
Communications in Applied Analysis 15 (2011), no. 1, 25–46

NONLINEAR BOUNDARY VALUE PROBLEMS

WITH p-LAPLACIAN

QINGKAI KONG1 AND XIAOFEI WANG2

1Department of Mathematics, Northern Illinois University

DeKalb, IL 60115 USA

E-mail: kong@math.niu.edu

2Department of Mathematics, Northern Illinois University

DeKalb, IL 60115 USA

E-mail: xwang@math.niu.edu

ABSTRACT. We study the second order nonlinear boundary value problem with p-Laplacian

consisting of the equation −[φ(y′)]′ + q(t)φ(y) = w(t)f(y) with φ(y) = |y|p−1y for p > 0 on [a, b]

and a general separated boundary condition. By comparing it with a half-linear Sturm-Liouville

problem we obtain conditions for the existence and nonexistence of nodal solutions of this problem.

More specifically, let λn, n = 0, 1, 2, . . . , be the n-th eigenvalue of the corresponding half-linear

Sturm-Liouville problem. Then the boundary value problem has a pair of solutions with exactly n

zeros in (a, b) if λn is in the interior of the range of f(y)/φ(y); and does not have any solution with

exactly n zeros in (a, b) if λn is outside the range. These conditions become necessary and sufficient

when f(y)/φ(y) is monotone on (−∞, 0) and on (0,∞). We also study the changes of the number

of different types of nodal solutions as the equation or the boundary condition changes. Our results

are obtained based on the global existence and uniqueness of solutions of the corresponding initial

value problems established earlier by the authors.

AMS (MOS) Subject Classification. 99Z00

1. INTRODUCTION

In this paper, we study the existence and nonexistence of nodal solutions of the

boundary value problem (BVP) with p-Laplacian consisting of the equation

−[φ(y′)]′ + q(t)φ(y) = w(t)f(y) on [a, b], (1.1)

where φ(y) = |y|p−1y, p > 0, and the general separated boundary condition (BC)

a11y(a) − a12y
′(a) = 0,

a21y(b) − a22y
′(b) = 0,

(1.2)

where aij ∈ R.
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Throughout this paper, we make the following assumptions:

(H1) q, w ∈ C1[a, b] and w > 0 on [a, b];

(H2) f ∈ C(R) such that yf(y) > 0 for y 6= 0 and f is locally Lipschitz continuous

on R\{0};

(H3) there exist limits f0 and f∞ such that 0 ≤ f0, f∞ ≤ ∞, where

f0 = lim
y→0

f(y)

φ(y)
and f∞ = lim

y→±∞

f(y)

φ(y)
.

Special cases of BVP (1.1), (1.2) with p = 1 have been investigated in numerous

papers using various methods and techniques. Most existing results are about the

existence of positive solutions and are for special cases of Eq. (1.1) such as q ≥ 0

(q ≡ 0 for many of them) and for special BCs such as Dirichlet and Neumann BCs.

When p = 1, Erbe [3] initiated the idea of connecting BVP (1.1), (1.2) with

the eigenvalues of its corresponding linear Sturm-Liouville problem (SLP). In that

paper, using the fixed point index theory, the existence of positive solutions of BVP

(1.1), (1.2) was established by comparing the values of f(y)/y, y ∈ (0,∞), with the

smallest eigenvalue of the corresponding linear SLP. However, due to the limitation

of the approach, results were given only for the case with a nonnegative q and a BC

(1.2) satisfying certain conditions, and nothing was found for the existence of nodal

solutions.

Recently, with p = 1 and q ≡ 0 and the Dirichlet BC, Naito and Tanaka [10]

obtained results on the existence of nodal solutions to BVP (1.1), (1.2) with prescribed

numbers of zeros in the interval by comparing the range of f(y)/y with an eigenvalue

of the corresponding SLP. This work has been extended by Kong [6] to the BVP (1.1),

(1.2) with an arbitrary q ∈ C1 and a general separated BC.

Later, Naito and Tanaka [11] extended their results in [10] to the BVP (1.1) with

q ≡ 0 and the Dirichlet BC.

Motivated by the idea in [6] and [11], in this paper, we extend their results to

the BVP (1.1), (1.2) with an arbitrary q ∈ C1 and a general separated BC. However,

the extension is not trivial due to the fact that Eq. (1.1) is not linear and cannot be

transformed to a linear equation in any situation. Therefore, many tools used for the

case when p = 1 cannot be applied to the general problems with p-Laplacian. For

instance, the fundamental solution set, the classical Prüfer transformation and the

Gronwall’s inequality are among such tools. New properties of the energy function

used in the proofs need to be derived since it contains a sign-changing function q which

results in sign-changes of the energy function. In addition to studying the existence

and nonexistence of nodal solutions of the BVP (1.1), (1.2), we also investigate the

structural changes in the number and the types of nontrivial solutions as the equation

and the BC change.
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This paper is organized as follows. After this introduction, we introduce some

supporting background knowledge for the statements and poofs of our main results in

Section 2. Then we state our main results in Section 3, and derive several technical

lemmas and use them to prove the main results in Section 4. Finally, we extend our

main results to a generalized BVP in Section 5.

2. PRELIMINARIES

1. Generalized Trigonometric Functions

We first introduce some basic knowledge on generalized trigonometric functions

introduced by Elbert [2]. These functions will be used to normalize BC (1.2) and to

establish the generalized Prüfer transformation for equations with p-Laplacian which

will be used in the proofs.

Let S = S(θ) be the unique solution of the half-linear differential equation

d

dθ
(φ(

dS

dθ
)) + pφ(S) = 0

satisfying the initial condition

S(0) = 0,
dS(θ)

dθ
|θ=0 = 1.

Then S = S(θ) is called the generalized sine function and is periodic with the period

2πp, where

πp =
2π

(p+ 1)

/

sin
π

p+ 1
.

S(θ) is an odd function having zeros at θ = kπp, k ∈ Z, S(θ) > 0 for θ ∈ (2kπp, (2k+

1)πp), and S(θ) < 0 for θ ∈ ((2k + 1)πp, (2k + 2)πp). The generalized cosine function

C(θ) is defined by C(θ) = dS(θ)/dθ and is even and periodic with the period 2πp.

For k ∈ Z, C(k + 1/2)πp = 0, C(θ) > 0 for θ ∈ ((2k − 1/2)πp, (2k + 1/2)πp), and

C(θ) < 0 for θ ∈ ((2k + 1/2)πp, (2k + 3/2)πp).

The functions S(θ) and C(θ) satisfy the relation

|S(θ)|p+1 + |C(θ)|p+1 = 1 for θ ∈ R.

The generalized tangent function T (θ) is defined by

T (θ) =
S(θ)

C(θ)
for θ 6= (k + 1/2)πp, k ∈ Z.

It is a periodic function of period πp and satisfies

T ′(θ) = 1 + |T (θ)|p+1 for θ 6= (k + 1/2)πp, k ∈ Z.

