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ABSTRACT. In this paper, we study the asymptotic behavior of the following n-th order sublinear
dynamic equation

22" (1) 4+ p(t)z®(t) =0, 0<a <1,

where p(t) > 0 on an isolated time scale T, and « is a ratio of odd positive integers. As an application,

we obtain

(i) when n is even, every solution x(k) of the difference equation
Az(k) +p(k)z*(k) =0, 0<a<l1,

where p(k) > 0, is oscillatory if and only if
Z k= Dp(k) = .
k=1

(ii) when n is odd, every solution z(k) of the difference equation is either oscillatory or

limg o0 (k) = 0 if and only if the above sum diverges.

AMS (MOS) Subject Classification. 34K11, 39A10, 39A99.

1. INTRODUCTION

Consider the following n-th order sublinear dynamic equation on a time scale
2" () +p(H)x*(t) =0, 0<a<l, (1.1)
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where p(t) > 0, n > 2, T is an isolated time scale, and « is a ratio of odd positive
integers.

When n = 2, equation (1.1) is the second order sublinear dynamic equation
222 (k) + p(k)z*(k) =0, 0<a<l1. (1.2)

In [4], the present authors proved that if ftzo t*p(t)At < oo, then (1.2) has a solution
x(t) with the property that
im 20— 4 2o

t—o0 t

In this paper, we extend the results of [4] to the n-th order sublinear dynamic

equation (1.1) on an isolated time scale. As an application, we prove that

(i) when n is even, every solution z(k) of the difference equation
A"z (k) + p(k)x*(k) =0, 0<a<l, (1.3)

where p(k) > 0, is oscillatory if and only if
Z ke =Vp(k) = co. (1.4)
k=1

(ii) when n is odd, every solution z(k) of the difference equation (1.3) is either
oscillatory or limy ., (k) = 0 if and only if (1.4) holds. In a landmark paper,
Licko and Svec (in the continuous case) consider the convergence of the integral
corresponding to (1.4) and the asymptotic behavior of solutions of the continuous

version of (1.1).

For completeness, (see [8] and [9] for elementary results concerning time scale
calculus), we recall some basic results for dynamic equations and the calculus on time
scales. Let T be a time scale (i.e., a closed nonempty subset of R) with sup T = oo.

The forward jump operator is defined by

o(t)=inf{s € T:s >t}
and the backward jump operator is defined by

p(t) =sup{s e T:s <t}

where sup () = inf T, where () denotes the empty set. If o(t) > ¢, we say ¢t is right-
scattered, while if p(t) < t we say t is left-scattered. If o(t) = t we say t is right-dense,
while if p(t) = ¢t and ¢t # inf T we say t is left-dense. Given a time scale interval
le,dlr:={t € T:c<t<d}inT the notation [c,d]"r denotes the interval [c, d|r in
case p(d) = d and denotes the interval [c, d)r in case p(d) < d. The graininess function

w for a time scale T is defined by u(t) = o(t) — ¢, and for any function f : T — R
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the notation f7(t) denotes f(o(t)). We say that z : T — R is differentiable at ¢t € T

provided
t) —
22(t) = lim a(t) — x(s)
s—t t—s
exists when o(t) =t (here by s — ¢ it is understood that s approaches ¢ in the time

Y

scale) and when z is continuous at ¢ and o(t) >t
P o He ) —att)
u(t)
Note that if T = R , then the delta derivative is just the standard derivative, and
when T = Z the delta derivative is just the forward difference operator. We say that
T is an isolated time scale provided there are no points in T that are either left-dense
or right-dense. The results obtained here contain the usual discrete cases as special

cases and generalize these results to several other isolated time scales (for example

for the time scale ¢"° := {1,¢,¢%---}, ¢ > 1, which is very important in quantum
theory [11]).
2. LEMMAS
Assume that T = {t;}72, where 1 <ty <t; <--- <tp---, with ¢ — oo.

