)
1 , u

(0)
2 ) = (ũ1, û2) in the iteration pro-

cess (3.2) and applying the existence theory for linear time degenerate parabolic initial

boundary value problem Ippolito [3], we get u
(1)
1 .

Thus for k = 1, we obtain first iterations (u
(0)
1 , u

(0)
2 ) and (u

(0)
1 , u

(0)
2 ) .

For k = 2, we start with (u
(1)
1 , u

(1)
2 ) = (û1, û2) as an initial iteration in the iteration

process (3.3) and applying the existence theory for linear time degenerate parabolic

initial boundary value problem Ippolito [3], we get u
(2)
2 .

Similarly, we start with (u
(1)
1 , u

(1)
2 ) = (ũ1, ũ2) as an initial iteration in the iteration

process (3.4) and applying the existence theory for linear time degenerate parabolic

initial boundary value problem Ippolito [3], we get u
(2)
2 .

Now, we start with (u
(1)
1 , u

(1)
2 ) = (û1, ũ2) as an initial iteration in the iteration

process (3.1) and applying the existence theory for linear time degenerate parabolic

initial boundary value problem Ippolito [3], we get u
(2)
1 .

Similarly, consider initial iterations as (u
(1)
1 , u

(1)
2 ) = (ũ1, û2) in the iteration pro-

cess (3.2)and applying the existence theory for linear time degenerate parabolic initial

boundary value problem Ippolito [3], we get u
(2)
1 .

Thus for k = 2, we obtain second iterations (u
(2)
1 , u

(2)
2 ) and (u

(2)
1 , u

(2)
2 ) .

Similarly for k = 3, 4, . . . we obtain the sequence of these iterations as { u
(k)
1 , u

(k)
2 }

and { u
(k)
1 , u

(k)
2 }, . . .
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Thus we observe that in this iteration process the equations in (3.1) - (3.4) are un-

coupled but are inter related in the sense that the kth iteration (u
(k)
1 , u

(k)
2 ) or (u

(k)
1 , u

(k)
2 )

depends on all four components in the (k − 1)th iteration.

Now, we prove monotone property of these two sequences { u
(k)
1 , u

(k)
2 } and { u

(k)
1 , u

(k)
2 }.

Lemma 3.1 (Monotone Property). Suppose that

(i) (ũ1, ũ2), (û1, û2) are ordered upper and lower solutions of the Dirichlet IBVP

(2.1)-(2.3).

(ii) the reaction functions f (1), f (2) are mixed quasimonotone

(iii) the functions f (1)(x, t, u1, u2) and f (2)(x, t, u1, u2) satisfy the onesided Lips-

chitz conditions in u1, u2.

f (1)(x, t, u1, u2) − f (1)(x, t, v1, u2) ≥ −c1(u1 − v1, ) for û ≤ v1 ≤ u1 ≤ ũ

f (2)(x, t, u1, u2) − f (2)(x, t, u1, v2) ≥ −c2(u2 − v2, ) for û ≤ v2 ≤ u2 ≤ ũ

Then the sequences { u
(k)
1 , u

(k)
2 } and { u

(k)
1 , u

(k)
2 } possess the monotone property

û1 ≤ u
(k)
1 ≤ u

(k+1)
1 ≤ u

(k+1)
1 ≤ u

(k)
1 ≤ ũ1 in DT (3.5)

û2 ≤ u
(k)
2 ≤ u

(k+1)
2 ≤ u

(k+1)
2 ≤ u

(k)
2 ≤ ũ2 in DT (3.6)

for k = 1, 2, . . .

Proof: Define

w1 = u
(0)
1 − u

(1)
1 = ũ1 − u

(1)
1 (u

(0)
1 = ũ1)

By definition 2.2, we have

d(1)(x, t)(ũ1)t − D(1)∇2ũ1 ≥ f (1)(x, t, ũ1, û2) in DT

ũ1(x, t) ≥ g(1)(x, t) on ST

ũ1(x, 0) ≥ u1,0(x) in Ω

We have

L1[w1] = d(1)(x, t)(w1)t − D(1)∇2w1 + c1w1

= [d(1)(x, t)](ũ1)t − D(1)∇2ũ1 + c1ũ1]

− [d(1)(x, t)(u
(1)
1 )t − D(1)(x, t)∇2u

(1)
1 + c1u

(1)
1 ]