For k ∈ Z, T (θ) is strictly increasing for θ ∈ ((k−1/2)πp, (k+1/2)πp) and T (θ) → −∞

as θ → (k − 1/2)π+
p and T (θ) → ∞ as θ → (k + 1/2)π−

p .
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Based on the above, we can normalize BC (1.2) to the form

C(α)y(a) − S(α)y′(a) = 0, α ∈ [0, πp),

C(β)y(b) − S(β)y′(b) = 0, β ∈ (0, πp].
(2.1)

2. Results on IVPs Associated with Eq. (1.1)

The criteria for the existence of nodal solutions of BVP (1.1), (1.2) will be derived

using the shooting method which requires the continuous dependence of solutions on

the initial conditions for initial value problems (IVPs) associated with Eq. (1.1). The

proposition below given by the authors in [7] provides the desired result.

Consider the IVP consisting of Eq. (1.1) and the initial condition

y(t0) = y0, y′(t0) = z0, (2.2)

We have the following result:

Proposition 2.1. For any t0 ∈ [a, b] and y0, z0 ∈ R, IVP (1.1), (2.2) has a unique

solution which exists on the whole interval [a, b]. Consequently, the unique solution

depends on the initial condition continuously.

3. MAIN RESULTS

To present our main results, we need to compare BVP (1.1), (1.2) with the half-

linear SLP consisting of the equation

−[φ(y′)]′ + q(t)φ(y) = λw(t)φ(y) on [a, b] (3.1)

and BC (1.2).

It has been shown, see Theorem 3.1 in [1], that SLP (3.1), (1.2) has a countably

infinite number of real eigenvalues; they are bounded below and unbounded above,

and they are all simple and can be ordered to satisfy

−∞ < λ0 < λ1 < λ2 < · · · < λn < · · · with λn → ∞.

Moreover, any eigenfunction yn = yn(t, λn) associated with λn has exactly n zeros in

(a, b).

Note that f(y) = (f(y)/φ(y))φ(y) for y 6= 0. By employing the shooting method

together with the generalized Sturm comparison theorem, we obtain the theorems

below.

Let λk be the first positive eigenvalue of SLP (3.1), (1.2), and define Nk = {k, k+

1, k + 2, . . .}.

The first theorem is concerned with the existence of certain types of nodal solu-

tions of BVP (1.1), (1.2).
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Theorem 3.1. Assume there exists n ∈ Nk such that either f0 < λn < f∞ or

f∞ < λn < f0. Then BVP (1.1), (1.2) has two solutions y±n (t) which have exactly n

zeros in (a, b) and have opposite signs in a right-neighborhood of a.

The second result is about the nonexistence of nodal solutions of BVP (1.1),

(1.2).

Theorem 3.2. (i) Assume f(y)/φ(y) < λn for some n ∈ N0 and all y 6= 0. Then

BVP (1.1), (1.2) has no solution with exactly i zeros in (a, b) for any i ≥ n.

(ii) Assume f(y)/φ(y) > λn for some n ∈ N0 and all y 6= 0. Then BVP (1.1),

(1.2) has no solution with exactly i zeros in (a, b) for any i ≤ n.

(iii) Assume f(y)/φ(y) 6= λn for any i ∈ N0 and y 6= 0. Then BVP (1.1), (1.2)

has no nontrivial solution.

The combination of Theorem 3.1 and 3.2 leads to the following:

Corollary 3.3. (i) Assume f0 < f(y)/φ(y) < f∞ for all y 6= 0. Then for n ∈ Nk,

BVP (1.1), (1.2) has two solutions y±n (t) which have exactly n zeros in (a, b) and have

opposite signs in a right-neighborhood of a if and only if f0 < λn < f∞.

(ii) Assume f∞ < f(y)/φ(y) < f0 for all y 6= 0. Then for n ∈ Nk, BVP (1.1),

(1.2) has two solutions y±n (t) which have exactly n zeros in (a, b) and have opposite

signs in a right-neighborhood of a if and only if f∞ < λn < f0.

The next theorem and corollary are for the existence of multiple and even an

infinite number of solutions.

Theorem 3.4. (i) Assume f0 < λm < λn < f∞ for some m,n ∈ N0, then BVP (1.1),

(1.2) has solutions y±m and y±n which have exactly m and n zeros in (a, b) and have

opposite signs in a right-neighborhood of a, respectively, and satisfy rm(a) < rn(a),

where ri = (|y±i (t)|p+1 + |y±i
′
(t)|p+1)1/(p+1) for i = m,n.

(ii) Assume f∞ < λm < λn < f0 for some m,n ∈ N0, then BVP (1.1), (1.2) has

solutions y±m and y±n which have exactly m and n zeros in (a, b) and have opposite

signs in a right-neighborhood of a, respectively, and satisfy rm(a) > rn(a), where

ri = (|y±i (t)|p+1 + |y±i
′
(t)|p+1)1/(p+1) for i = m,n.

Corollary 3.5. Assume either (i) f0 = 0 and f∞ = ∞, or (ii) f∞ = 0 and f0 = ∞.

Then BVP (1.1), (1.2) has an infinite number of solutions {y±n : n ∈ Nk} such that

y±n have exactly n zeros in (a, b) and have opposite signs in a right-neighborhood of a

respectively for each n ∈ Nk, and

rk(a) < rk+1(a) < rk+2(a) < · · · if (i) holds

and

rk(a) > rk+1(a) > rk+2(a) > · · · if (ii) holds,
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where rn = (|y±n (t)|p+1 + |y±n
′
(t)|p+1)1/(p+1) for n ∈ Nk.

Furthermore, BVP (1.1), (1.2) has no solutions with exactly m zeros in (a, b) for

m < k if λk−1 < 0.

Now, we discuss the structural changes in the existence of nodal solutions to BVP

(1.1), (1.2) as the problem changes, more specifically, as the interval [a, b] shrinks, the

BC angles α, β in BC (2.1) vary, and as the functions q, w grow in certain directions.

The first theorem is about changes of the number and the types of nontrivial

solutions as the interval [a, b] shrinks, more specifically, as b → a+.

Theorem 3.6. (i) Assume either f0 <∞ and f∞ = ∞, or f∞ <∞ and f0 = ∞.

(a) For any n ∈ N1, there exists bn > a such that for any b ∈ (a, bn) and for any

i ≥ n, BVP (1.1), (1.2) has two solutions which have exactly i zeros in (a, b) and

have opposite signs in a right-neighborhood of a.

(b) Let α ∈ [0, πp), β ∈ (0, πp]. Then for α < β, there exists b0 > a such that for

any b ∈ (a, b0), BVP (1.1), (1.2) has a positive solution and a negative solution; and

for β < α, there exists b0 > a such that for any b ∈ (a, b0), BVP (1.1), (1.2) has no

positive or negative solution.

(ii) Assume f0 < ∞ and f∞ < ∞. Let α ∈ [0, πp) and β ∈ (0, πp] with α 6= β.