Condition (D): We say that T satisfies condition (D) if there exists L > 0 such
that
ty_1 > Lt,, forall k>1.

Clearly, if T = hNgy, h > 0, T = ¢"°, ¢ > 1, or T is the set of harmonic numbers
[8, Example 1.45] then T satisfies condition (D). but it is easy to show that T =
{22k € Ny}, does not satisfy condition (D).

We will use the following time scale version of Taylor’s Theorem.

Lemma 2.1. [8, Theorem 1.113] Let n € N. Suppose that f is n times differentiable
on T . Letty € T*" ', t € T, and define the functions hy(r,s) by

ho(r,s) =1, and th(r,s):/ hi (7, s)AT,  for k€ Ny.

Then we have

f(t)

I
(]

N P (D) .
hys(t,t0) f2 (to) +/ B (t, o (7)) f2" (T)AT.

k=0 to
The following lemma gives an estimation for hy(t, to).
Lemma 2.2. Assume that T satisfies condition (D). Then for any m > 1, there
exists €, > 0 such that
hm(t,to) > €nt™ (2.1)

fort > tg.
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Proof. We prove this result by induction. When m = 1, we have
hl(t, to) =1— t(] = €1t,

for t > tq, where ¢; = 1 — i—‘l)

Suppose that when m = k, (2.1) holds. Then when m = k + 1, supposing
71 =1t € T,l > 1, then we have (note that T satisfies condition (D))

hisa(T1,t0) = / hi (T2, to) ATy

to

T1
> ek/ TQkA’TQ
to
= efth(ty —to) +thi(ta —t1) + -+ tF (t — t11)]
> e LF[th(ty —to) + th(ty — ) + -+ 7 (t — ti1)]
t
> ekLk/ Fdr
to
2 Ek-i-ltf—i_la

k+1
for 7 > tg, where €, = el [1 — (to) ], which shows that (2.1) holds for m =
k+1. O

The following lemmas appear in [4] and [8] (In Lemma 2.3 by ¢ : T — R is
rd-continuous we mean ¢ is continuous at right-dense points in T and at left-dense

points in T, left-hand limits of ¢ exist (finite).

Lemma 2.3. Assume q(t) > 0, y(t) are rd-continuous, y(to) >0 and 0 < a < 1. If
y(t) > 0, satisfies
t
y(t) < C +/ q(s)y*(s)As
to

for t € [to, 00)T, where C > y(to) is a constant, then

W< e -a) [ t TOIN|

to

for t € [ty, 00)T.
Lemma 2.4 (L’Hopital’s Rule). Assume f and g are differentiable on T with

lim g(t) = oo.

t—o0
Suppose that
g(t) >0, ¢>(t)>0, forlarge t.

@
q(t)

. fA(t) . = . . .
Then lim,_, o =m =T € R tmplies lim;_,

(1) =T.
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3. A NONOSCILLATION THEOREM

Assume that T = {tx}32, where 1 < ¢ty < t; < --- < tj---, with ¢, — oo, and
satisfies condition (D).

Theorem 3.1. Suppose that 0 < o < 1 is a quotient of odd positive integers, and

/ e =Yp(t) At < 0.

to

Then equation (1.1) has a nonoscillatory solution z(t) satisfying

lim z(t)

t—oo hy,—1(,t0) =a#0.

In particular, if z(t) > 0 for large t, we have liminf, ;(—f)l =a>0; and if x(t) <0
for large t, we have limsup,_, t:fl(—f)l =a<0.

