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ABSTRACT. The aim of this paper is to present some existence results regarding operator equa-

tion and operator inclusions in some Banach spaces endowed with the weak topology. The results

complement those obtained in [19, 20, 21, 22]. The Schauder-Tychonov fixed point is used with the

weak measure of noncompactness. Applications to Volterra integral equations and inclusions are

also provided.
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1. Introduction

In this paper, we consider the general operator equation

u(t) = Fu(t), t ∈ [0, T ] (1.1)

in Banach spaces endowed with their weak topologies. Some general properties of

operator equations are studied in [14] and [15]. As a particular case, we will study

the Volterra integral equation

y(t) = h(t) +

∫ t

0

k(t, s)f(s, y(s))ds, t ∈ [0, T ], (1.2)

where the integral is understood as the Pettis integral ([23], page 77–78). More

precisely, we are interested in solution in the topological vector space C([0, T ], Bw) to

be defined hereafter. This is the content of Sections 2 and 3 respectively. The operator

and differential inclusions associated to (1.1) and (1.2) respectively are considered in
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Section 4, see also [1], [20] and the references therein. In the remainder of this section,

we collect some material which will be used throughout this paper.

1.1 Preliminaries. Let (B, ‖ ·‖) be a reflexive Banach space and B∗ its topological

dual. Consider the topology generated by the family of semi-norms T :

{ρϕ(x) = | < ϕ, x > | : ϕ ∈ B∗ and ‖ϕ‖B∗ ≤ 1}.

This topology denoted by σ(B,B∗) or Bw for short is called the weak topology (see

e.g., [6, 7]). A map y : B → B is said to be weakly continuous if for every ϕ ∈ B∗,

the map ϕ ◦ y : B → R is continuous. Also y is weakly Riemann integrable on [a, b] if

for any partition {t0, . . . , tn} of [0, T ] and any choice of points ξi, ti−1 ≤ ξi ≤ ti, i =

1, . . . , n, the sum Σn
i=1y(ξi)∆ti converges weakly to some element y0 provided that

max
i=1,...,n

∆ti = max
i=1,...,n

|ti − ti−1| −→ 0, as n→ ∞.

In other words, y is weakly Riemann integrable if there exists y0 ∈ B such that for

every φ, ϕ(y) is Riemann integrable and
∫ T

0
ϕ(y(s))ds = ϕ(y0). y is said scalarly

measurable if for any ϕ ∈ B∗, the function ϕ(y) is measurable on [0, T ]. Two scalarly

measurable functions y, z : [0, T ] −→ B are said to be weakly equivalent if and only

if for all ϕ ∈ B∗, ϕ(y) = ϕ(z).

Denote by C([0, T ], Bw) the space of weakly continuous functions on [0, T ] with

the topology of weak uniform convergence. This topology is also generated by the

family of semi-norms {ηϕ} defined by

ηϕ(y) = sup
t∈[0,T ]

̺ϕ(y(t)) = sup
t∈[0,T ]

|ϕ(y(t))|, y ∈ C[0, T ].

This topology is of course determined by the basis

Vy(ϕ1, . . . , ϕm, ε) =

m
⋂

i=1

{g ∈ C([0, T ], Bw) :

sup
t∈[0,T ]

|ϕi(g(t) − y(t))| < ε, y ∈ C([0, T ], Bw)}

where ϕ1, . . . , ϕm ∈ B∗ and ε > 0.

Definition 1.1. A family F = {fi, i ∈ J}, where J is some index set, is said to be

weakly equicontinuous if, given ε > 0 and ϕ ∈ B∗, there exists δ > 0 such that, for

s, t ∈ [0, T ], if |t− s| < δ, then

|ϕ(fi(t) − fi(s))| < ε, ∀ i ∈ J,

i.e. ϕ(F ) is equicontinuous for all ϕ ∈ B∗.

Clearly, we have

Proposition 1.2. F = {fi, i ∈ J} is equicontinuous implies that F is weakly equicon-

tinuous.
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Definition 1.3. A map F : Q ⊆ C([0, T ], Bω) −→ C([0, T ], Bw) is said to be

w−continuous if for every net (yα)α ⊆ Q with yα −→ y in C([0, T ], Bw), we have

(Fyα)α −→ Fy in C([0, T ], Bw).

Definition 1.4. A sequence {yn}n of weakly continuous functions on [0, T ] into B is

said to be weakly uniformly convergent on [0, T ] to a function y if for all ε > 0 and

ϕ ∈ B∗, there exits an integer N such that

n > N =⇒ (|ϕ(yn(t) − y(t))| < ε, ∀ t ∈ [0, T ]).

Definition 1.5. A map f : [0, T ] × B −→ B is said to be weakly-weakly continuous

at (t0, u0) if for any ε > 0 and φ ∈ B∗, there exist δ > 0 and a weakly open set U ⊂ B

containing u0 such that

|t− t0| < δ =⇒ |φ(f(t, u)− f(t0, u0))| < ε, ∀u ∈ U.

Definition 1.6 ([6], page 26, [11], page 65, [13], page 10, [16], page 144). (a) A

partially ordered space (D,≤) is said to be directed, if every finite subset of D had

an upper bound. Equivalently, for each α, α′ ∈ J, there is α′′ ∈ D such that α ≤ α′′

and α′ ≤ α′′.

