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1. Introduction

A causal operator [1,3] is a nonanticipative operator and differential equations

involving causal operators unify a variety of dynamic systems including ordinary dif-

ferential equations [2], delay differential equations [2] and integro differential equations

[5], name a few.

Set differential equations are useful in the study of multi-valued differential equa-

tions and multivalued differential inclusions. They include the theory of ordinary

differential equations and ordinary differential systems as special cases.

Thus combining these two very general and fruitful areas of research will naturally

result in a study that would encompass the study of many types of dynamic systems

along with their special cases and that too in a semi-linear metric space.

Hence the study of set differential equations involving causal operators with mem-

ory was introduced in [6,7], where in the comparison theorems and local and global

existence results including uniqueness were considered.

In this paper, we study the existence of extremal solutions and continuous depen-

dence of solutions relative to initial data and a parameter for set differential equations

involving causal operators with memory.
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2. Preliminaries

In this section, we give all the results that are needed to prove our main results.

We begin with the theorems concerning the scalar differential equation

u′ = g(t, u), u(t0) = u0 (2.1)

and then proceed to introduce the literature relating to set differential equations.

The following theorems concerning equation (2.1) (i.e) scalar differential equa-

tions are from [2]. We begin with an extremal result.

Theorem 2.1. Let g ∈ C[R0, R] where R0 is an open set in R
2 and (t0, u0) ∈ R0.

Then the IVP (2.1) has extremal solutions, that is, that can be extended to the bound-

ary of R0.

Lemma 2.2. Let the hypothesis of Theorem 2.1 hold and let [t0, T ] be the largest

interval of existence of maximal solution r(t) of IVP (2.1). Suppose [t0, t1] is a compact

subinterval of [t0, T ].Then there is an ǫ0 > 0 such that for 0 < ǫ < ǫ0, the maximal

solution r(t, ǫ) of the IVP

u′ = g(t, u) + ǫ, u(t0) = u0 + ǫ (2.2)

exists over [t0, t1] and

r(t) = lim
ǫ→0

r(t, ǫ)

uniformly on [t0, t1].

Theorem 2.3. Let R0 be an open (t,u) set in R
2 and let g ∈ C[R0,R]. Suppose that

[t0, t0 + a] is the largest interval in which the maximal solution r(t) of (2.1) exists.

Let m ∈ C[[t0, t0 + a],R], (t,m(t)) ∈ R0, for t ∈ [t0, t0 + a], m(t0) ≤ u0 and for a fixed

Dini derivative

Dm(t) ≤ g[t,m(t)], t ∈ [t0, t0 + a]

Then m(t) ≤ r(t), t ∈ [t0, t0 + a), where r(t) = r(t, t0, u0) is the maximal solution of

the IVP (2.1) existing on [t0, t0 + a).

Next we proceed to develop the basic notations, definitions and results related to

set differential equations. The set Kc(R
n) is introduced and concepts like Hukuhara

difference, Hukuhara derivative and integral are described. After giving the necessary

preliminaries, we proceed to state the results that have been developed in the earlier

papers. The Picard’s Theorem is stated in this setup.

Let Kc(R
n) denote the collection of all nonempty, compact and convex subsets

of R
n Define the Hausdorff metric

D[A,B] = max[sup
x∈B

d(x,A), sup
y∈A

d(y, B)], (2.3)

where d(x,A) = inf[d(x, y) : y ∈ A], A,B are bounded sets in R
n. We note that

Kc(R
n) with this metric is a complete metric space.
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It is known that if the space Kc(R
n) is equipped with the natural algebraic op-

erations of addition and non-negative scalar multiplication, then Kc(R
n) becomes a

semilinear metric space which can be embedded as a complete cone into a correspond-

ing Banach space.

The Hausdorff metric (2.3) satisfies the following properties:

D[A+ C,B + C] = D[A,B] and D[A,B] = D[B,A], (2.4)

D[λA, λB] = λD[A,B], (2.5)

D[A,B] ≤ D[A,C] +D[C,B], (2.6)

for all A,B,C ∈ Kc(R
n) and λ ∈ R+.

