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ABSTRACT. We study a class of T-periodic parametrized differential-algebraic equations, which
are equivalent to suitable ordinary differential equations on manifolds. By combining a recent result
on the degree of tangent vector fields, due to Spadini, with an argument on periodic solutions of

ODEs on manifolds, we get a global continuation result for T-periodic solutions of our equations.
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1. INTRODUCTION AND PRELIMINARIES

In this paper we study the set of periodic solutions of a particular class of periodic
differential-algebraic equations (DAEs) by means of topological methods. Namely,

given T' > 0, we consider the T-periodic solutions of

{ T=Af(t,x,y), (11)
9(z,y) =0,

where \ is a nonnegative real parameter, f : R x U — R is a continuous map which
is T-periodic in the first variable, U being an open connected subset of R*¥ x R*,
and the map g : U — R?® is assumed to be of class C* with dyg(p, q), the partial
derivative of g with respect to the second variable, invertible for each (p,q) € U. The
latter assumption implies that 0 € R® is a regular value of g. Thus M := ¢g~1(0) is
a C* submanifold of R* x R*, and one can show that equation (1.1) gives rise to
an ordinary differential equation on M (see [5, 7]). Moreover the manifold M can
be locally represented as a graph of some map from an open subset of R* to R*.
Hence equation (1.1) can be in principle locally decoupled. However, this might not
be true globally (see e.g. Example 2.7 below). Observe also that even when M is a
graph of some map 7, it might happen that the expression of 1 is complicated (or

even impossible to determine analytically), so that the decoupled version of (1.1)
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may be impractical. For instance, consider the case in which k =s=1, U =R x R,
9(p,q) = q" +q—p* and f(p,q) = q.

We tackle our problem from another point of view following [7]. The crucial idea
is to take advantage of the equivalence between the given DAEs and suitable ODEs
on M, without requiring an explicit knowledge of the manifold M itself. In this way,
by means of topological methods, based on the fixed point index, as well as results
about periodic solutions of ordinary differential equations on differentiable manifolds,
we are able to prove a global continuation result for 7-periodic solutions of (1.1). In
our main result (Theorem 2.2 below) we will give conditions ensuring the existence
of a connected component of elements (\;z,y), with A > 0 and (z,y) a T-periodic
solution to (1.1), whose closure is not compact and emanates from the set of constant
functions. This kind of results may be regarded as a useful tool to study the existence

of T-periodic solutions of the equation

{izf@&w,

g(z,y) =0
which corresponds to the choice A = 1 in (1.1) (see Corollary 2.4 below).

As pointed out, quite a similar approach has been used in a recent paper [7] by
Spadini. More precisely, in that paper he considers the differential-algebraic equation,
depending on A > 0,

{ T =h(z,y)+ Af(t,x,y), (1.2)
9(z,y) =0,

where h : U — RF is continuous and the maps f and g satisfy the same assumptions

as above. The main result in [7] is a global continuation theorem for T-periodic

solutions of (1.2).

We stress that it is not possible to deduce directly our results from those in [7],
although the equation we consider here is a particular case of (1.2), corresponding to h
identically zero. In fact it is not difficult to see that the degree-theoretical assumption
needed there cannot be satisfied when h = 0. Therefore, equation (1.1) requires a

different approach.

The plan of the paper is the following. Our first observation will be that, as
029(p, q) is invertible for all (p, q) € U, equation (1.1) induces the T-periodic tangent
vector field (¢,p, q) — ¥ (t,p,q) on M = g=1(0) given by

U(t,p,q) = (f(t,p.q). —[029(p. )] " Org(p, @) f(t,p,0))

and leads to an ordinary differential equation on M. In Theorem 2.2 we will get
information on the set of T-periodic solutions of (1.1). For this purpose we will
use an argument of Furi and Pera (see [1]), recalled in Theorem 1.3, about periodic

solutions of ordinary differential equations on a differentiable manifold. However, to
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apply Theorem 1.3 one has to evaluate the degree of the following mean value tangent
vector field on M:

1 T
P(p,q) = T/o U(t,p,q)dt.

In this context it will be crucial to deduce a formula (Theorem 2.1 below) relating
the degree of the vector field ® to that of F': U — R¥ x R®, given by

(p,q) — (% /OT f(t,p,q)dt, g(p, Q)) :

In this way, combining Theorems 1.3 and 2.1, we shall give conditions only on the
degree of I instead of .

We point out that, since in Euclidean spaces vector fields can be regarded as
maps and vice versa, the degree of the vector field F' is essentially the well known
Brouwer degree, with respect to 0, of F' (seen as a map). Thus the degree of F' has
a simpler nature than that of ® and, as a consequence, it is also potentially easier to
compute. Notice that, in addition, the manifold M is known only implicitly and the

form of & may not be simple.