Proof. Assume x(t) is a solution of (1.1). By the time scale version of Taylor’s Formula
(Lemma 2.1), we have

nt PN

z(t) = th(t,to)xAk(to)—i-/ B (t, 0(7))x2" (1) AT

to

n-l . P
= th(t,to)xA (to) —/t hn—1(t, o(7))p(T)x*(T)AT. (3.1)

For k = 1,2, 3, it is easy to show that 0 < hy(t, ) < t*, for t > t,.
For k =3,4,--- ,n — 1, we have

t T1 Tk—2
hk(t, to) = / / B / (Tk—l — to)ATk_l cee ATQATl.
to Jto to

Since tg < 11 < - <1 <7 <, it is easy to see that

0 < hy(t,to) < (t —to)* < t*. (3.2)

Note that since T is an isolated time scale, we get that for 7 < p"~1(¢),
o(r) <a(p" (1) = p" () <t
So we also get that for 7 < p" ! (¢)
0< hpi1(t,o(1)) < (t—o(r))"t <" L. (3.3)

From (3.1), (3.2) and (3.3), we get that

t
()] < O g ! / p)e()PAT, >t

to

where C' is a positive constant.
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Set y(t) = 2% Then we have

¢n—1"

t
W <C+ / Py (D) AT, > b,

to

By Lemma 2.3, we get that

ol < [er e [ oo

to
o0 a
< [Cl—a +(1— a)/ to‘(”_l)p(t)At} =: C},
to
where ('} is a positive constant.
So we have |y(t)| < Cy, that is |z(t)| < C1t"L. Since

t

AN () =T () — / p(r)a®(r) AT

t/

for ¥ € T and

[e.9]

t
/ p(7)|x(T)|*AT < C’f‘/ p(T)TO‘("_l)AT < 00.
t/

¢

We have that lim,_., 22" (t) = A exists. If we now further require that z(t) satisfies

xAnil(t') > C’f‘/ p(T)TO‘("_l)AT,
t/
then lim,_.. 22" (t) = A > 0.
By using the time scales L’Hopital’s Rule (Lemma 2.4), we get
t At n-
1mL: limxi():---: lim 22" (t) = A.
t—oo hy_1(t,tg) =00 hy_a(t, o) t—00
From Lemma 2.2, we have

o) ot

En—ltn_l o h’n—l(tatO).

So we get that liminf,_ ;(—f)l > €,.1A4 > 0.

4. OSCILLATION OF AN N-th ORDER SUBLINEAR DYNAMIC
EQUATION

The following lemma for a dynamic equation on an isolated time scale can be
regarded as a simple extension of [1, Corollary 1.7.14] (see Ryder and Wend [10] for

its continuous version). Its proof is the same as Corollary 1.7.14 in [1], so we omit it.
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Lemma 4.1. Suppose that
T = {t07t17t27"' 7tk7"'}7

where limy,_,o ty = 00. Let x(t) be defined on T, with x(t) > 0 and 22" (t) < 0 and
not identically zero, for larget € T. Then, exactly one of the following is true
(I) lim_oz®(t)=0,1<i<n-—1.
(II) there is an odd integer j, 1 < j <n —1 such that limy_. 22" ' (t) = 0 for 1 <
i <5 —1, limyeo 22" 2(t) > 0 (finite), limy_eo 2" 771 (¢) > 0 and limy_.oo 22 () =
0, 0<i<n—75—2.

In addition, in Case I we know that (—1)"" 122 (t) > 0, for 1 < i < n — 1,
t €T and in Case II, (=1)H22" ' (t) > 0, for 1 <i < j,teT.

The following lemma appears in [9, Theorem 5.37 (i)].

Lemma 4.2 (Leibniz Formula). If f(t,s), f>(t,s) are rd-continuous, then
t At ¢
[ tons] =@ [ s

The following lemmas are in [5].