Let A,B ∈ Kc(R
n). The set C ∈ Kc(R

n) satisfying A = B + C is known as the

Hukuhara difference of the sets A and B and is denoted by the symbol A − B. We

say that the mapping F : I → Kc(R
n) has a Hukuhara derivative DHF (t0) at a point

t0 ∈ I, if

lim
h→0+

F (t0 + h) − F (t0)

h
and lim

h→0+

F (t0) − F (t0 − h)

h
exist in the topology of Kc(R

n) and are equal to DHF (t0). Here I is any interval in

R.

With these preliminaries, we consider the set differential equation

DHU = F (t, U), U(t0) = U0 ∈ Kc(R
n), t0 ≥ 0, (2.7)

where F ∈ C[R+ ×Kc(R
n), Kc(R

n)].

The mapping U ∈ C1[J,Kc(R
n)], J = [t0, t0 + a] is said to be a solution of (2.5)

on J if it satisfies (2.5) on J .

Since U(t) is continuously differentiable, we have

U(t) = U0 +

∫ t

t0

DHU(s)ds, t ∈ J. (2.8)

Hence, we can associate with the IVP (2.5) the Hukuhara integral

U(t) = U0 +

∫ t

t0

F (s, U(s))ds, t ∈ J. (2.9)

where the integral is the Hukuhara integral which is defined as,∫
F (s)ds = {

∫
f(s)ds : f is any continuous selector of F}

Observe also that U(t) is a solution of (2.5) on J iff it satisfies (2.7) on J .

We now define a partial to define a partial order in the metric space Kc(R
n). To

do so, we need the definition of a cone in Kc(R
n), which is given below.

Let K(K0) be the subfamily of Kc(R
n) consisting of sets U ∈ Kc(R

n) such that

any u ∈ U is a nonnegative (positive) vector of n-components satisfying ui ≥ 0 (ui >

0) for i=1,2,3,. . . , n. Then K is a cone in Kc(R
n) and K0 is the nonempty interior of

K.
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For any U and V ∈ Kc(R
n), if there exists a Z ∈ Kc(R

n) such that Z ∈ K(K0)

and U = V + Z then we say that U ≥ V (U > V ). Similarly we can define U ≤ V

(U < V ).

To define the causal operator we introduce the following notation. Let E =

C[[t0, T ], Kc(R
n)] and E0 = C[[t0 − h1, T ], Kc(R

n)], where U ∈ E0 implies U(t) =

Φ0(t), t0 − h1 ≤ t ≤ t0 and U(t) is any arbitrarily continuous function on [t0, T ].

We define a norm on E as follows: for U, V ∈ E

D0[U, V ] = Supt0≤t≤TD[U(t), V (t)]

where D denotes the Hausdorff Metric.

Definition 2.4. By a causal operator or a Volterra operator or a nonanticipative

operator we mean a mappling Q: E → E satisfying the property that if U(s) = V (s),

t0 ≤ s ≤ t < T then (QU)(s) = (QV )(s), t0 ≤ s ≤ t < T . By a causal operator with

memory we mean a mapping Q:E0 → E such that for U(s) = V (s), t0 ≤ s ≤ t < T ,

Q(U,Φ0)(s) = Q(V,Φ0)(s), t0 ≤ s ≤ t < T and Φ0 ∈ C1 = C[[t0 − h1, t0], Kc(R
n)].

We now state the results that have been developed in the setup of set differential

equations involving causal operators with memory.

We begin with the following results from [6].

Theorem 2.5. Assume that

(i) Q is nondecreasing in U for each t ∈ I = [t0, T ].

(ii) DHV (t) ≤ (QV )(t)

DHW (t) ≥ (QW )(t)

where V,W ∈ C1[I,Kc(R
n)] and

(iii) V (t0) < W (t0).

Then V (t) < W (t), t ∈ I, provided one of the above differential inequalities is strict.

Theorem 2.6. Assume that Q(U,Φ0) ∈ C[B,E] is continuous and compact, where

B ⊆ E0 and B = {U ∈ Kc(R
n) : D0[U,Φ0(t0)] ≤ b and D0[Ut0 ,Φ0] = 0, t ∈ I} Then

there exists a solution of the IVP

DHU(t) = Q(U,Φ0)(t), (2.10)

Ut0 = Φ0 ∈ C1, (2.11)

on some interval [t0, t0 + δ], where t0 + δ < T , and C1 = C[t0 − h1, t0], Kc(R
n)]. We

next present the following theorems from [7].