L1[w1] = [d(1)(x, t)(ũ1)t − D(1)∇2ũ1 + c1ũ1] − [c1u
(0)
1 + f (1)(x, t, u

(0)
1 , u

(0)
2 )]

(By iterative process)

= d(1)(x, t)(ũ1)t − D(1)∇2ũ1 + c1ũ1 − [c1ũ1 − f (1)(x, t, ũ1, û2)]

(By using u
(0)
1 = ũ1 and u

(0)
2 = û2)

= d(1)(x, t)(ũ1)t − D(1)∇2ũ1 − f (1)(x, t, ũ1, û2) ≥ 0
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L1[w1] ≡ d(1)(x, t)(w
(0)
1 )t − D(1)∇2w

(0)
1 + c1w

(0)
1 ≥ 0 in DT .

Also

w1(x, t) = ũ1(x, t) − u
(1)
1 (x, t) ≥ ũ1(x, t) − g(1)(x, t) ≥ 0 on ST

and

w
(
1x, 0) = ũ1(x, 0) − u

(1)
1 (x, 0) ≥ ũ1(x, 0) − u1,0(x) ≥ 0 in Ω

Now applying the Lemma 2.5, we get

w
(
1x, t) ≥ 0 in DT

This implies that

u
(1)
1 ≤ u

(0)
1 in DT (3.7)

Define

w=
1 u

(1)
1 − u

(0)
1 = u

(1)
1 − û1 (u

(0)
1 = û1)

We get on similar lines

u
(0)
1 ≤ u

(1)
1 in DT (3.8)

Now we define,

w
(1)
1 = u

(1)
1 − u

(1)
1

We have

L1[w
(1)
1 ] = d(1)(x, t)(w

(1)
1 )t − D(1)∇2w

(1)
1 + c1w

(1)
1

= [d(1)(x, t)(u
(1)
1 )t − D(1)∇2u

(1)
1 + c1u

(1)
1 ]

− [d(1)(x, t)(u
(1)
1 )t − D(1)∇2u

(1)
1 + c1u

(1)
1 ]

L1[w
(1)
1 ] = [c1(x, t)u

(0)
1 + f (1)(x, t, u

(0)
1 , u

(0)
2 )] − [c1(x, t)u

(0)
1 + f (1)(x, t, u

(0)
1 , u

(0)
2 )]

(By iterative scheme)

= [c1ũ1 + f (1)(x, t, ũ1, û2)] − [c1û1 + f (1)(x, t, û1, ũ2)]

(By using u
(0)
1 = ũ1, u

(0)
1 = û1, u

(0)
2 = ũ2 and u

(0)
2 = û2)

= F (1)(x, t, ũ1, û2) − F (1)(x, t, û1, ũ2) ≥ 0 (By Lemma 2.4)

L1[w
(1)
1 ] ≡ d(1)(x, t)(w

(1)
1 )t − D(1)∇2w

(1)
1 + c1w

(1)
1 ≥ 0 in DT .

Also

w
(1)
1 (x, t) = u

(1)
1 (x, t) − u

(1)
1 (x, t) ≥ g(1)(x, t) − g(1)(x, t) = 0 on ST
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and

w
(1)
1 (x, 0) = u

(1)
1 (x, 0) − u

(1)
1 (x, 0) ≥ u1,0(x) − u1,0(x) = 0 in Ω

Applying the Lemma 2.5, we get

w
(1)
1 (x, t) ≥ 0 in DT

This implies that

u
(1)
1 ≤ u

(1)
1 in DT (3.9)

Thus from (3.7), (3.8), (3.9), we get

u
(0)
1 ≤ u

(1)
1 ≤ u

(1)
1 ≤ u

(0)
1 in DT (3.10)

Thus result is true for k = 1. We assume,the result is true for k

u
(k−1)
1 ≤ u

(k)
1 ≤ u

(k)
1 ≤ u

(k−1)
1

and prove it for k + 1

u
(k)
1 ≤ u

(k+1)
1 ≤ u

(k+1)
1 ≤ u

(k)
1 in DT

Define a function

w
(k)
1 = u

(k)
1 − u

(k+1)
1

We have

L1[w
(k)
1 ] = d(1)(x, t)(w

(k)
1 )t − D(1)∇2w

(k)
1 + c1w

(k)
1

= [d(1)(x, t)(u
(k)
1 )t − D(1)(x, t)∇2u

(k)
1 + c1u

(k)
1 ]