Lemma 4.3. Suppose that

T:{thtlatZa'” >tk>"'}a

where 1 < tg <ty < -+ <ty < -+, limg_ ot = co. Then for any m > 2, there

exists €,—1 > 0 such that

o(tm-1) fo(Tm-2) (T2) .
/ / .- / [0(T1) =t |[ATI ATy -+ - ATy > € [0(Ti—1)]™ 7,
thy thy thg
fO’F Tm—1 > tko-
Lemma 4.4. Suppose that

T:{t07t17t27'” 7tk7"'}

where limy_o t, = 00. Suppose that x(t) is an eventually positive solution of (1.1).
(i) If x(t) satisfies Case (I) of Lemma 4.1, then

(—1)"a (1) > (4.1)

) o(11) o(12) o (Tn—3)
/ / / . / (o(T) =) ATAT, 3+ - AT3
t t t t

(i) If x(t) satisfies Case (II) of Lemma 4.1, then

ATy } p(m)x(m) AT

281
> [ / :(T”) - o)~ 1A A | oaoas

T3
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The following lemmas appear in [1]

Lemma 4.5 (Discrete Kneser’s Theorem). Assume that T = Ny. Let x(k) be defined
for k > ko, and x(k) > 0 with A"x(k) of constant sign for k > a and not identically
zero. Then, there exists an integer j, 0 < j < n, with (n + j) odd for A"z(k) <0,
and (n + j) even for A"x(k) > 0, such that

j<n—1 idimplies (=1Y""A'z(k)>0 forall k>ky, j<i<n-—1,
and j > 1 implies A'z(k) > 0, for all large k > ko, 1 <1i < j — 1.

Lemma 4.6. Assume that T = Ny. Let x(k) be defined for k > ko, and x(k) > 0 with
A"x(k) <0 for n > ko and not identically zero. Then, there exists a large ki > ko

such that
(k — k)t

n—1 n—j—1
z(k) > 1) A"z (2" k), k> ky,
where j is defined in Lemma 4.5. Further, if z(k) is increasing, then
(k) > — ENT A, ks o (4.2)
x x . .
= (n—1)! \ 201 T '

Theorem 4.7. Assume that T = {t;}32, where 1 < tg < t1 < -+ < tj---, with
t, — 00, x(t) is an eventually positive solution of (1.1) and

/ =Dyt At = oo. (4.3)

to

If x(t) satisfies Case (I) of Lemma 4.1 and n is an odd integer, then limy;_o x(t) = 0.

Proof. Since n is odd, (4.1) of Lemma 4.4 reduces to

—z2(t) > (4.4)

o 07'1 7'2 O'(TnS
/{/ [/ Y RIS

and this implies that z(t) is nonincreasing for ¢ > T. Let lim; ., z(t) = L. We shall
prove that L = 0. Suppose L > 0. We take T so large that z(t) > % for t > T.

Integrating (4.4) from T to ¢, then using integration by parts once, where we use the

ATy } p(m)x(m) AT

Leibniz Formula (Lemma 4.2) several times yields

2(T) -

o(m1) o(m2) (Tn—3)
(s — / / / / — S$)ATAT, 3+ ATy

p(m)a®(n)An]_y

+ / / / / / . 0(Th—3) — S)AT,_3- - Amy

p(m)x®(m) AT As
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t oo po(ti) po(r2) 0(Tn—a)
> [oe-m [ [ [ [T et - 9anan
T s s s s

p(m)x® (1) AT As.

Repeating the above procedure we get

> x(T) —x(t) >
/ /U(s o)) — T Aw, - / > /:(Tl)... /SU(Tn5)(U(TN—4)_5)ATn_4---A7-2
: 2%(1) A As.

Proceeding in this manner we get using finite mathematical induction

//U(s/ /v2)[0(vl)—T]Av1---Ayn_4

/ [U(Tl) 3]p(7_1) (Tl)ATlAS.