Theorem 2.7. Assume that m ∈ C[I,R+], g ∈ C[I × R+,R+] and for t ∈ I,

D−m(t) ≤ g[t, | m |
0
(t)], (2.12)

where | m |
0
(t) = supt0≤s≤t | m(s) |. Suppose that r(t) = r(t, t0, u0) is the maximal

solution of the scalar differential equation (2.1) existing on I. Then m(t0) ≤ u0 implies

m(t) ≤ r(t), t ∈ I.
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We now state a comparison theorem that connects an estimate on the solution of

the IVP (2.10) and (2.11) with maximal solution of the initial value problelm (2.1)

Theorem 2.8. Let Q ∈ C[E0, E] be a causal map such that for t ∈ I,

D[(QU)(t), (QV )(t)] ≤ g(t, D0[U, V ](t)],

where g ∈ C[I ×R+,R+] .Suppose further that the maximal solution r(t, t0, u0) of the

scalar differential equation (2.1) exists on I . Then, if U(t), V (t) are two solutions of

(2.10) and (2.11) with initial function Ut0 = Vt0 = Φ0 ∈ C1, then we have

D[U(t), V (t)] ≤ r(t, t0, u0), t ∈ I

We are now in a position to state the existence and uniqueness result using

successive approximations and generalized Lipschitz condition. Once again the proof

is very much similar to the corresponding theorem, Theorem 5.7.3 in [4]. Hence we

omit it. Observe that the only difference between the two results is that the following

theorem has memory included in its set up.

Theorem 2.9. Suppose that

(i) Q ∈ C[B,E] be a causal map, where B ⊆ E0

with B = {U ∈ E0 : D0[U,Φ0(t0)] ≤ b, D0[Ut0 ,Φ0] = 0, t ∈ I}

and D0[Q(U,Φ0), θ] ≤M1 on B.

(ii) g ∈ C[I×R+,R+] g(t, u) ≤M2 on I× [0, 2b], g(t, 0) = 0, g(t, u) be nondecreasing

in u for each t ∈ I and w(t) = 0 is the only solution of

w′ = g(t, w), w(t0) = 0 on I (2.13)

(iii) D[Q(U,Φ0)(t), Q(V,Φ0)(t)] ≤ g(t, D0[U, V ](t)], on B. Then the successive ap-

proximations defined by

Un+1(t) == Φ0(t0) +

∫ t

t0

Q(Un.Φ0)(s)ds.

Un+1t0 = Φ0 ∈ C1 n = 0, 1, 2, 3 . . . ,

exist on I0 = [t0, t0 + η] where η = min[T − t0,
b

2M
], M = max[M1,M2] and converge

uniformly to a unique solution U(t) of (2.10) and (2.11).

We now state the Ascoli-Arzela theorem for the family of subsets of Kc(R
n)

Theorem 2.10. If {Un(t)} is a sequence of equicontinuous and equibounded mul-

timappings defined on an interval J, we can extract a subsequence that converges

uniformly to continuous multimapping U(t) on J.
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3. Extremal Solutions

Consider the IVP for set differential equations involving causal operators with

memory given by

DHU(t) = Q(U,Φ0)(t) (3.1)

Ut0 = Φ0 (3.2)

Defintion 3.1 Let R(t) be the solution of the IVP (3.1), (3.2) existing on [t0, T ].

Then R(t) is the maximal solution of (3.1), (3.2), if for every solution U(t) of (3.1),

(3.2) existing on [t0, T ], we have

U(t) ≤ R(t), t ∈ [t0, T ] (3.3)

The minimal solution ρ(t) of (3.1), (3.2) is obtained by reversing the inequality (3.3).

Theorem 3.1. Assume that Q : E0 → E is continuous and compact. Further,

suppose that Q is non decreasing in U, that is

U(s) ≤ V (s), t0 ≤ s ≤ t1 < T implies (QU)(t1) ≤ (QV )(t1).

Then the IVP (3.1), (3.2) possesses an extremal solution on [t0−h, t0+δ] for t0+δ < T .