Then there exists b∗ > a such that for any b ∈ (a, b∗), BVP (1.1), (1.2) has no

nontrivial solution.

The theorem below is about the nonexistence of positive and negative solutions

and solutions with one zero in (a, b) for some values of α and β.

Theorem 3.7. (i) For each β ∈ (0, πp] there exists α∗ ∈ [0, πp) such that BVP (1.1),

(1.2) has no positive or negative solution for any α ∈ (α∗, πp).

(ii) For each α ∈ [0, πp), there exists β∗ ∈ (0, πp] such that BVP (1.1), (1.2) has

no positive or negative solution for any β ∈ (0, β∗).

(iii) There exists α∗ ∈ [0, πp) and β∗ ∈ (0, πp] such that BVP (1.1), (1.2) has no

positive or negative solution nor solution with one zero in (a, b) for any α ∈ (α∗, πp)

and β ∈ (0, β∗).

We next present results on the structural changes as the functions q or w grow

in a given direction.

Let s ∈ R and h ∈ C1[a, b] be such that h > 0 on [a, b], and consider the equation

−[φ(y′)]′ + [q(t) + sh(t)]φ(y) = w(t)f(y) on [a, b]. (3.2)

Theorem 3.8. (i) For any n ∈ N0, there exists sn ≤ 0 such that for any s < sn and

for any i ≤ n, BVP (3.2), (1.2) has no solution with exactly i zeros in (a, b).

(ii) Assume either f0 <∞ and f∞ = ∞, or f∞ <∞ and f0 = ∞. Then for any
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n ∈ N0, there exists sn ≥ 0 such that for any s > sn and for any i ≥ n, BVP (3.2),

(1.2) has two solutions which have exactly i zeros in (a, b) and have opposite signs in

a right-neighborhood of a.

(iii) Assume f0 < ∞ and f∞ < ∞. Then there exists s∗ ≥ 0 such that for any

s > s∗, BVP (3.2), (1.2) has no nontrivial solutions.

Let s ≥ 0 and h ∈ C1[a, b] be such that h > 0 on [a, b], and consider the equation

−[φ(y′)]′ + q(t)φ(y) = [w(t) + sh(t)]f(y) on [a, b]. (3.3)

Theorem 3.9. Assume f(y)/φ(y) ≥ f∗ > 0 for all y 6= 0. Then for any n ∈ N0,

there exists sn ≥ 0 such that for any s > sn and for any i ≤ n, BVP (3.3), (1.2) has

no solution with exactly i zeros in (a, b).

Finally, we comment that all the above results can be extended to the BVP

consisting of the equation

−[ν(t)φ(y′)]′ + q(t)φ(y) = w(t)f(y) on [a, b] (3.4)

and BC
a11y(a) − a12(ν

1/py′)(a) = 0,

a21y(b) − a22(ν
1/py′)(b) = 0,

(3.5)

where aij ∈ R, ν ∈ C1[a, b] such that ν > 0 on [a, b]. This is because Eq. (3.4) can

be transformed to an equation in the form of Eq. (1.1) with a change of independent

variable. In fact, let τ(t) =
∫ t

a
1/ν1/p(s)ds, t = t(τ) be the inverse function, and

u(τ) = y(t(τ)). Define Q(τ) = ν1/p(t(τ))q(t(τ)) and W (τ) = ν1/p(t(τ))w(t(τ)). Then

Eq. (3.4) becomes

−
d

dτ
(φ(

du

dτ
)) +Q(τ)φ(u) = W (τ)f(u) on

[

0,

∫ b

a

1/ν1/p(s)ds

]

, (3.6)

and BC (3.5) becomes

a11u(a) − a12u
′(a) = 0,

a21u(b) − a22u
′(b) = 0,

(3.7)

Therefore, all results for BVP (3.6), (3.7) can be transformed back to BVP (3.4),

(3.5). We omit the details.

4. PROOFS OF THE MAIN RESULTS

To prove Theorem 3.1, we need to study the IVP consisting of Eq. (1.1) and the

initial condition

y(a) = ρS(α), y′(a) = ρC(α), (4.1)

where ρ > 0 is a parameter. Let y(t, ρ) be the solution of IVP (1.1), (4.1) and

θ(t, ρ) be the Prüfer angle of y(t, ρ). Then θ(·, ρ) is a continuous function on [a, b]
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such that T (θ(t, ρ)) = y(t, ρ)/y′(t, ρ) and θ(a, ρ) = α. Let r(t, ρ) = (|y(t, ρ)|p+1 +

|y′(t, ρ)|p+1)1/(p+1). From Eq. (1.1) we have

θ′(t, ρ) = |C(θ(t, ρ))|p+1 +
w(t)f(y(t, ρ))S(θ(t, ρ))

p[r(t, ρ)]p
−
q(t)|S(θ(t, ρ))|p+1

p
(4.2)

and

r′(t, ρ) =

[(

1 +
q(t)

p

)

φ(y(t, ρ)) −
w(t)f(y(t, ρ))

p

]

C(θ(t, ρ))

[r(t, ρ)]p−1
. (4.3)

Lemma 4.1. Assume f0 < λn for some n ∈ Nk. Then there exists ρ∗ such that

θ(b, ρ) < nπp + β for all ρ ∈ (0, ρ∗).

Proof. f0 < λn < ∞ implies that f(y)/φ(y) can be extended continuously to y = 0

and there exists δ > 0 such that f(y)/φ(y) < λn for |y| < δ. Since y ≡ 0 is a solution

of Eq. (1.1), by the continuous dependence of solution on the initial condition, there

exists ρ∗ > 0 such that |y(t, ρ)| < δ for ρ ∈ (0, ρ∗) and t ∈ [a, b]. Let w̃(t) =

w(t)f(y(t))/φ(y(t)). Then w̃(t) is continuous on [a, b], and w̃(t) < λnw(t) on [a, b].

From (4.2) we have

θ′(t, ρ) = |C(θ(t, ρ))|p+1 + [w̃(t) − q(t)]
|S(θ(t, ρ))|p+1

p

< |C(θ(t, ρ))|p+1 + [λnw(t) − q(t)]
|S(θ(t, ρ))|p+1

p
.

Let yn(t, ρ) be the solution of IVP (3.1), (4.1) with λ = λn and θn(t, ρ) its Prüfer

angle. Then yn(t, ρ) is the eigenfunction of the SLP (3.1), (1.2) and

θ′n(t, ρ) = |C(θn(t, ρ))|
p+1 + [λnw(t) − q(t)]

|S(θn(t, ρ))|
p+1

p
. (4.4)

Therefore, θn(b, ρ) = nπp + β. By the theory of differential inequalities, we obtain

that θ(b, ρ) < θn(b, ρ) = nπp + β.

Lemma 4.2. Assume f0 > λn for some n ∈ Nk. Then there exists ρ∗ such that

θ(b, ρ) > nπp + β for all ρ ∈ (0, ρ∗).