(b) Let D be a directed set and X a topological vector space. We call a net (xα)α∈D

a map x : D −→ X : α 7→ xα.

(c) The net (xα) is said to be convergent to x if for each neighborhood V of x, there

exists α0 ∈ D, such that α0 ≤ α implies xα ∈ V.

Lemma 1.7 ([6], Lemma 2, [11], Theorem 2, [13], page 11, [16], Proposition 2.1.18).

Let M be a set in a vector topological space. Then M is closed if and only if it contains

the limits of all the convergent nets of elements of M.

1.2 Auxiliary results. Next, we recall some classical results from functional anal-

ysis (see [6, 7, 11, 17, 25]). Detailed properties of weakly convex sets may be found

in [8].

Proposition 1.8 ([21], Proposition 2.1). If f : [0, T ] × B −→ B is weakly-weakly

continuous and B is reflexive, then f is bounded in the sense that for any r > 0, there

exists Mr > 0 such that

|f(t, y)| ≤Mr, ∀ t ∈ [0, T ] and ∀ y ∈ B with ‖y‖ ≤ r. (1.3)

Theorem 1.9 (Arzéla-Ascoli Theorem, [11], Theorem 7.17, page 233). Let F be a

weakly equicontinuous family of functions from I = [a, b] into B, and let {un} be a

sequence in F such that for each t ∈ I, the set {un(t), n ≥ 1} is weakly relatively

compact in B. Then there exists a subsequence {unk
} which converges uniformly on

I to a weakly continuous function (i.e. {unk
} is sequentially relatively compact in

C([0, T ], Bw)).
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Theorem 1.10 (Mitchell-Smith Theorem, [17]). Let F be an equicontinuous family

in C([0, T ], B) and let {yα}α, y ∈ F . Then

yα ⇀ y ⇐⇒ yα(t) ⇀ y(t), ∀ t ∈ [0, T ].

Theorem 1.11. A convex subset of a normed space is closed if and only if it is weakly

closed.

Theorem 1.12. A subset of a reflexive Banach space is weakly compact if and only

if it is closed in the weak topology and bounded in the norm topology.

Theorem 1.13 (Eberlein-Šmulian Theorem). Let K be a weakly closed subset of a

Banach space B. Then the following are equivalent:

(i) K is weakly compact.

(ii) K is weakly sequentially compact.

Theorem 1.14 (Schauder-Tychonoff Theorem). Let K be a closed convex subset of a

locally convex Hausdorff space X. Assume that f : K −→ K is continuous and f(K)

is relatively compact in X. Then f has at least one fixed point in K.

Finally, we present a direct consequence of the Hahn-Banach theorem.

Theorem 1.15. Let X be a normed space with 0 6= x0 ∈ X. Then there exists a

φ ∈ X∗ such that ‖φ‖ = 1 and φ(x0) = ‖x0‖.

1.3 The weak MNC.

Throughout this section, X denotes a Banach space, B(X) is the collection of all

nonempty bounded subsets of X and W (X) is the subset of B(X) consisting of all

weakly compact subsets of X. Let Br denotes the closed ball in X centered at 0 with

radius r > 0. In [3], De Blasi introduced the map ω : B(X) → [0,+∞) defined, for

all M ∈ B(X) by

ω(M) = inf{r > 0, ∃N ∈W (X) : M ⊆ N +Br}.

We recall for the sake of completeness, some important properties of ω needed here-

after; for further details and proofs, we refer the reader to [3].

Lemma 1.16. Let M1,M2 ∈ B(X). Then

(a) ω(M1) ≤ ω(M2) whenever M1 ⊆ M2.

(b) ω(M) = 0 if and only if M is relatively weakly compact.

(c) ω(M
w
) = ω(M) where M

w
is the weak closure of M.

(d) ω(co(M)) = ω(M) where co(M) refers to the convex hull of M.

(e) ω(M1 +M2) ≤ ω(M1) + ω(M2).

(f) ω(M1 ∪M2) = max(ω(M1), ω(M2)).
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(g) (Cantor intersection condition) If {Xn}
∞
1 is a sequence of nonempty, weakly closed

subsets of E with X1 bounded and

X1 ⊇ X2 ⊇ X3 ⊇ . . . ⊇ Xn ⊇ . . .

with lim
n→∞

ω(Xn) = 0, then the set
⋂∞
n=1Xn is nonempty and weakly compact.

Definition 1.17. A map f : M ⊂ X → X is said to be ω−contractive (or an

ω−contraction) if it maps bounded sets into bounded sets, and there exists some

β ∈ [0, 1) such that ω(f(V )) ≤ βω(V ) for all bounded subsets V ⊆M.

Next, we present a theorem of Ambrosetti type (for the proof, see [14], [15], or

[22], Thm. 10.1.1).

Theorem 1.18. Let H be a bounded subset of C([0, T ], B). Then

(a) sup
t∈[0,T ]

ω(H(t)) ≤ ω(H).

(b) If H is bounded and equicontinuous, then

ω(H) = sup
t∈[0,T ]

ω(H(t)) = ω(H([0, T ])),

where H([0, T ]) =
⋃

t∈[0,T ]{φ(t), φ ∈ H}.