Further integration by parts gives us

(vn-3) po(vn-a) o(v2)
{/ / / / [o(v1) = T]Avy - - Avy_4Avy 3

[ ot =5 st man,

t ro(s) po(ve-3s) o(v2)
n / / / / [o(v1) — T]Av; -+ Avy_y
T JT T T

/:Op(ﬁ)xa(ﬁ)AﬁAs

t ro(s) po(ve-3s) o(v2)
/ / / / [o(vy) — T)Avy -+ - Avy,_3
T Jr T T

/oop(Tl) Y(1)AnAs

(vn—2) o(vn—3) o(v2)
= {/ / / / [0(v1) — T)Avy -+ - Av,_3Av, o

/8 p(r )2 (r) Ar Yy

t pro(s) po(vn—2) a(v2)
+ / / / - / [o(01) — T)Av - - - Avy_op(s)a®(s) As
rJr Jr T
t pro(s) po(vn—2) a(v2)
/ / / . / [0(v1) — T)Avy - - - Av,_op(s)z®(s)As
rJr Jr T
t o(s) po(vn—2) o(v2)
/ / / / [o(v1) = T)Avy - - - Av,_op(s)7°(s)As.
oy Jr JT T

v

v

v

v
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Applying Lemma 4.3 and later using 0 < a < 1 we obtain

2(T)

vV
)
7
AN
Q\
2
)
7
AN
~—~
»
N—
=
—~
w
S~—
s
Q
—~
»
N—
»

3

Q

vV

Q)

3

iR
VR

) [
2 o(T)
L\ [*
> o (5) [ o
2/ Jowy
L\ [*
> €y <—) 52V p(s)As.
2 o(T)
Letting t — oo, we get a contradiction of (4.3), and hence we must have that L = 0.

O

Theorem 4.8. Suppose that T = Ny,
Z k=D (k) = oo. (4.5)
k=1

Then all solutions x(k) of the n-th order sublinear difference equation
A"z(k) +p(k)x“(k) =0, 0<a<]1 (4.6)

where p(k) > 0, are oscillatory in the case n is even, and every solution x(k) is either

oscillatory or limy_.., x(k) = 0 in the case n is odd.

Proof. Let z(k) be a nonoscillatory solution of (4.6). We may assume that xz(k) > 0
for large k. The case z(k) < 0 can be treated similarly.

From (4.6), we get
A"x(k) = —p(k)x“(k) <0 (4.7)
for large k. By Lemma 4.5, Alz(k) is of constant sign for i = 1,2,---,n, and for
n>2
A" x(k) >0, forlarge k > ko. (4.8)

If z(k) satisfies Case (I) of Lemma 4.1 and n is even or z(k) satisfies Case (II) of
Lemma 4.1, from Lemma 4.4, we have that Az(k) > 0, so x(k) is increasing. From
(4.6) and (4.2), there exists k; > kg such that for k > k; > ko, we have

. p(k) ENY e
A"z(k) + o <2n_1> A" (k)] < 0. (4.9)

Let z(k) = A" 'z(k) > 0. From (4.9), we have that Az(k) < 0 and

k) (kYL
2+ 2 () <o
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Note that 0 < a < 1. Using the continuous mean value theorem, there exists
€ € [z(k+1),2(k)] such that

2A7k) — 2k 4+ 1)
= (I=a)g[z(k) — 2(k + 1)]
> (I=a)z7%(k)[z(k) — 2(k + 1)]

Vv
—
|
L
=
x>
S~—
VR
x>~
~~
=3
3
=

for k > k;. It follows that

e}

1-a i ‘ o
27 k) > (1 —a) Z [(np_( 1>)!]a (2”‘1)

k=k1

which contradicts (4.5).
If z(k) satisfies Case (I) of Lemma 4.1 and n is a odd, then from Theorem 4.7,

we have lim;_,. z(k) = 0. O

Using Theorems 3.1, 4.7 and 4.8, we get the following result.

Corollary 4.9. The following hold:

(i) When n is even, every solution x(k) of the difference equation
A'x(k) +p(k)x“(k) =0, 0<a<]l, (4.10)

where p(k) > 0, is oscillatory if and only if
> kT p(k) = oo (4.11)
k=1

(ii) When n is odd, every solution x(k) of the difference equation (4.10) is either
oscillatory or limg_,o (k) = 0 if and only if (4.11) holds.
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