Proof. f0 > λn implies that there exists δ > 0 such that f(y)/φ(y) > λn for 0 < |y| <

δ. For the same reason as in the proof of Lemma 4.1, there exists ρ∗ > 0 such that

|y(t, ρ)| < δ for ρ ∈ (0, ρ∗) and t ∈ [a, b], and hence f(y(t, ρ))/φ(y(t, ρ)) > λn for

ρ ∈ (0, ρ∗) and t ∈ [a, b] whenever y(t, ρ) 6= 0. Then from (4.2) we have

θ′(t, ρ) > |C(θ(t, ρ))|p+1 + [λnw(t) − q(t)]
|S(θ(t, ρ))|p+1

p
.

By the theory of differential inequalities we obtain that for the θn(t, ρ) defined in

the proof of Lemma 4.1, θ(b, ρ) > θn(b, ρ) = nπp + β.

We need the following lemma to prove results parallel to Lemmas 4.1 and 4.2

where f0 is replaced by f∞.
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Lemma 4.3. For M > 0 and ρ > 0 define IM,ρ = {t ∈ [a, b] : |y(t, ρ)| < M}. Then

for any M, P̃ > 0, there exists ρ∗ > 0 such that |y′(t, ρ)| > P̃ for ρ > ρ∗ and t ∈ IM,ρ.

Proof. (I) First we consider the case when f∞ = ∞. Define an energy function

[E(y)](t, ρ) for the solution y(t, ρ) by

[E(y)](t, ρ) =
p

p+ 1
|y′(t, ρ)|p+1 −

1

p+ 1
q(t)|y(t, ρ)|p+1 + w(t)F (y(t, ρ)).

Then we have

[E(y)]′(t, ρ) ≥
k + 1

p+ 1
q(t)|y(t, ρ)|p+1 −

1

p+ 1
[(k + 1)q(t) + q′(t)]|y(t, ρ)|p+1

−kw(t)F (y(t, ρ)),

where k = max{|w′(t)|/w(t) : t ∈ [a, b]}. Since w > 0 is continuous and q, q′ are

bounded on [a, b], we can find a constant h > 0 such that for t ∈ [a, b]

h

p+ 1
[(k + 1)q(t) − q′(t)] ≤ w(t). (4.5)

Since f∞ = ∞, we have |y|p+1 = o(F (y)) as |y| → ∞. This means that there exists

M > 0 such that

|y|p+1 ≤ hF (y) for |y| ≥M. (4.6)

Define I1 = {t ∈ [a, b], |y(t, ρ)| < M} and I2 = {t ∈ [a, b], |y(t, ρ)| ≥ M}. Then by

Eq. (4.5) and (4.6), there exists N > 0 such that

[E(y)]′(t, ρ) ≥

{

−N, t ∈ I1;

−(k + 1)[E(y)](t, ρ), t ∈ I2.
(4.7)

We claim that

[E(y)](t, ρ) ≥

(

[E(y)](a, ρ) +
N

k + 1

)

e−(k+1)(sgn[E(y)])(t−a) −
N

k + 1
e2(k+1)(b−a). (4.8)

From (4.7), we have

[E(y)]′(t, ρ) ≥ −(k + 1)|[E(y)](t, ρ)| −N

= −(k + 1)(sgn[E(y)](t, ρ))[E(y)](t, ρ) −N.

Hence,

[E(y)]′(t, ρ) + (k + 1)(sgn[E(y)](t, ρ))[E(y)](t, ρ) ≥ −N. (4.9)

In the following, we denote sgn[E(y)](t, ρ) by sgn[E(y)] for convenience. By (4.9), we

have

(

[E(y)](t, ρ)e(k+1)(sgn[E(y)])(t−a)
)′

≥ −Ne(k+1)(sgn[E(y)])(t−a) ≥ −Ne(k+1)(t−a)

a.e. on [a, b]. Integrating both sides of the above inequality from a to t, we have

[E(y)](t, ρ)e(k+1)(sgn[E(y)])(t−a) − [E(y)](a, ρ) ≥ −
N

k + 1

(

e(k+1)(t−a) − 1
)

.
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Hence

[E(y)](t, ρ) ≥

(

[E(y)](a, ρ) +
N

k + 1

)

e−(k+1)(sgn[E(y)])(t−a)

−
N

k + 1
e(k+1)(1−sgn[E(y)])(t−a).

Therefore, (4.8) holds. Note that

[E(y)](a, ρ) = ρp+1

[

p

p+ 1
|C(α)|p+1 −

1

p+ 1
q(a)|S(α)|p+1 +

w(a)F (ρS(α))

ρp+1

]

.

Then when α = 0, we have

lim
ρ→∞

[E(y)](a, ρ) = lim
ρ→∞

p

p+ 1
ρp+1 = ∞.

When α ∈ (0, π), since

lim
ρ→∞

F (ρS(α))

ρp+1
= lim

y→∞

F (y)

|y|p+1
|S(α)|p+1 = ∞,

we also have

lim
ρ→∞

[E(y)](a, ρ) = ∞.

Therefore, from (4.8)

lim
ρ→∞

[E(y)](t, ρ) = ∞ uniformly for t ∈ [a, b]. (4.10)

Since
∣

∣

∣
− 1
p+1

q(t)|y(t, ρ)|p+1 + w(t)F (y(t, ρ))
∣

∣

∣
is uniformly bounded by some K1 > 0

for all ρ > 0 and t ∈ IM,ρ, from (4.10) we may choose ρ∗ so large that

[E(y)](t, ρ) >
p

p+ 1
P̃ p+1 +K1 for ρ > ρ∗ and t ∈ [a, b].

Then for ρ > ρ∗ and t ∈ IM,ρ

K1 +
p

p + 1
[y′(t, ρ)]p+1 ≥ [E(y)](t, ρ) >

p

p+ 1
P̃ p+1 +K1.

Thus, we have |y′(t, ρ)| > P̃ .

(II) Then we consider the case when f∞ <∞. For ρ > 0, define r(t, ρ) as before.

From (4.3), there exists K2 > 0 such that for ρ > 0 and t ∈ IM,ρ

r′(t, ρ) ≥ −K2r(t, ρ)
1−p. (4.11)

Since f∞ < ∞, there exists K3 > 0 such that |f(y)/φ(y)| ≤ K3 for |y| ≥ M , and by

(4.3) again, we have

r′(t, ρ) = r(t, ρ)φ(S(θ(t, ρ)))C(θ(t, ρ))

[

1 +
q(t)

p
−
w(t)

p

f(y(t, ρ))

φ(y(t, ρ))

]

. (4.12)

Then from (4.12) we see that for |y(t, ρ)| ≥M ,

r′(t, ρ) ≥ −r(t, ρ)

[
∣

∣

∣

∣

1 +
q(t)

p

∣

∣

∣

∣

+K3
w(t)

p

]

≥ −K4r(t, ρ), (4.13)



NONLINEAR BVPS WITH P-LAPLACIAN 35

where K4 = max{|1 + q(t)/p| + K3w(t)/p : t ∈ [a, b]}. Combining (4.11) and (4.13),

we have that for ρ > 0 and t ∈ [a, b]

r′(t, ρ) ≥ −K2r(t, ρ)
1−p −K4r(t, ρ). (4.14)

Solving the above inequality we obtain that

r(t, ρ)p ≥ r(a, ρ)pepK4(a−t) −
K2

K4
+
K2

K4
epK4(a−t)

= ρpepK4(a−t) −
K2

K4

+
K2

K4

epK4(a−t) → ∞ as ρ→ ∞ (4.15)

uniformly on [a, b]. Therefore, for any P̃ > 0, there exists ρ∗ > 0 such that for ρ > ρ∗

and t ∈ IM,ρ

(Mp + [y′(t, ρ)]p)
1/p

≥ r(t, ρ) >
(

Mp + P̃ p)
)1/p

.