2. Existence principles

We first recall the following result

Theorem 2.1 ([19], Thm. 2.1 or [22], Thm. 10.2.1). Let B be a Banach space and Q ⊆

C([0, T ], Bw) a nonempty, closed, convex subset. Let F : Q −→ Q be w−continuous

and the family FQ is weakly equicontinuous. Assume, in addition that F (Q(t)) is

weakly relatively compact in B for each t ∈ [0, T ]. Then (1.1) has a solution in Q.

Remark 2.2. If we wish to guarantee a solution of (1.1) in C([0, T ], B), we add

Q ⊂ C([0, T ], B).

Now, we restate Thm. 2.2 in [18] (see also Thm. 2.2 in [19] or Thm. 10.2.2 in

[22]). Note we need to add the equicontinuity of Q.

Theorem 2.3. Let B be a Banach space and Q ⊆ C([0, T ], Bw) a nonempty, closed,

convex, and bounded, equicontinuous subset of C([0, T ], B). Let F : Q −→ Q be

w−continuous and there exists 0 ≤ α < 1 with ω(F (X)) ≤ αω(X), for all bounded

X ⊆ Q . Then (1.1) has a solution in Q.

Remark 2.4. Note we drop the condition that FQ is weakly equicontinuous here

from Theorem 10.2.2 in [22]. Indeed, this follows vacuously from FQ ⊆ Q, the

equicontinuity of Q, and Proposition 1.2.
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Proof. The proof is split into four parts.

(a) Let S1 = Q and Sn+1 = co(F (Sn)), n ∈ N
∗. Notice that

ω(S2) = ω(F (S1)) ≤ αω(S1) and S2 ⊆ co(Q) = Q = S1

and more generally

Sn+1 ⊆ Sn with ω(Sn+1) ≤ αnω(S1), for n = 1, 2, . . .

0 ≤ α < 1 implies lim
n→∞

ω(Sn) = 0. Also, since Sn is a weakly closed (and closed,

convex) subset of C([0, T ], B) for each n, then S∞ =
⋂∞

1 Sn is nonempty, convex

and weakly closed. Moreover, S∞ is weakly compact in C([0, T ], B) by the Cantor

intersection condition for the weak measure of noncompactness (Lemma 1.16, (g)).

(b) Next, we prove that S∞ is closed in C([0, T ], Bw) using the equicontinuity of Q.

Indeed, let (yα) ⊂ S∞ be a net such that yα → y in C([0, T ], Bw). Then for all φ ∈ B∗,

sup
t∈[0,T ]

|φ(yα(t)) − φ(y(t))| → 0. In particular

φ(yα(t)) −→ φ(y(t)), ∀ t ∈ [0, T ].

Using Theorem 1.10, the fact that S∞ ⊂ Q and the equicontinuity of Q, we obtain

that yα ⇀ y in C([0, T ], B). Since S∞ is weakly closed, we have that y ∈ S∞ and

thus, by Lemma 1.7, S∞ is closed in C([0, T ], Bw), as claimed.

(c) Since F (Sn) ⊂ F (Sn−1) ⊆ co(F (Sn−1)) = Sn for all n, we have that F maps S∞

into itself.

(d) We claim that F (S∞) is relatively compact in C([0, T ], Bw). For this, we will make

use of Theorem 1.9. First, notice that F (S∞) ⊂ S∞ ⊂ Q and the equicontinuity of

Q implies that F (S∞) is weakly equicontinuous. So, it remains to show that for each

t ∈ [0, T ], the set F (S∞)(t) = {Fy(t) : y ∈ S∞} is weakly relatively compact in B.

To see this, notice that since ω(S∞) = 0 and F (S∞) ⊂ S∞, we have ω(F (S∞)) = 0.

This together with Theorem 1.18(a) imply that ω(FS∞(t)) = 0 for each t ∈ [0, T ].

Thus, for each t ∈ [0, T ], we have that FS∞(t) is weakly relatively compact in B. Now

Theorem 1.9 implies that FS∞ is relatively compact in C([0, T ], Bw). By Theorem

1.14, F : S∞ −→ S∞ has a fixed point in C([0, T ], Bw), proving the theorem.

Remark 2.5. In Theorem 2.3, the equicontinuity ofQ is needed to prove the following

implication:

(S∞ weakly closed in C([0, T ];B)) =⇒ (S∞ closed in C([0, T ];Bw)) .

3. Application to a Volterra integral equation

3.1 A special case. Consider the integral equation

y(t) = y0 +

∫ t

0

k(s)f(s, y(s))ds, t ∈ [0, T ], (3.1)
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where y0 ∈ B, B is reflexive, and k, f satisfy:

(A1) k ∈ L1[0, 1].

(A2) The function f : [0, T ] × B −→ B is weakly-weakly continuous.

(A3) (Nagumo-type condition) The exists ψ : [0,+∞) −→ (0,+∞) a nondecreasing

continuous function such that
{

|f(s, u)| ≤ ψ(|u|), for a.e. s ∈ [0, T ] and all u ∈ B

with
∫ T

0
|k(s)|ds <

∫ ∞

|y0|
du
ψ(u)

·

Theorem 3.1. Under Assumptions (A1)-(A3), Equation (1.2) has a solution in

C([0, T ], B).