− [d(1)(x, t)(u
(k+1)
2 )t − D(1)(x, t)∇2u

(k+1)
1 + c1u

(k+1)
1 ]

L1[w
(k)
1 ] = [c1u

(k−1)
1 + f (1)(x, t, u

(k−1)
1 , u

(k−1)
2 )] − [c1u

(k)
1 + f (1)(x, t, u

(k)
1 , u

(k)
2 )]

(By iterative process)

= F (1)(x, t, u
(k−1)
1 , u

(k−1)
2 ) − F (1)(x, t, u

(k)
1 , u

(k)
2 ) ≥ 0 (By Lemma 2.4)

L1[w
(k)
1 ] ≡ d(1)(x, t)(w

(k)
1 )t − D(1)(x, t)∇2w

(k)
1 + c1w

(k)
1 ≥ 0 in DT

Also

w
(k)
1 (x, t) = u

(k)
1 (x, t) − u

(k+1)
1 (x, t) ≥ g(1)(x, t) − g(1)(x, t) = 0 on ST

and

w
(k)
1 (x, 0) = u

(k)
1 (x, 0) − u

(k+1)
1 (x, 0) ≥ u1,0(x) − u1,0(x) = 0 in Ω

Applying the Lemma 2.5, we get

w
(k)
1 (x, t) ≥ 0 in DT
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This implies that

u
(k+1)
1 ≤ u

(k)
1 (3.11)

Define a function

w
(k)
1 = u

(k+1)
1 − u

(k)
1

On similar lines we get

u
(k)
1 ≤ u

(k+1)
1 in DT . (3.12)

Define

w
(k+1)
1 = u

(k+1)
1 − u

(k+1)
1

On similar lines we get

u
(k+1)
1 ≤ u

(k+1)
1 in DT (3.13)

Thus, we get

u
(k)
1 ≤ u

(k+1)
1 ≤ u

(k+1)
1 ≤ u

(k)
1 in DT

From the principle of induction, we get,

û1 ≤ u
(k)
1 ≤ u

(k+1)
1 ≤ u

(k+1)
1 ≤ u

(k)
1 ≤ ũ1 in DT

for k = 1, 2, . . . On similar lines we get monotone property (3.6),

û2 ≤ u
(k)
2 ≤ u

(k+1)
2 ≤ u

(k+1)
2 ≤ u

(k)
2 ≤ ũ2 in DT

for k = 1, 2, . . .

4. APPLICATIONS

In this section, we prove existence - comparison and uniqueness of solution of

time degenerate parabolic Dirichlet IBVP (2.1)-(2.3) when the functions f (1), f (2) are

mixed quasimonotone.

Theorem 4.1 (Existence-Comparison). Suppose that

(i) (ũ1, ũ2), (û1, û2) are the ordered upper and lower solutions of degenerate Dirich-

lit IBVP (2.1)-(2.3)

(ii) the reaction functions f (1), f (2) are mixed quasimonotone

(iii) the functions f (1)(x, t, u1, u2) and f (2)(x, t, u1, u2)satisfy the one sided Lips-

chitz condition in u1, u2

f (1)(x, t, u1, u2) − f (1)(x, t, v1, u2) ≥ −c1(u1 − v1) for û ≤ v1 ≤ u1 ≤ ũ (4.1)

f (2)(x, t, u1, u2) − f (2)(x, t, u1, v2) ≥ −c2(u2 − v2) for û ≤ v2 ≤ u2 ≤ ũ (4.2)

Then the sequences { u
(k)
1 , u

(k)
2 } and { u

(k)
1 , u

(k)
2 } converges monotonically to their

respective maximal solution (u1, u2) and minimal solution (u1, u2) of degenerate Dirich-

let IBVP (2.1)-(2.3) and satisfy the relations

û1 ≤ u
(k)
1 ≤ u

(k+1)
1 ≤ u1 ≤ u1 ≤ u

(k+1)
1 ≤ u

(k)
1 ≤ ũ1 in DT (4.3)
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and

û2 ≤ u
(k)
2 ≤ u

(k+1)
2 ≤ u2 ≤ u2 ≤ u

(k+1)
2 ≤ u

(k)
2 ≤ ũ2 in DT (4.4)

where k = 1, 2, . . .