Hence, |y′(t, ρ)| > P̃ .

Lemma 4.4. Assume f∞ > λn for some n ∈ Nk. Then there exists ρ∗ such that

θ(b, ρ) > nπp + β for all ρ ∈ (ρ∗,∞).

Proof. Assume the contrary. Then there exists a sequence ρl → ∞ such that θ(b, ρl) ≤

nπp+β. This implies that y(t, ρl) has at most n zeros in (a, b). Choose λ > 0 satisfying

λn < λ < f∞ and take M > 0 so large that f(y)/φ(y) ≥ λ for |y| ≥ M. Then for

each ρ = ρl, IM,ρ∩ (a, b) is an open set and hence is a union of disjoint maximal open

intervals in (a, b), i.e.,

IM,ρ ∩ (a, b) =

j
⋃

i=1

(ai, bi), (4.16)

where a ≤ ai < bi ≤ b and (ai, bi) is a maximal subinterval of IM,ρ ∩ (a, b). If a < ai

and bi < b, by Lemma 4.3, for ρ = ρl sufficiently large, y(t, ρ) is monotone on [ai, bi],

and hence

|y(ai, ρ)| = |y(bi, ρ)| = M and y(ai, ρ)y(bi, ρ) < 0.

This implies that (ai, bi) contains exactly one zero of y(t, ρ), so j ≤ n+2 for j defined

in (4.16). By Lemma 4.3 again, for any P̃ > 0 there exists ρ(P̃ ) > 0 such that if

ρ = ρl > ρ(P̃ ), then y′(t, ρ) has the same sign and |y′(t, ρ)| > P̃ in (ai, bi) for each

i = 1, . . . , j. Thus

2M ≥ |y(bi, ρ) − y(ai, ρ)| =

∫ bi

ai

|y′(t, ρ)|dt ≥ P̃ (bi − ai)

which leads to bi − ai ≤ 2M/P̃ . Consequently,

messIM,ρ ≤
2M

P̃
j ≤

2M(n + 2)

P̃
,

where “mess” means the Lebesgue measure. Therefore,

lim
ρl→∞

messIM,ρl
= 0. (4.17)
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For each ρ = ρl, let ψ(t, ρ) be the Prüfer angle of the solution of the IVP (3.1), (4.1)

and ψn(t, ρ) the Prüfer angle of the solution of the IVP (3.1), (4.1) with λ replaced by

λn. Then ψn(t, ρ) is an eigenfunction of SLP (3.1), (2.1), and hence ψn(b, ρ) = nπp+β.

By the generalized Sturm comparison theorem, ψ(b, ρ) = nπp + β + ǫ for some ǫ > 0.

Define

g(t, ρ) =







f(y(t, ρ))

φ(r(t, ρ))
, |y(t, ρ))| < M ;

λφ(S(θ)), |y(t, ρ)| ≥M.
(4.18)

Note that when |y(t, ρ)| ≥M,

f(y(t, ρ))

φ(r(t, ρ))
S(θ(t, ρ)) − g(t, ρ)S(θ(t, ρ))

=
f(y(t, ρ))|S(θ(t, ρ))|p+1

φ(y(t, ρ))
− λ|S(θ(t, ρ))|p+1

=

(

f(y(t, ρ))

φ(y(t, ρ))
− λ

)

|S(θ(t, ρ))|p+1

≥ 0.

We have
f(y(t, ρ))

φ(r(t, ρ))
S(θ(t, ρ)) > g(t, ρ)S(θ(t, ρ)).

Therefore, by (4.2)

θ′(t, ρ) ≥ |C(θ(t, ρ))|p+1 +
w(t)g(t, ρ)S(θ(t, ρ))

p
− q(t)

|S(θ(t, ρ))|p+1

p
. (4.19)

Let ϑ(t, ρ) be the solution of the equation

ϑ′(t, ρ) = |C(ϑ(t, ρ))|p+1 +
w(t)

p
g(t, ρ)S(ϑ(t, ρ)) − q(t)

|S(ϑ(t, ρ))|p+1

p
:= F (t, ρ, ϑ)

(4.20)

satisfying ϑ(a, ρ) = α. Since

ψ′(t, ρ) = |C(ψ(t, ρ))|p+1 + [λw(t) − q(t)]
|S(ψ(t, ρ))|p+1

p
:= G(t, ρ, ψ), (4.21)

and ϑ(a, ρ) = ψ(a, ρ), combining (4.20) and (4.21) we have that for ρ = ρl and

t ∈ [a, b]

ϑ(t, ρ) − ψ(t, ρ)

=

∫ t

a

[F (s, ρ, ϑ) −G(s, ρ, ψ)]ds

=

∫ t

a

([F (s, ρ, ϑ) −G(s, ρ, ϑ)] + [G(s, ρ, ϑ) −G(s, ρ, ψ)])ds

=

∫ t

a

w(s)

p
[g(s, ρ) − λφ(S(ϑ))]S(ϑ)ds

+

∫ t

a

∂

∂ψ
G(s, ρ, ξ)[ϑ(s, ρ) − ψ(s, ρ)]ds (4.22)
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where ξ(s, ρ) is between ϑ(s, ρ) and ψ(s, ρ). Since g(t, ρ) = λφ(S(ϑ)) for t /∈ IM,ρ and

g(t, ρ) is continuous on IM,ρ, by (4.17)
∣

∣

∣

∣

∫ t

a

w(s)

p
[g(s, ρ) − λφ(S(ϑ))]S(ϑ)ds

∣

∣

∣

∣

≤

∫

IM,ρ

w(s)

p
|g(s, ρ) − λφ(S(ϑ))|ds→ 0 as ρ = ρl → ∞.

Thus, for any δ > 0, we can choose ρ∗ so large that for ρ = ρl ∈ (ρ∗,∞)
∣

∣

∣

∣

∫ t

a

w(s)

p
[g(s, ρ) − λφ(S(ϑ))]S(ϑ)ds

∣

∣

∣

∣

< δ.

Since | ∂
∂ψ
G(t, ρ, ψ)| is uniformly bounded by some K > 0 for all t ∈ [a, b], ρ ∈ (ρ∗,∞),

and ψ ∈ C1([a, b] × (ρ∗,∞)). Then from (4.22)

|ϑ(t, ρ) − ψ(t, ρ)| < δ +

∫ t

a

K|ϑ(s, ρ) − ψ(s, ρ)|ds.