Proof. Let

Q = {y ∈ C([0, T ], B), |y(t)| ≤ b(t), ∀ t ∈ [0, T ] and

|y(t) − y(s)| ≤ b(t) − b(s), ∀ t, s ∈ [0, T ]},

where

b(t) := I−1

(
∫ t

0

|k(s)|ds

)

and I(z) :=

∫ z

|y0|

du

ψ(u)
·

Clearly, Q is convex, bounded, closed, hence weakly closed in C([0, T ], B) by Theorem

1.11. In addition, arguing as in the proof of Theorem 2.3, Part (b), we can see, from

Theorem 1.10 and the equicontinuity of Q, that Q is also closed in C([0, T ], Bw). Let

the operator F be defined on B by

Fy(t) = y0 +

∫ t

0

k(s)f(s, y(s))ds, t ∈ [0, T ].

The proof is divided into three parts.

(a) FQ ⊆ Q :

• For any y ∈ Q, Fy is norm-continuous. Let t, x ∈ [0, T ] with t > x. Without

loss of generality, assume that Fy(t) − Fy(x) 6= 0. Then, again by Theorem 1.15,

there exists φ ∈ B∗ with ‖φ‖∗B = 1 and |y(t) − Fy(x)| = φ(Fy(t) − Fy(x)). Thus

|Fy(t)− Fy(x)| = φ(
∫ t

x
k(s)f(s, y(s))ds)

≤ Mr

∫ t

x
|k(s)|ds,

where r is such that |y|0 = sup
t∈[0,T ]

|y(t)| ≤ r. The existence of Mr is ensured by

Proposition 1.8. Thus Fy is continuous and so F : C([0, T ], B) −→ C([0, T ], B).

• Let y ∈ Q. Without loss of generality, assume that Fy(s) 6= 0 for all s ∈ [0, T ].

By Theorem 1.15, there exists φ ∈ B∗ with ‖φ‖B∗ = 1 and φ(Fy(s)) = |Fy(s)|.

Consequently, for each t ∈ [0, T ], we have

|Fy(t)| = φ
(

y0 +
∫ t

0
k(s)f(s, y(s))ds

)

≤ |y0| +
∫ t

0
|k(s)|ψ(|y(s)|)ds

≤ |y0| +
∫ t

0
|k(s)|ψ(b(s))ds

= |y0| +
∫ t

0
b′(s)ds = b(t),
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since
∫ b(s)

|y0|
du
ψ(u)

=
∫ s

0
|k(u)|du. Let y ∈ Q, t, s ∈ [0, T ] with t > s. Without loss of

generality, assume that F (y(t)) − F (y(s)) 6= 0. Then, there exists a φ ∈ B∗ with

‖φ‖B∗ = 1 and φ(Fy(t) − Fy(s)) = |Fy(t) − Fy(s)|. Then

|Fy(t) − Fy(s)| = φ
(

∫ t

s
k(x)f(x, y(x))dx

)

≤
∫ t

s
|k(x)|ψ(b(x))dx

=
∫ s

t
b′(x)dx = b(t) − b(s).

Thus, Fy ∈ Q, for all y ∈ Q.

(b) F is w−continuous. By (H2), for any φ ∈ B∗, ε > 0, and y ∈ C([0, T ], Bw), there

exists a weak neighborhood U of zero in B such that

|φ(f(t, y(t))− f(t, x(t)))| ≤ ε/k0, ∀ t ∈ [0, T ] and ∀x ∈ C([0, T ], Bw)

with y(s) − x(s) ∈ U, for all s ∈ [0, T ],

where k0 :=
∫ T

0
|k(s)|ds. Thus, for each x, y ∈ Q such that (y(s) − x(s) ∈ U, ∀ s ∈

[0, T ]), we have
∫ t

0

|φ (k(s)[f(s, y(s)) − f(s, x(s))])| ds ≤ ε.

It follows that F : Q −→ Q is w−continuous.

(c) FQ is relatively compact in C([0, T ], Bw). This will follow from Theorem 1.9 and

Theorem 1.13. Since B is reflexive, Q is bounded, and FQ ⊂ Q, Theorem 1.12

implies that FQ([0, T ]) is weakly relatively compact. Finally, we have that FQ is

equicontinuous since FQ ⊂ Q and Q is equicontinuous, whence claim (c).

Therefore Theorem 2.1 implies that Equation (3.1) has a solution in Q.

3.2 The general case. To discuss the solvability of Equation (1.2), we make the

following assumptions where B is a reflexive Banach space.

(H1) The function h : [0, T ] −→ B is continuous.

(H2) The function f : [0, T ] ×B −→ B is weakly-weakly continuous.

(H3) kt(s) = k(t, s) ∈ L1([0, T ],R) for each t ∈ [0, T ] and there exist v ∈ L1[0, T ] and

positive constants α, β such that for x, t ∈ [0, T ] (x < t), we have
∫ t

x

|k(t, s)|ds ≤ β

(
∫ t

x

v(s)ds

)α

.

(H4)
∫ t∗

0
|kt(s) − kt′(s)|ds −→ 0, as t→ t′, where t∗ = min(t, t′).