Proof. Let ǫ = (ǫ1, ǫ2, . . . , ǫn) > 0 and |ǫ| < b/2. Then consider for each positive

integer N, the following IVP corresponding to (3.1), (3.2) given by

DHU(t) = Q(U,Φ0)(t) +
ǫ

N
(3.4)

Ut0 = Φ0 +
ǫ

N
(3.5)

set

QN(U,Φ0)(t) = Q(U,Φ0)(t) +
ǫ

N

Then QN is continuous, compact on B = B[Φ0(t0),
b
2
] =

{U ∈ E0 : D0[U,Φ0(t0) +
ǫ

N
] ≤ b/2, D0[Ut0 ,Φ0] = 0, t ∈ I]}

and D0[QN (U,Φ0)(t), θ] ≤ K + ǫ
N
on B, for some constant K ≥ 0. Hence from

Theorem 2.5, we can deduce that there exists a solution UN (t, ǫ) ∈ B on [t0 −h1, t0 +

δ] with t0 + δ < T . Consider 0 < ǫ2 < ǫ1 < ǫ , then

UN (t0, ǫ2) < UN (t0, ǫ1),

DHUN(t, ǫ2) ≤ Q(UN ,Φ0)(t, ǫ2) +
ǫ2
N

and

DHUN(t, ǫ1) > Q(UN ,Φ0)(t, ǫ1) +
ǫ2
N

on I.

On applying Theorem 2.4, to the above inequalities, we arrive at

UN(t, ǫ2) < UN (t, ǫ1) on [t0, T ].
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Since the family of functions {UN(t, ǫ)} is equicontinuous and uniformly bounded on

[t0 −h1, t0 + δ], it follows from Arzela-Ascoli theorem in this set up, that is, Theorem

2.9, that there exists a decreasing sequence ǫ
Nk

such that ǫ
Nk

→ 0 uniformly as k → ∞

R(t) = lim
k→∞

UNk
(t, ǫ)

exists on [t0, T ]. Clearly R(t0) = Φ0(t0) and Rt0 = Φ0. Further, the uniform continuity

and compactness of Q(U,Φ0)(t) yields that Q(UNk
,Φ0)(t) → Q(R,Φ0)(t) as k → ∞

uniformly. Thus term by trem integration is applicable and

UNk
(t, ǫ) = Φ0(t0) +

ǫ

Nk

+

∫ t

t0

Q(UNk
,Φ0)(t, ǫ)ds

as k → ∞ reduces to

R(t) = Φ0(t0) +

∫ t

t0

Q(R,Φ0)(t)ds

Thus R(t) is a solution of (3.1), (3.2) on [t0 − h1, t0 + δ], t0 + δ < T . We next claim

that R(t) is the required maximal solution of the IVP (3.1), (3.2). To prove our claim,

first we note that if U(t) is any solution of the I.V.P. (3.1), (3.2) then

U(t0) = Φ0(t0) < Φ0(t0) +
ǫ

N
= UN(t0, ǫ)

DHU(t) < Q(U,Φ0)(t) +
ǫ

N

DHU(t, ǫ) ≥ Q(U,Φ0)(t, ǫ) +
ǫ

N
on [t0, t0 + δ]

Hence from the differential inequality result,We get

U(t) < UN (t, ǫ) on [t0, t0 + δ]

Thus uniqueness of maximal solution R(t) shows that UN(t, ǫ)tends uniformly to R(t)

on [t0, t0 + δ] as n → ∞. This proves that R(t) is the maximal solution of the IVP

(3.1), (3.2).

Similarly one can prove the existence of a minimal solution ρ(t) of IVP (3.1),

(3.2) by considering the IVP

DHU = Q(U,Φ0)(t) −
ǫ

N

Ut0 = Φ0 −
ǫ

N
and proceeding with the proof as in the eariler fashion.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold and M ∈ C1[[t0, T ],

Kc(R
n
+)] satisfies

DHM(t) ≤ Q(M,Φ0)(t)

M(t0) ≤ Φ0(t0)

Then we have M(t) ≤ R(t), t ∈ [t0 − h1, T ], where R(t) is the maximal solution of

(3.1), (3.2) existing on [t0 − h1, T ].
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Proof. Let U(t, ǫ) for ǫ > 0 be any solution of