By the Gronwall inequality,

|ϑ(s, ρ) − ψ(s, ρ)| < δeK(t−a) ≤ δeK(b−a) < ǫ

if δ < ǫe−K(t−a). Therefore,

ϑ(t, ρ) > ψ(t, ρ) − ǫ on [a, b].

Comparing (4.19) and (4.20) we find that θ(t, ρ) ≥ ϑ(t, ρ) for ρ = ρl ∈ (ρ∗,∞) and

t ∈ [a, b]. In particular,

θ(b, ρ) ≥ ϑ(b, ρ) > ψ(b, ρ) − ǫ = nπp + β.

We have reached a contradiction.

Lemma 4.5. Assume f∞ < λn for some n ∈ Nk. Then there exists ρ∗ such that

θ(b, ρ) < nπp + β for all ρ ∈ (ρ∗,∞).

Proof. We choose λ > 0 satisfying f∞ < λ < λn and take M > 0 so large that

f(y)/φ(y) ≤ λ for |y| ≥M.

For any ρ > 0, let ψ(t, ρ) be the Prüfer angle of the solution of IVP (3.1), (4.1)

and ψn(t, ρ) the Prüfer angle of the solution of IVP (3.1), (4.1) with λ replaced by λn.

Then ψn(t, ρ) is an eigenfunction of SLP (3.1), (2.1), and hence ψn(b, ρ) = nπp + β.

By the generalized Sturm comparison theorem, ψ(b, ρ) = nπp + β − ǫ for some ǫ > 0.

Define g(t, ρ) by (4.18). From (4.2)

θ′(t, ρ) ≤ |C(θ(t, ρ))|p+1 +
w(t)g(t, ρ)S(θ(t, ρ))

p
− q(t)

|S(θ(t, ρ))|p+1

p
. (4.23)

Since in this case (4.15) holds, there exists ρ∗ > 0 such that g(t, ρ) is uniformly

bounded for ρ > ρ∗ and t ∈ [a, b]. Hence, (4.23) implies that θ(t, ρ) is uniformly

bounded for ρ > ρ∗ and t ∈ [a, b]. As a result, the number of zeros of y(t, ρ) in (a, b)
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is uniformly bounded for ρ > ρ∗ and t ∈ [a, b]. By the same argument as in the proof

of Lemma 4.4, we have

lim
ρ→∞

messIM,ρ = 0.

Then, with a similar discussion as in the proof of Lemma 4.4, we can show that

θ(b, ρ) ≤ ϑ(b, ρ) < ψ(b, ρ) + ǫ = nπp + β.

We omit the details.

We now prove the main theorems.

Proof of Theorem 3.1. Assume f0 < λn < f∞. Let y(t, ρ) be the solution of

IVP (1.1), (4.1) and θ(t, ρ) the generalized Prüfer angle. By Lemma 4.1, there exists

ρ∗ > 0 such that θ(b, ρ) < nπp + β for all ρ ∈ (0, ρ∗). By Lemma 4.4, there exists

ρ∗ > ρ∗ such that θ(b, ρ) > nπp + β for all ρ ∈ (ρ∗,∞). Since θ(b, ρ) is continuous

in ρ on (0,∞), there exists ρn ∈ [ρ∗, ρ
∗] such that θ(b, ρ) = nπp + β. This implies

that y(t, ρn) is a solution of BVP (1.1), (1.2) and y(t, ρn) has exactly n zeros in (a, b).

Another solution is obtained in the same way by replacing ρ by −ρ in (4.1).

The case where f∞ < λn < f0 can be proved in a similar way using Lemmas 4.2

and 4.5. �

Proof of Theorem 3.2. (i) Assume to contrary that BVP (1.1), (1.2) has a solution

y(t) with exactly i zeros in (a, b) for any i ≥ n. Let w̃(t) = w(t)f(y(t))/φ(y(t)).

Then w̃(t) is continuous on [a, b] by continuous extension since f0 <∞. Let θ be the

generalized Prüfer angle of y(t) with θ(a) = α. Then θ satisfies the equation

θ′(t) = |C(θ(t))|p+1 + [w̃(t) − q(t)]
|S(θ(t))|p+1

p
. (4.24)

Since for j = 0, 1, . . . , i, θ′(jπp) = 1 > 0, θ is strictly increasing at jπp. By BC (2.1),

θ(b) = iπp + β. On the other hand, since w̃(t) < λiw(t) on [a, b], for i ≥ n we have

θ′(t) < |C(θ(t))|p+1 + [λiw(t) − q(t)]
|S(θ(t))|p+1

p
a.e. on [a, b].

Also, the generalized Prüfer angle ϕi(t) of the eigenfunction yi(t) associated with the

eigenvalue λi of SLP (3.1), (1.2) satisfies

ϕ′

i(t) = |C(ϕi(t))|
p+1 + [λiw(t) − q(t)]

|S(ϕi(t))|
p+1

p
(4.25)

and ϕi(a) = θ(a). By the theory of differential inequalities we find that θ(b) < ϕi(b) =

iπp + β. We have reached a contradiction.

(ii) Assume to the contrary that BVP (1.1), (1.2) has a solution y(t) with exactly

i zeros in (a, b) for some i ≤ n. Let θ(t) be the Prüfer angle of y(t) with θ(a) = α.
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Then as in Part (i), θ satisfies Eq. (4.24) and θ(b) = iπp+β. Since f(y(t))/φ(y(t)) > λi

whenever y(t) 6= 0 and i ≤ n. Thus for i ≤ n

f(y(t))

φ(y(t))

|S(θ(t))|p+1

p
> λi

|S(θ(t))|p+1

p
a.e. on [a, b].

From (4.24)

θ′(t) > |C(θ(t))|p+1 + [λiw(t) − q(t)]
|S(θ(t))|p+1

p
a.e. on [a,b].

Note that ϕi satisfies (4.25) and ϕi(a) = θ(a). By the theory of differential inequalities

we find that θ(b) > ϕ(b) = iπp + β for i ≤ n. We have reached a contradiction.

(iii) The assumption in Part (iii) implies that either

(a) λn < f(y)/φ(y) < λn+1 for some n ∈ N0 and all y ∈ (0,∞), or

(b) 0 < f(y)/φ(y) < λ0 for all y ∈ (0,∞), if k = 0.

Note that every nontrivial solution has only a finite number of zeros in (a, b); the

conclusion follows from Parts (i) and (ii). �

Proof of Corollary 3.3. This is an immediate consequence of Theorems 3.1 and

3.2. �

Proof of Theorem 3.4. Without loss of generality we only prove part (i). The

proof for part (ii) is similar.