(H5) (Nagumo-type condition) The exist α ∈ L1[0, T ] and ψ : [0,+∞) −→ (0,+∞)

a nondecreasing continuous function such that

|k(t, s)f(s, u)| ≤ α(s)ψ(|u|), for a.e. s, t ∈ [0, T ] (s < t), all u ∈ B

and
∫ T

0
α(s)ds <

∫ ∞

|h|0
du
ψ(u)

·

Theorem 3.2. Under Assumptions (H1)-(H5), Equation (1.2) has a solution in

C([0, T ], Bw) (and of course in C([0, T ], B).
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Remark 3.3. A solution y is in C([0, T ], B) but satisfies Equation (1.2) relatively to

the topology of C([0, T ], Bw), i.e. y ∈ C([0, T ], Bw)
⋂

C([0, T ], B) = C([0, T ], B) and

φ(y(t)) = φ(h(t)) + φ

(
∫ t

0

k(t, s)f(s, y(s))ds

)

, ∀φ ∈ B∗.

Proof. Let

Q = {y ∈ C([0, T ], B), |y(t)| ≤ b(t), ∀ t ∈ [0, T ]},

where

b(t) := I−1

(
∫ t

0

α(s)ds

)

and I(z) :=

∫ z

|h|0

du

ψ(u)
·

Clearly, Q is convex, bounded, closed subset of C([0, T ], B). Note the condition |y(t)−

y(s)| ≤ b(t) − b(s) is removed from the definition of Q which may be shown to be

closed in C([0, T ], Bw) without equicontinuity.

(a) Q is closed for the topology of C([0, T ], Bw). Indeed, let (yα) ⊂ Q be a net such

that yα −→ y in C([0, T ], Bw). Then,

sup
t∈[0,T ]

|φ(yα(t) − y(t))| → 0, ∀φ ∈ B∗. (3.2)

We show that y is strongly continuous. Let ε > 0, t0 ∈ [0, T ] be fixed and let t ∈ [0, T ].

Without loss of generality, assume that y(t)−y(t0) 6= 0. By Theorem 1.15, there exists

φ = φt,t0,y ∈ B∗ such that

|y(t) − y(t0)| = φ(y(t) − y(t0)).

Notice (3.2) implies that for ε/3 > 0,

|φ(yα(t)) − φ(y(t))| ≤ ε/3, ∀ t ∈ [0, T ].

Also, we know that φ ◦ yα is continuous. Hence for ε/3, there exists δ > 0 such that

|t− t0| ≤ δ =⇒ |φ(yα0
(t)) − φ(yα0

(t0))| ≤ ε/3.

It follows that

|y(t) − y(t0)| ≤ |φ(y(t)) − φ(yα0
(t))| + |φ(yα0

(t)) − φ(yα0
(t0))|

+|φ(yα0
(t0)) − φ(y(t0))| ≤ ε, ∀ t, |t− t0| ≤ δ.

Next, we show that |y(t)| ≤ b(t), ∀ t ∈ [0, T ]. Let t ∈ [0, T ] be fixed. Without loss

of generality, assume that y(t) 6= 0. By Theorem 1.15, there exists φ ∈ B∗ such that

‖φ‖B∗ = 1 and |y(t)| = φ(y(t)) and (3.2) yields that for any ε > 0, there exists α0

such that sup
t∈[0,T ]

|φ(yα0
(t)) − φ(y(t))| ≤ ε. Therefore, we have the estimates

|y(t)| = φ(y(t)) ≤ |φ(y(t))− φ(yα0
(t))| + |φ(yα0

(t))|

≤ ε+ ‖φ‖B∗ .|yα0
(t)|B

≤ ε+ 1.b(t)
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since yα0
∈ Q. Hence ‖y(t)‖B ≤ b(t), ∀ t ∈ [0, T ], proving that y ∈ Q. To sum up, we

have proved that Q is closed in C([0, T ], Bw), proving our claim.

Let the operator F be defined by

Fy(t) = h(t) +

∫ t

0

k(t, s)f(s, y(s))ds, t ∈ [0, T ]. (3.3)

(b) FQ ⊆ Q, for all y ∈ Q :

• For any y ∈ Q, Fy is norm-continuous. For this, let t, x ∈ [0, T ] with t > x.

Without loss of generality, assume that Fy(t) − Fy(x) 6= 0. Then, by Theorem 1.15,

there exists φ ∈ B∗ with ‖φ‖B∗ = 1 and |Fy(t)− Fy(x)| = φ(Fy(t) − Fy(x)). Thus

|Fy(t)− Fy(x)| = φ(h(t) − h(x)) + φ(
∫ x

0
[k(t, s) − k(x, s)]f(s, y(s))ds)

+φ(
∫ t

x
k(t, s)f(s, y(s))ds)

≤ |h(t) − h(x)| +Mr

∫ x

0
|k(t, s) − k(x, s)|ds

+Mr

∫ t

x
|k(t, s)|ds,

where r is such that |y|0 = sup
t∈[0,T ]

|y(t)| ≤ r. The existence of Mr is ensured by

Proposition 1.8. Thus Fy is norm-continuous by Assumptions (H3) and (H4).

• For y ∈ Q, assume, without loss of generality, that Fy(t) 6= 0 for all t ∈ [0, T ].