DHU(t, ǫ) = Q(U,Φ0)(t, ǫ) + ǫ

Φ0 = Φ0 + ǫ

then Φ0(t0) = Φ0(t0) + ǫ consider

DHM(t) < Q(M,Φ)(t) + ǫ

and

DHU(t, ǫ) ≥ Q(U,Φ0)(t, ǫ) + ǫ

with

M(t0) = Φ0(t0) < Φ0(t0) + ǫ = U(t0, ǫ)

Now an application of the comparision Theorem 2.4 infers that,

M(t) < U(t, ǫ)

Now taking limits as ǫ → 0 we obtain that M(t) ≤ R(t), t ∈ [t0 − h1, t0 + δ]. Thus

the proof is complete.

4. Continuous Dependence

To study the continuous dependence of solutions relative to the initial data, we

need the following lemma.

Lemma 4.1. Let Q(U,Φ0) : E0 → E be continuous and

G(t, r) = Max{D[(U,Φ0), θ], t ∈ I : D0[U,Φ0(t0)] ≤ r}.

Assume that r∗(t, t0, 0) be the maximal solution of u′ = G(t, u), u(t0) = 0 on I, and

let U = U(t, t0,Φ0) be the solution of (3.1) and (3.2). Then

D[U,Φ0(t0)] ≤ r∗(t, t0, 0), t ∈ I (4.1)

Proof. Define m(t) = D[U,Φ0(t0)] Then

D+m(t) ≤ D[DHU(t), θ] = D[Q(U,Φ0)(t), θ]

≤Max D[Q(U,Φ0)(t), θ], t ∈ I : D0[U,Φ0(t0)] ≤ m(t)] = G[t,m(t)].

Then from Theorem 1.4.1 in [2] we get

D[U(t),Φ0(t0) ≤ r∗(t, t0, 0), t ∈ I.

Thus the proof is complete.
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Theorem 4.2. Let Q(U,Φ0) : B → E, B ⊆ E0 and satisfy

D[Q(U,Φ0)(t), Q(V,Φ0)(t)] ≤ g[t, D0(U, V )(t)], U, V ∈ B0 (4.2)

where

g ∈ C[I × R+,R+]

Assume that u(t) ≡ 0 be the unique solution of the scalar differentail equation

u′ = g(t, u), u(t0) = u0 (4.3)

with u0 = 0.

If the solutions u(t, t0, u0) of (4.3) through (t0, u0) are continuous w.r.t (t0, u0),

then the solutions U(t, t0,Φ0) of (3.1), (3.2) are unique and continuous w.r.t the initial

values (t0,Φ0).

Proof. Since uniqueness follows from the Theorem 2.8 on successive approximations,

it is enough to prove that the solutions are continuous w.r.t the initial values (t0,Φ0).

Consider U(t) = U(t, t0,Φ0) and V (t) = V (t, t0, ψ0) be the solutions of (3.1), (3.2)

such that Ut0 = Φ0, Vt0 = Ψ0, Φ0,Ψ0 ∈ C1. Set m(t) = D[U(t), V (t)], then

D+m(t) ≤ D[DHU(t), DHV (t)] = D[Q(U,Φ0)(t), Q(V,Φ0)(t)]

≤ g[t, D0[U, V ](t)] = g[t, |m|0(t)]

Then from Theorem 2.6 we conclude that

m(t) = D[U(t), V (t)] ≤ r(t, t0, D0[Φ0,Ψ0]), t ∈ I.

Since Φ0 → Ψ0, lim r(t, t0, D0[Φ0,Ψ0]) = r(t, t0, 0) uniformly on I and by hypothesis

r(t, t0, 0) = 0. It follows that,

lim
Φ0→Ψ0

U(t, t0,Φ0) = V (t, t0.Ψ0)

Uniformly and hence continuity of U(t, t0,Φ0) relative to Φ0 is valid.