By Theorem 3.1, BVP (1.1), (1.2) has two solutions y±m(t) with exactly m zeros in

(a, b) and have opposite signs in a right-neighborhood of a. Then there exists ρm > 0

such that y±m(t) = y(t,±ρm). It follows that rm(a,±ρm) = ρm and θ(b,±ρm) = mπp+

β. Since λn < f∞, from Lemma 4.4, there exists ρ∗ > 0 such that θ(b,±ρ) > nπp + β

for all ρ ∈ (ρ∗,∞). This implies that ρm ≤ ρ∗. By the continuity of θ(b,±ρ) we see that

there exists ρn ∈ (ρm, ρ
∗] such that θ(b,±ρn) = nπp+β. Therefore, y±n (t) := y(t,±ρn)

are two solutions of BVP (1.1), (1.2) with exactly n zeros in (a, b) and satisfying

rn(a,±ρn) = ρn. Since ρm < ρn, the conclusion of part (i) is proved. �

Proof of Corollary 3.5. This is an immediate consequence of Theorems 3.1 and

3.4. �

To prove Theorem 3.6 we need the following result about the dependence of the

n-th eigenvalue of SLP (3.1), (1.2) on the right endpoint b, which is an extension of

Theorem 2.2, 2.3 in [9] for the case when p = 1 with a similar proof.

Lemma 4.6. For a fixed a, consider the n-th eigenvalue of BVP (1.1), (1.2) as a

function of b for b ∈ (a,∞), denoted by λn(b). Then:

(i) for n ∈ N1, λn(b) → ∞ as b → a+;

(ii) for 0 ≤ α < β ≤ πp, λ0(b) → ∞ as b → a+;

(iii) for 0 < β < α < πp, λ0(b) → −∞ as b→ a+.

Proof of Theorem 3.6. (i) Without loss of generality assume f0 <∞ and f∞ = ∞.

Let λn(b) be defined as in Lemma 4.6. By Lemma 4.6, for any n ∈ N1, there exists
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bn > a such that for any b ∈ (a, bn) we have f0 < λn(b) < f∞ and hence f0 < λi(b) <

f∞ for all i ≥ n. Then part (a) follows from Theorem 3.1. The same reason holds

for part (b) when α < β. When β < α, since λ0(b) → −∞ as b → a+, there exists

b0 > a such that for b ∈ (a, b0), λ0(b) < f∗ := inf{f(y)/φ(y) : y 6= 0}. The conclusion

follows from Theorem 3.2, (ii).

(ii) By Lemma 4.6, there exists b∗ > a such that for any b ∈ (a, b∗) we have

that λn(s) > f ∗ := sup{f(y)/φ(y) : y 6= 0} for n ∈ N1, λ0(s) > f ∗ if α < β and

λ0(s) < f∗ := inf{f(y)/φ(y) : y 6= 0} if β < α. The conclusion follows from Theorem

3.2, (i) and (ii). �

Proof of Theorem 3.7. For (α, β) ∈ [0, πp) × (0, πp] and i ∈ N0, we denote by

λi(α, β) the i-th eigenvalue of the SLP (3.1), (1.2). Then by Theorem 3.7 in [5] we

have that

lim
α→π−

p

λ0(α, β) = lim
β→0+

λ0(α, β) = −∞

and

lim
α→π−

p ,β→0+

λ0(α, β) = lim
α→π−

p ,β→0+

λ1(α, β) = −∞.

The conclusion then follows from Theorem 3.2, (ii). �

Proof of Theorem 3.8. For s ∈ R and i ∈ N0, we denote by λi(s) the i-th eigenvalue

of the SLP consisting of the equation

−[φ(y′)]′ + [q(t) + sh(t)]φ(y) = λw(t)φ(y) on [a, b]

and BC (1.2). Let h∗ = min{h(t)/w(t) : t ∈ [a, b]} and denote by µi(s) the i-th

eigenvalue of the SLP consisting of the equation

−[φ(y′)]′ + [q(t) + sh∗w(t)]φ(y) = µw(t)φ(y) on [a, b] (4.26)

and BC (1.2).

(i) Since for s ≤ 0

q(t) + sh(t) ≤ q(t) + sh∗w(t),

by Theorem 3.5 (iv) in [5], λi(s) ≤ µi(s) for all s ≤ 0 and i ≥ 0. Note that Eq. (4.26)

is the same as the equation

−[φ(y′)]′ + q(t)φ(y) = (µ− sh∗)w(t)φ(y) on [a, b].

Thus, for s ≤ 0 and i ≥ 0, µi(s) − sh∗ = µi(0), which implies

µi(s) = µ(0) + sh∗ → −∞ as s→ −∞,

and hence

λi(s) → −∞ as s→ −∞, i ≥ 0.

Hence, for any n ∈ N there exists sn ≤ 0 such that λi < 0 for all i ≤ n and s < sn.

Therefore, the conclusion follows from Theorem 3.2.
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(ii) Without loss of generality assume f0 < ∞ and f∞ = ∞. Similar to the

argument in (i) we have

λi(s) → ∞ as s→ ∞, i ≥ 0. (4.27)

Then for any n ∈ N there exists sn ≥ 0 such that for any s > sn, we have f0 < λn < f∞

and hence f0 < λi < f∞ for all i ≥ n. Therefore, the conclusion follows from Theorem

3.1.

(iii) From (4.27), there exists s∗ ≥ 0 such that for any s > s∗ we have that

λn(s) > f ∗ := sup{f(y)/φ(y) : y 6= 0}. Therefore, the conclusion follows from

Theorem 3.2. �

Proof of Theorem 3.9. For s ≥ 0 and i ∈ N0, we denote by λi(s) the i-th eigenvalue

of the SLP consisting of the equation

−[φ(y′)]′ + q(t)φ(y) = λ[w(t) + sh(t)]φ(y) on [a, b]

and BC (1.2). Let h∗ = min{h(t)/w(t) : t ∈ [a, b]}, and denote by µi(s) the i-th

eigenvalue of the SLP consisting of the equation

−[φ(y′)]′ + q(t)φ(y) = µ(1 + sh∗)w(t)φ(y) on [a, b]

and BC (1.2). Since for s ≥ 0

w(t) + sh(t) ≥ (1 + sh∗)w(t),

by Theorem 3.5 (v) in [5],

λi(s) ≤ µi(s) for all s ≥ 0 and i ≥ 0, whenever λi(s) ≥ 0. (4.28)

Note that for i ≥ 0, µi(s)(1 + sh∗) = µi(0), we have

µi(s) =
µi(0)

1 + sh∗
→ 0 as s→ ∞.

This together with (4.28) implies that λi(s) < f∗ as s → ∞. Then for any n ∈ N0

there exists sn ≥ 0 such that λi(s) < f∗ for all s > sn and i ≤ n. Therefore, the

conclusion follows from Theorem 3.2. �

5. GENERALIZED PROBLEMS

In this section, we extend the results for BVP (1.1), (1.2) to a more general

problem with more than one term on the right hand side of the equation. For brevity,

we only state the results without proofs. In fact, the proofs can be established in a

similar way to those for BVP (1.1), (1.2) given in the previous section though some

more technical details are involved.