Proof: From Lemma 3.1, we conclude that the sequence { u
(k)
1 , u

(k)
2 } is monotone

nonincreasing and bounded from below hence it is convergent to some limit function.

Also the sequence { u
(k)
1 , u

(k)
2 } is monotone nondecreasing and is bounded from above

hence it is convergent to some limit function. So

lim
k→∞

u
(k)
1 (x, t) = u1(x, t); lim

k→∞

u
(k)
2 (x, t) = u2(x, t)

and

lim
k→∞

u
(k)
1 (x, t) = u1(x, t); lim

k→∞

u
(k)
2 (x, t) = u2(x, t)

exist and called maximal and minimal solutions respectively of the degenerate para-

bolic Dirichlet initial boundary value problem (2.1)-(2.3) and they satisfy the mono-

tone property

û1 ≤ u
(k)
1 ≤ u

(k+1)
1 ≤ u1 ≤ u1 ≤ u

(k+1)
1 ≤ u

(k)
1 ≤ ũ1 in DT

and

û2 ≤ u
(k)
2 ≤ u

(k+1)
2 ≤ u2 ≤ u2 ≤ u

(k+1)
2 ≤ u

(k)
2 ≤ ũ2 in DT

Theorem 4.2 (Uniqueness). Suppose that

(i) (ũ1, ũ2), (û1, û2) are the ordered upper and lower solutions of degenerate parabolic

Dirichlet IBVP (2.1)-(2.3)

(ii) the reaction functions f (1), f (2) are mixed quasimonotone

(iii) the functions f (1)(x, t, u1, u2) and f (2)(x, t, u1, u2) satisfy the Lipschitz conditions

−c1(u1 − v1) ≤ f (1)(x, t, u1, u2) − f (1)(x, t, v1, u2) (4.5)

≤ c1(u1 − v1) for û ≤ v1 ≤ u1 ≤ ũ

−c2(u2 − v2) ≤ f (2)(x, t, u1, u2) − f (2)(x, t, u1, v2) (4.6)

≤ c2(u2 − v2) for û ≤ v2 ≤ u2 ≤ ũ

Then the degenerate parabolic Dirichlet IBVP (2.1)-(2.3) has unique solution.

Proof: We know that (u1, u2) and (u1, u2) are maximal and minimal solutions re-

spectively of the nonlinear weakly coupled time degenerate parabolic Dirichlet IBVP

(2.1)-(2.3). To prove uniqueness,it is sufficient to show that

u1(x, t) ≥ u1(x, t) and u2(x, t) ≥ u2(x, t)
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First we consider w1(x, t) = u1x, t − u1(x, t)

d(1)(x, t)(w1)t − D(1)∇2w1 = f (1)(x, t, u1, u2) − f (1)(x, t, u1, u2)

= [f (1)(x, t, u1, u2) − f (1)(x, t, u1, u2)]

+ [f (1)(x, t, u1, u2) − f (1)(x, t, u1, u2)]

≥ −c1(u1 − u1) + f (1)(x, t, u1, u2) − f (1)(x, t, u1, u2)

≥ −c1w1 + f (1)(x, t, u1, u2) − f (1)(x, t, u1, u2)

d(1)(x, t)(w1)t − D(1)∇2w1 + c1w1 ≥ f (1)(x, t, u1, u2) − f (1)(x, t, u1, u2) ≥ 0

d(1)(x, t)(w1)t − D(1)∇2w1 + c1w1 ≥ 0 in DT

also

w1(x, t) = u1(x, t) − u1(x, t) ≥ g(1)(x, t) − g(1)(x, t) = 0 on ST

and

w1(x, 0) = u1(x, 0) − u1(x, 0) ≥ u1,0(x) − u1,0(x) = 0 in Ω

By using Lemma 2.5, we get

w1(x, t) ≥ 0 in DT

u1(x, t) ≥ u1(x, t) in DT

u1(x, t) ≡ u1(x, t) in DT

Similarly, we can show that,

u2(x, t) ≥ u2(x, t) in DT

Thus, (u1, u2) ≡ (u1, u2). This shows that the nonlinear time degenerate parabolic

Dirichlet IBVP (2.1)-(2.3) has unique solution.

Remark 4.3. If we replace linear Dirichlet boundary condition in IBVP (2.1)-(2.3) by

nonlinear Dirichlet boundary condition then monotone property,existence and unique-

ness results in this paper can be proved by assuming corresponding assumptions.
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