We conclude the paper with some illustrating examples.

1.1. ASSOCIATED VECTOR FIELDS.

Our first step, following [5, 7], is to associate to (1.1) an ordinary differential

equation on the manifold M = ¢g=1(0).

Given A\ > 0, a solution of equation (1.1) is a pair of functions, z : I — R¥ of
class C! and y : I — R?® continuous, both of them defined on some interval I, with
the property that (z(t),y(t)) € U and

a(t) = A f(t,x(t),y(t)),
g(x(t), y(1)) = 0,

for each t € I. Notice that, as a consequence of the regularity assumptions on g,

the Implicit Function Theorem implies that y is actually a C! function. In fact, in

what follows, it will be convenient to consider a solution of (1.1) as a C'' function
¢ := (z,y) defined on I with values in RF x R?.

Let (z,y) be a solution of (1.1) for a given A > 0, defined on I C R. Differenti-
ating the identity g(z(t),y(t)) = 0 we get

g ((t), y(1))(t) + Dag (x(t), y(t))§(t) = 0,

which yields
9(t) = =X [Dag (w(t), y(1))] " Drg ((t). y()) f (L. x(t), y(t)) (1.3)

forallt e I.
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Now, consider the map ¥ : R x M — R x R® given by

U(t,p,q) = (f(t.p.q), —[029(p,q)) 'Org(p,q) f(t,p,q)) - (1.4)

It is not hard to prove that W is tangent to M in the sense that, for any (¢,p,q) €
R x M, ¥(t,p,q) belongs to the tangent space T{, 4 M to M at (p,q). Taking (1.3)

into account, one can see that (1.1) is equivalent to the following ODE on M:
C=AU(tQ),  A=0, (1.5)

where ¢ = (z,y).

Observe that, when f is of class C, so is the vector field U. Thus, the local results
on existence, uniqueness and continuous dependence of local solutions of the initial
value problems translate to (1.1) from the theory of ordinary differential equations
on manifolds by virtue of the equivalence of (1.1) with (1.5).

We stress that if we drop our assumption on dsg, equation (1.1) may fail to induce

a (continuous) tangent vector field ¥ on M and, if this happens, (1.1) might not be

equivalent to (1.5). The following simple examples illustrates these possibilities.
Example 1.1. Let k = s = 1 and U = R?. Consider the following DAE:
i=y, r—y =0 (1.6)

Obviously M = {(p,q) € R? : p = ¢*} is a C* submanifold of R%. Equation (1.6)

( )
p7 q q? 3

on M\ {(0,0)} and, clearly, this vector field cannot be extended to a continuous
tangent vector field on the whole of M. However, this difficulty can be overcome by
taking U = R?\ {(0,0)}, so that the manifold M = {(p,q) € U : p = ¢*} consists of
two connected sets. In fact, the vector field W(p, q) = (q, é) is tangent to M and
(1.6) turns out to be equivalent to (1.5) on M.

Example 1.2. Take again k = s = 1 and U = R2. Consider the DAE:
T =y, oy =1 (1.7)

In this case, the manifold M is the unit circle S* of R? centered at the origin. Clearly,
(1.7) induces on S'\ {(+1,0)} the vector field (p, q) — (g, —p) that can be extended
uniquely to a vector field ¥ defined on the whole of S* by ¥(p, q) = (¢, —p). Notice,
however, that (1.7) is not equivalent to (1.5) on S'. In fact, the constant maps
t — (£1,0) are solutions of (1.7), but not of (1.5). On the other hand, if we let
U =R?\ {(£1,0)}, one has that M consists of two connected components and the
equivalence between (1.7) and (1.5) holds true on M.
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In order to investigate the set of T-periodic solutions of (1.1) we will study the
T-periodic solutions of the equivalent equation (1.5). For this purpose it will be
crucial to determine a formula for the computation of the degree (sometimes called
characteristic or rotation) of the mean value tangent vector field ® : M — R x R®
given by formula (2.2) below. Before doing that, however, we will recall some basic

facts about the notion of the degree of a tangent vector field.

1.2. THE DEGREE OF A TANGENT VECTOR FIELD.

Let M C R"™ be a manifold. Given any p € M, we denote by T,M C R" the
tangent space of M at p. Let w be a tangent vector field on M, and let V' be an
open subset of M. We say that the pair (w, V') is admissible (or, equivalently, that
w is admissible on V') if the set of zeros of w in V' is compact. In this case one can
associate to the pair (w, V') an integer, deg(w, V'), called the degree (or characteristic)
of the tangent vector field w on V' which, roughly speaking, counts algebraically the

number of zeros of w in V' (for general references see e.g. [3, 4, 6]).