By Theorem 1.15, there exists φt ∈ B∗ with ‖φt‖B∗ = 1 and φt(Fy(t)) = |Fy(t)|.

Consequently, for each t ∈ [0, T ], we have

|Fy(t)| = φt

(

h(t) +
∫ t

0
k(t, s)f(s, y(s))ds

)

≤ |h(t)| +
∫ t

0
α(s)ψ(|y(s)|)ds

≤ |h|0 +
∫ t

0
α(s)ψ(b(s))ds

= |h|0 +
∫ t

0
b′(s)ds = b(t),

since
∫ b(s)

|h|0
du
ψ(u)

=
∫ s

0
α(u)du.

(b) F is w−continuous. The proof is similar to the one in Theorem 3.1 and is omitted.

(c) FQ is relatively compact in C([0, T ], Bw). It suffices to prove that FQ is weakly

equicontinuous in which case the result follows from Theorem 1.9. Arguing as in (b),

we have

|Fy(t) − Fy(x)| ≤ |h(t) − h(x)| +Mr

∫ x

0

|k(t, s) − k(x, s)|ds+Mr

∫ t

x

|k(t, s)|ds,

and with Assumptions (H3) and (H4), we conclude part (c).

Theorem 2.1 then implies that Equation (1.2) has a solution in Q.

Remark 3.4. When F : Q −→ Q is w−continuous and ω−contractive, another

existence result for (1.2) is given by [22], Them. 10.2.4.

Remark 3.5. In order to apply Theorem 2.1 in Section 3, we need to show (among

others) that:
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(a) Q is closed in C([0, T ];Bw) which may be proved in two different ways:

(i) use Q equicontinuous: see part (a), proof of Theorem 3.1,

(ii) directly using the ”particular” Q: see part (a), proof of Theorem 3.2.

(b) FQ is w−equicontinuous which may be proved in two different ways:

(i) use Q equicontinuous and FQ ⊂ Q: see part (c), proof of Theorem 3.1,

(ii) directly using Assumptions (H3)− (H4): see part (c), proof of Theorem 3.2 (even

if we do not know whether or nor Q is equicontinuous; in fact, it does not matter).

Note this method could also be applied in the proof of Theorem 3.1 since (H3)− (H4)

are obviously satisfied for Equation (3.1).

4. Operator and Volterra integral inclusions

4.1 Preliminaries. In this section, we will consider the operator inclusion

u(t) ∈ Fu(t), t ∈ [0, T ], (4.1)

where F : Q → C(Q) is a multi-map, Q ⊂ C([0, T ], B) ⊂ C([0, T ], Bw), and C(Q)

stands for the family of nonempty, convex, closed subsets of Q in a topological vector

space X. Also, we study the Volterra integral inclusion

y(t) ∈ h(t) +

∫ t

0

k(t, s)f(s, y(s))ds, t ∈ [0, T ], (4.2)

where the multi-functions h, k, f satisfy some assumptions to be defined later on. Our

aim is to prove existence of solutions in C([0, T ], Bw). First some auxiliary results

regarding multi-valued analysis are recalled hereafter. More details may be found in

[2], [4], [5], [9], [20], [24].

A single-valued map f : B → B is said to be a selection of F and we write f ⊂ F

whenever f(u) ∈ F (u) for every u ∈ B. Denote by

(a) Cc(Q) the family of nonempty, convex, closed (in C([0, T ], B)) subsets of Q (here

Q ⊂ C([0, T ], B)).

(b) Cw(Q) the family of nonempty, convex, closed (in C([0, T ], B)) subsets of Q (here

Q ⊂ C([0, T ], Bw)).

(c) Cc,e(Q) the family of nonempty, convex, closed (in C([0, T ], B)), equicontinuous

subsets of Q (here Q ⊂ C([0, T ], B)).

Definition 4.1. (a) F is called upper semi-continuous (u.s.c. for short) if the set

F−1(V ) = {x ∈ B, F (x) ∩ V 6= ∅} is closed for any closed set V in Q. Equivalently,

F is u.s.c. if the set F+1(V ) = {x ∈ B, F (x) ⊂ V } is open for any open set V in Q.

(b) F is said to be completely continuous if it is u.s.c. and, for every bounded subset

A ⊆ B, F (A) is relatively compact, i.e. there exists a relatively compact set K ⊂ X

depending on A such that F (A) =
⋃

{F (x), x ∈ A} ⊂ K. The multimap F is

compact if F (X) is relatively compact.
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4.2 An abstract result. Our main tool is a classical fixed point theorem:

Lemma 4.2. [10] Let Q be a nonempty, convex, closed subset of a locally convex

Hausdorff linear vector space X. Assume that F : Q −→ C(Q) is u.s.c. and F (Q) is

relatively compact in X. Then F has a fixed point in C.

The following result is an immediate consequence from Theorem 1.9 and Lemma 4.2.

Theorem 4.3. Let B be a Banach space and Q a nonempty, closed, convex subset of

C([0, T ], Bw). Assume

F : Q −→ Cw(Q) is w − u.s.c.

Assume further that the family F (Q) is weakly equicontinuous and FQ(t) is weakly

relatively compact in B for each t ∈ [0, T ]. Then (4.1) has a solution.