To prove the continuity relative to t0, let U(t) = U(t, t0,Φ0(t0)), V (t) = V (t, τ0,Φ0(t0))

be two solutions of the IVP (3.1), (3.2) and let τ0 > t0. Now set

m(t) = D[U(t), V (t)]

then

m(τ0) = D[U(τ0),Φ0(t0))

where V (s0) = Φ0(t0) for t0 ≤ s ≤ τ0. On applying Lemma 4.1, we get that

m(τ0) ≤ r∗(τ0, t0, 0),

and consequently using the comparision theorem for the scalar differentail equation,

we get

m(t) ≤ r̄(t), t > τ0
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where r̄(t) = r(t, τ0, r
∗(τ0, t0, 0)) is the maximal solution of IVP (4.3) through (τ0,

r∗(τ0, t0, 0)). Since r∗(τ0, t0, 0) = 0 , We have

lim
τ0→t0

r̄(t, τ0, r
∗(τ0, t0, 0)) = r̄(t, t0, 0).

By the hypothesis, we have that the unique solution of the IVP(4.3) is the zero

solution and hence r̄(t, t0, 0) ≡ 0. This implies that m(t) ≤ 0, that is, the continuity

of solutions relative to t0 is valid and the proof is complete.

In the following theorem we will study the continuous dependence of solution of

the IVP (3.1), (3.2) relative to a parameter.

Theorem 4.3. Suppose that Q : E∗ → E where E∗ is an open set in Ē = E0 × R+

that contains a parameter µ and for µ = µ0, let Ū(t) = U(t, t0,Φ0, µ0) be the solution

of

DHU(t) = Q(U,Φ0, µ)(t), Ut0 = Φ0 (4.4)

existing on I. Assume that

lim
µ→µ0

Q(U,Φ0, µ)(t) = Q(U,Φ0, µ0)(t) (4.5)

uniformly in (t,U(t)) and

D[Q(U,Φ0, µ)(t), Q(V,Φ0, µ)(t)] ≤ g(t, D0(U, V )(t)) (4.6)

where U, V ∈ B [see Theorem 2.8] and g ∈ C[J × R+,R+]. Suppose that u(t) ≡ 0 is

the unique solution of the IVP (4.3) with u(t0) = 0. Then, given ǫ > 0, there exists a

δ(ǫ) > 0 such that whenever |µ− µ0| < δ(ǫ), the IVP

DHU(t) = Q(U,Φ0, µ)(t), Ut0 = Φ0 (4.7)

admits a unique solution U(t) = U(t, t0,Φ0, µ) satisfying

D[U(t), Ū(t)] < ǫ, t ∈ I.

Proof. The uniqueness of the solutions follows from Theorem 2.8, as the hypothesis of

that theorem is satisfied. Since u(t) ≡ 0 is the only solution of (4.3), by using Lemma

2.2, we deduce that, given any compact interval [t0, t0 + a] ⊆ I and any ǫ > 0 there

exists a positive number η = η(ǫ) > 0 such that the extremal solution r(t, t0, 0, η) of

u′ = g(t, u) + η exist on [t0, T ] and satisfies r(t, t0, 0, η) < ǫ, t ∈ I. Also since

lim
µ→µ0

Q(U,Φ0, µ)(t) = Q(U,Φ0, µ0)(t)

uniformly for (t, U(t)), t ∈ I, we have given η > 0 there exist a δ̂ = δ̂(η) > 0 such

that whenever |µ− µ0| < δ̂, We have

D[Q(U,Φ0, µ)(t), Q(U,Φ0, µ0)(t)] < η

Now let ǫ > 0 be given. Define,

m(t) = D[U(t), Ū(t)]
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where U(t), Ū(t) are the solutions of the IVPs (4.7) and (4.4) respectively. Set

m(t) = D[U(t), Ū(t)], then

D−m(t) ≤ D[DHU(t), DHŪ(t)]

= D[Q(U,Φ0, µ)(t), Q(Ū ,Φ0, µ0)(t)]

≤ D[Q(U,Φ0, µ)(t), Q(Ū ,Φ0, µ)(t)]

+D[Q(Ū ,Φ0, µ)(t), Q(Ū ,Φ0, µ̄)(t)]

≤ g(t, D0(U, Ū)(t)) + η = g(t, |m|0(t)) + η

Now using the Theorem 2.3 adjusted to the present situation, we obtain that

m(t) ≤ r(t, t0, 0, η), t ≥ t0

This gives, D[U(t), Ū(t)] < ǫ, when ever |µ− µ0| < δ. Then δ depends only on η and

η depends only on ǫ hence δ depends on ǫ. Thus the proof is complete.
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