Consider the nonlinear BVP with p-Laplacian consisting of the equation

−[φ(y′)]′ + q(t)φ(y) =
n

∑

i=1

wi(t)fi(y) on [a, b], (5.1)
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where φ(y) = |y|p−1y, p > 0, and the general separated boundary condition (1.2).

Throughout this section we make the following assumptions: For i = 1, . . . , n,

(H1) q, wi ∈ C1[a, b] and wi > 0 on [a, b];

(H2) fi ∈ C(R) such that yfi(y) > 0 for y 6= 0 and fi is locally Lipschitz continuous

on R\{0};

(H3) There exist limits fi0, fi∞ such that 0 ≤ fi0, fi∞ ≤ ∞, where

fi0 = lim
y→0

fi(y)

φ(y)
and fi∞ = lim

y→±∞

fi(y)

φ(y)
.

To present our results, we need to compare BVP (5.1), (1.2) with the half-linear

SLP consisting of the equation

−[φ(y′)]′ + q(t)φ(y) = λ
n

∑

i=1

wi(t)φ(y) on [a, b] (5.2)

and BC (1.2). Note that Eq. (5.2) is the same equation as Eq. (3.1) except that

w(t) is replaced by
∑n

i=1wi(t). Hence, SLP (5.2), (1.2) also has a countably infinite

number of real eigenvalues and

−∞ < λ0 < λ1 < λ2 < · · · < λn < · · · with λn → ∞.

Moreover, any eigenfunctions yn = yn(t, λn) associated with λn have exactly n zeros

on (a, b).

Let λk be the first positive eigenvalue of SLP (5.2), (1.2), and define Nk = {k, k+

1, k + 2, . . .}.

The first theorem is about the existence of certain types of solutions of BVP

(5.1), (1.2).

Theorem 5.1. Assume there exists n ∈ Nk such that for any t ∈ [a, b] either

n
∑

i=1

wi(t)fi0 < λn

n
∑

i=1

wi(t) <

n
∑

i=1

wi(t)fi∞

or
n

∑

i=1

wi(t)fi∞ < λn

n
∑

i=1

wi(t) <

n
∑

i=1

wi(t)fi0.

Then BVP (5.1), (1.2) has two solutions y±n (t) which have exactly n zeros in (a, b)

and have opposite signs in a right-neighborhood of a.

The second theorem is about the nonexistence of nodal solutions of BVP (5.1),

(1.2).

Theorem 5.2. (i) Assume that for some n ∈ N0

n
∑

i=1

wi(t)
fi(y)

φ(y)
< λn

n
∑

i=1

wi(t)
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for all t ∈ [a, b] and y 6= 0. Then BVP (5.1), (1.2) has no solution with exactly i

zeros in (a, b) for any i ≥ n.

(ii) Assume that for some n ∈ N0

n
∑

i=1

wi(t)
fi(y)

φ(y)
> λn

n
∑

i=1

wi(t)

for all t ∈ [a, b] and y 6= 0. Then BVP (5.1), (1.2) has no solution with exactly i

zeros in (a, b) for any i ≤ n.

(iii) Assume that for any n ∈ N0

n
∑

i=1

wi(t)
fi(y)

φ(y)
6= λn

n
∑

i=1

wi(t)

for all t ∈ [a, b] and y 6= 0. Then BVP (5.1), (1.2) has no nontrivial solution.

The combination of Theorem 5.1 and 5.2 leads to the following:

Corollary 5.3. (i) Assume for all t ∈ [a, b] and y 6= 0

n
∑

i=1

wi(t)fi0 <
n

∑

i=1

wi(t)
fi(y)

φ(y)
<

n
∑

i=1

wi(t)fi∞.

Then for n ∈ Nk, BVP (5.1), (1.2) has two solutions y±n (t) which have exactly n zeros

in (a, b) and have opposite signs in a right-neighborhood of a if and only if

n
∑

i=1

wi(t)fi0 < λn

n
∑

i=1

wi(t) <
n

∑

i=1

wi(t)fi∞.

(ii) Assume for all t ∈ [a, b] and y 6= 0

n
∑

i=1

wi(t)fi∞ <
n

∑

i=1

wi(t)
fi(y)

φ(y)
<

n
∑

i=1

wi(t)fi0.

Then for n ∈ Nk, BVP (5.1), (1.2) has two solutions y±n (t) which have exactly n zeros

in (a, b) and have opposite signs in a right-neighborhood of a if and only if

n
∑

i=1

wi(t)fi∞ < λn

n
∑

i=1

wi(t) <
n

∑

i=1

wi(t)fi0.

The next theorem and corollary are for the existence of multiple and even an

infinite number of solutions.

Theorem 5.4. (i) Assume that for t ∈ [a, b] we have

n
∑

i=1

wi(t)fi0 < λm

n
∑

i=1

wi(t) < λn

n
∑

i=1

wi(t) <

n
∑

i=1

wi(t)fi∞.

Then BVP (5.1), (1.2) has solutions y±m(t) and y±n (t) which have exactly m and n

zeros in (a, b) and have opposite signs in a right-neighborhood of a, respectively, and
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satisfy rm(a) < rn(a), where ri = (|y±i (t)|p+1 + |y±i
′
(t)|p+1)1/(p+1) for i = m,n.

(ii) Assume that for t ∈ [a, b] we have

n
∑

i=1

wi(t)fi∞ < λm

n
∑

i=1

wi(t) < λn

n
∑

i=1

wi(t) <

n
∑

i=1

wi(t)fi0.

Then BVP (5.1), (1.2) has solutions y±m(t) and y±n (t) which have exactly m and n

zeros in (a, b) and have opposite signs in a right-neighborhood of a, respectively, and

satisfy rm(a) > rn(a), where ri = (|y±i (t)|p+1 + |y±i
′
(t)|p+1)1/(p+1) for i = m,n.

Corollary 5.5. Assume either (i) All of {fi0, i = 1, . . . , n} are 0 and at least one of

{fi∞, i = 1, . . . , n} is ∞ or (ii) all of {fi∞, i = 1, . . . , n} are 0 and at least one of

{fi0, i = 1, . . . , n} is ∞. Then BVP (5.1), (1.2) has an infinite number of solutions

{y±n : n ∈ Nk} such that y±n have exactly n zeros in (a, b) and have opposite signs in

a right-neighborhood of a respectively for each n ∈ Nk, and

rk(a) < rk+1(a) < rk+2(a) < · · · if (i) holds

and

rk(a) > rk+1(a) > rk+2(a) > · · · if (ii) holds,

where rn = (|y±n (t)|p+1 + |y±n
′
(t)|p+1)1/(p+1) for n ∈ Nk.

Furthermore, BVP (5.1), (1.2) has no solutions with exactly m zeros in (a, b) for

m < k if λk−1 < 0.

Remark 5.6. All the results on the structural changes for the BVP (1.1), (1.2) can

be extended to the general BVP (5.1), (1.2). We omit the details.
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