Corollary 4.4. Let B be a Banach space and Q a nonempty, closed, convex subset

of C([0, T ], Bw) such that FQ(t) is weakly relatively compact in B for each t ∈ [0, T ].

Assume that either one of the following conditions hold:

(a)F : Q −→ Cc(Q) is w − u.s.c. and Q ⊂ C([0, T ], B) is equicontinuous.

(b)F : Q −→ Cc,e(Q) is w − u.s.c. , Q ⊂ C([0, T ], B)

and the family F (Q) is weakly equicontinuous.

Then (4.1) has a solution.

Proof. When (a) holds, using an argument similar to that in the proof of Theorem

2.3(b), we have that F : Q −→ Cw(Q). Part (b) implies that for each y ∈ Q, Fy is a

convex, closed, equicontinuous subset of Q. Since Q ⊂ C([0, T ], B), then Fy is closed

in C([0, T ], Bw), and again F : Q −→ Cw(Q) is w−u.s.c. Theorem 4.3 concludes the

proof.

A more general version of Theorem 4.2 is given by:

Theorem 4.5. Let B be a Banach space and a nonempty, closed, convex subset of

C([0, T ], Bw). Assume further that Q is a closed, bounded, equicontinuous subset of

C([0, T ], B). Let F : Q −→ Cc(Q) be a w−u.s.c. operator which is an α−contraction,

relatively to a weak MNC. Then (4.1) has a solution.

Remark 4.6. Note we drop the condition FQ is weakly equicontinuous here from

Theorem 2.9 in [20] and add the equicontinuity of Q.

Proof. Let S1 = Q and Sn+1 = co(F (Sn)), n ∈ N
∗. It is easy to see that

Sn+1 ⊆ Sn and ω(Sn+1) ≤ αnω(S1), for n = 1, 2, . . .

Since 0 ≤ α < 1, then lim
n→∞

ω(Sn) = 0. Moreover Sn is a weakly closed subset of

C([0, T ], B) for each n, then S∞ =
⋂∞

1 Sn is nonempty, convex and weakly closed.
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Moreover, S∞ is nonempty and weakly compact in C([0, T ], B) by the Cantor in-

tersection condition for the weak measure of noncompactness (Lemma 1.16, (g)).

Arguing as in the proof of Theorem 2.3 and using the fact that Q is equicontinuous

and S∞ ⊂ S1 ⊂ Q, we find that S∞ is closed in C([0, T ], Bw)

(b) F is w−u.s.c. Since

F (Sn) ⊂ F (Sn−1) ⊆ co(F (Sn−1)) = Sn, for all n ∈ N
∗,

F maps S∞ into Cc(S∞). By the equicontinuity of S∞, we deduce that F maps S∞

into Cw(S∞). This yields that F : S∞ −→ Cw(S∞) is w−u.s.c.

(c) F (S∞) is relatively compact in C([0, T ], Bw). We shall appeal to Theorem 1.9.

Since the equicontinuity of F (S∞) follows from F (S∞) ⊂ S∞ ⊂ Q and the equicon-

tinuity of Q, we only have to show that, for each t ∈ [0, T ], the set F (S∞)(t) =

{Fy(t), y ∈ S∞} is weakly relatively compact in B. Now, F (S∞) ⊆ S∞ and ω(S∞) =

0 imply that ω(F (S∞)) = 0. Then Theorem 1.18 yields that ω(S∞)(t) = 0 for each

t ∈ [0, T ], whence part (c). Finally, by Lemma 4.2, we conclude that F has a fixed

point, solution of (4.1).

4.3 Application to an integral inclusion. To discuss the solvability of the non-

linear Volterra inclusion (4.2), we first make the following assumptions (2.6)-(2.12) in

[20]):

(G1) F : [0, T ] ×B −→ B has nonempty, compact, convex values.

(G2)

{

For each continuous y : [0, T ] −→ B, there exists a scalarly measurable

selection f : [0, T ] −→ B with f(t) ∈ F (t, y(t)), a.e. on [0, T ].

(G3)

{

For any r > 0, there exists Mr > 0 with |F (t, y)| ≤Mr, for all

t ∈ [0, T ] and all y ∈ B with |y| ≤ r.

(G4)











For each continuous y : [0, T ] −→ B, there exists a selection f

with either f([0, T ]) is relatively weakly compact or f is Pettis

integrable and co(f([O, T ]) has the Radon-Nikodym property.

(G5) h : [0, T ] −→ B is a continuous single valued function.

(G6)















kt(s) = k(t, s) ∈ L1([0, t],R) for each t ∈ [0, T ] and there exist

v ∈ L1[0, T ] and positive constants α, β such that for x, t ∈ [0, T ] (x < t),

we have
∫ t

x
|k(t, s)|ds ≤ β

(

∫ t

x
v(s)ds

)α

.

(G7)
∫ t∗

0
|kt(s) − kt′(s)|ds −→ 0, as t→ t′, where t∗ = min(t, t′).

Recall that function y from a measure space (Ω,M) to a Banach space E is

scalarly measurable if for any φ ∈ E∗, the function φ(y) is measurable on (Ω,M).

It is clear that all solutions of Equation (4.2) are fixed points of the multi-valued
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operator N : C([0, T ], B) → Cc((C([0, T ], B))) := Y defined by

N(y) :=

{

g ∈ Y | g(t) = h(t) +

∫ t

0

k(t, s)f(s)ds, t ∈ [0, T ]

}

,

where

f ∈ SF,y := {f is scalarly measurable | f(t) ∈ F (t, y(t)), t ∈ [0, T ]} .

Remark 4.7. (G4) implies that SF,y 6= ∅ and (G4), (G6) ensure the integral in N(y)

is well defined. Since, for each y ∈ B, the nonlinearity F takes convex values, the

selection set SF,y is convex and therefore N has convex values. The proof that N has

closed values in C([0, T ], B) is well detailed in [20].

Recall that F is said to be w−upper semi-continuous (w−u.s.c. for short) if for

any closed set V ⊂ C([0, T ], Bw), the set F−1(V ) is closed in C([0, T ], Bw). Then our

main existence result is

Theorem 4.8. Let B be a Banach space and Q a nonempty, closed, convex subset of

C([0, T ], Bw) with Q a bounded subset of C([0, T ], B). Also assume (G1)-(G7), and

let the following conditions hold:

(G8) N : C([0, T ], Bw) ∩ C([0, T ], B) −→ Cc(C([0, T ], B)) is w−u.s.c.

(G9)

{

K({t} × [0, T ] ×Q[0, t]) is weakly relatively compact in B for each

t ∈ [0, T ], where K(t, s, u) := k(t, s)F (s, u).

(G10) N : Q −→ Cw(Q).

Then (4.2) has a solution Q.

Remark 4.9. Note if Q is convex, closed, and equicontinuous, then any convex,

closed subset of Q is closed in C([0, T ], Bw), in which case N : Q −→ Cc(Q) (that is

condition (2.17) in [20]) implies (G10).

Proof. The proof is split into three steps.

(a) The set NQ(t) = {Ny(t), y ∈ Q} is weakly relatively compact in B, for each

t ∈ [0, T ]. Fix t ∈ [0, T ] and let y ∈ Q, and g ∈ Ny. By (G3), there exists a scalarly

measurable selection f(·) ∈ F (·, y(·)) and g(t) = h(t) +
∫ t

0
k(t, s)f(s)ds. By [12], we

have
∫ t

0

k(t, s)f(s)ds ∈ tco{k(t, s)f(s), s ∈ [0, T ]}.

Hence

ω(NQ(t)) ≤ ω(tco{K(t, s, y(s)), y ∈ Q, s ∈ [0, t]})

= Tω(K({t} × [0, t] ×Q[0, t])) = 0,

yielding our claim.

(b) By Assumption, we have N : Q −→ Cw(Q).
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(c) NQ is weakly equicontinuous. Now Q is bounded, so there exists r > 0 such that

|y0| ≤ r for all y ∈ Q. By (G3), there exists Mr > 0 such that

|F (t, y(t))| ≤Mr for all t ∈ [0, T ] and all y ∈ Q.

Let g ∈ NQ and t, x ∈ [0, T ] with t > x. Without loss of generality, assume g(t) −

g(x) 6= 0. By Theorem 1.15, there exists φ ∈ B∗ with ‖φ‖B∗ = 1 and |g(t) − g(x)| =

φ(g(t) − g(x)). Hence

|g(t) − g(x)| = φ(g(t) − g(x))

≤ |h(t) − h(x) +Mr

∫ x

0
|k(t, s) − k(x, s)|ds+Mr

∫ t

x
|k(t, s)|ds,

proving (c). With parts (a)-(c), Theorem 4.3 concludes the proof.

We can also prove a more general version of Theorem 4.8.

Theorem 4.10. Let B be a Banach space and Q a nonempty, closed, convex, subset

of C([0, T ], B) with Q a bounded, equicontinuous subset of C([0, T ], B). Assume (G1)-

(G8), (G10), and let the following condition hold:

(G11)











There exists a constant 0 ≤ γT < 1 such that

ω(K({t}) × [0, t] × Ω)) ≤ γω(Ω), for t ∈ [0, T ]

and for any bounded subset Ω ⊂ Q.

Then (4.2) has a solution Q.

Remark 4.11. Note the equicontinuity of Q with (G11) implies (G9).

Sketch of the proof. The proof is identical to that of Theorem 4.8 and uses Theo-

rem 4.5. Thus, we only have to check N : Q −→ Cw(Q) satisfies

ω(N(Ω)) ≤ Tγω(Ω), for any bounded subset Ω ⊂ Q.

For this, let Ω ⊂ Q. For t ∈ [0, T ], we have

ω(NΩ(t)) = ω
({

h(t) +
∫ t

0
k(t, s)f(s)ds, f ∈ Ω

})

= ω
({

∫ t

0
k(t, s)f(s)ds, f ∈ Ω

})

≤ ω (tcoK(t, s, f(s)), f ∈ Ω, s ∈ [0, t])

= Tω(K{t} × [0, t] × Ω[0, t]))

≤ Tγω(Ω).

Note the equicontinuity of Q allows us to use Theorem 1.18, part (b). Since Tγ < 1,

N is ω−contractive, ending the proof of the theorem.
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