We recall that, when w is a O tangent vector field on M, a zero p € M of w
is said to be nondegenerate if w'(p) : T,M — R™ is one-to-one. Since the condition
w(p) = 0 implies that w'(p) maps T, M into itself (see e.g. [6]), then w'(p) is actually
an isomorphism of 7, M. Thus, the determinant det(w’(p)) is nonzero and its sign is
called the index of w at p. In the particular case when an admissible pair (w, V) is
regular (i.e. w is smooth with only nondegenerate zeros), one can show that deg(w, V)
coincides with the sum of the indices at the zeros of w in V. This makes sense, since
w™(0) NV is compact (w being admissible in V) and discrete; therefore, the sum is
finite.

When M = R", that is, V' is an open subset of R", deg(w, V') is just the classical

Brouwer degree, deg(w, V,0), of the map w on V with respect to zero.

All the standard properties of the Brouwer degree for continuous maps on open
subsets of Euclidean spaces, such as homotopy invariance, excision, additivity, exis-

tence, still hold in the more general context of differentiable manifolds (see e.g. [2]).

1.2. A CONTINUATION RESULT OF FURI AND PERA.

We conclude the preliminary part of the paper with a continuation result for

ordinary differential equations on manifolds due to Furi and Pera (see [1]).

Let M C R™ be a boundaryless smooth manifold and ¢ : R x M — R" a T-

periodic continuous tangent vector field on M. Consider the parametrized equation
C=A9(tC), A0, (1.8)

By Cr(M) we denote the metric subspace of the Banach space Cp(R"™) of all the
continuous T-periodic functions with values in M. We say that (\,{) € [0,00) x
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Cr(M) is a solution pair of (1.8) if  is a T-periodic solution of (1.8) corresponding
to A. Given any p € M, it is convenient to denote by p € Cp(M) the map which is
constantly equal to p. A solution pair of the form (0, p) is called trivial. Given an
open subset O of [0,00) x Cp(M), we will denote by Vi the following open subset of
M:

Vo:{pGMZ (0,]5) GO}
The following result is an immediate consequence of Theorem 2.2 of [1].

Theorem 1.3. Let M C R"™ be a boundaryless smooth manifold, 1 : R x M — R"
a T-periodic continuous tangent vector field on M, and ¢ : M — R"™ the mean value

autonomous vector field given by

o) = | vt

Let O be an open subset of [0,00) x Cr(M), and assume that deg(¢, Vo) is defined and
nonzero. Then, the equation (1.8) admits in O a connected set ¥ of nontrivial solution

pairs whose closure in O is not compact and meets the set {(0,p) € O : ¢(p) = 0}.

2. MAIN RESULTS

This section is devoted to the study of the set of T-periodic solutions of equation
(1.1). Recall that U C R* xR? is open and connected, f : RxU — R¥ and g : U — R®
are given, and we assume that f is continuous and T-periodic in the first variable.
We also assume that g is C* and such that det dxg(p, q) # 0 for all (p, q) € U. Define
F:U — RF xR® by

o= (7 [ fnaio.0), 1)

Let M = g='(0). Define the tangent vector field ® on M by

1 T
®(p,q) :T/O U(t,p, q)dt

T T (2.2)
- <%/0 f(t,p,q)dt,—%[829(p,q)]—1819(p,q)/0 f(t,p’q)dt)_

Theorem 2.1 below gives a simple formula for the computation of the degree of

® that does not require the explicit expression of the manifold M.

We will omit the proof since it is an immediate consequence of Theorem 4.1 of [7].

Theorem 2.1. Let U C R*¥ x R® be open and connected, and let g : U — R® and
f:R xU — R¥ be such that f is continuous and g is C°° with 0,g(p, q) invertible for
all (p,q) € U. Let M = g=*(0). Let also F : U — R* x R® and ® : M — R¥ x R® be
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given by (2.1) and (2.2), respectively. Given W C U open, if either deg(®, M N W)
or deg(F, W) is well defined, so is the other, and

| deg(®, M NW)| = | deg(F, W)|.

As mentioned in the introduction, the main result of this section, Theorem 2.2

below, follows from a combination of Theorems 1.3 and 2.1 above.

Let us introduce some further notation. By C7(U) we mean the metric subspace
of C7(R* x R?) of all the continuous T-periodic functions with values in U. We say
that (\;z,y) € [0,00) x Cp(U) is a solution pair of (1.1) if (x,y) is a T-periodic
solution of (1.1) which corresponds to . It is convenient, given any (p,q) € R¥ x R®,
to denote by (p, ) the element of Cr(RF x R®) that is constantly equal to (p,q). A
solution pair of the form (0;p,q) is called trivial. Observe that (p,q) € Cr(U) is a
constant solution of (1.1) corresponding to A = 0 if and only if g(p, q) = 0.

Given an open subset € of [0, 00) x Cp(U), we will denote by W, the open subset
of U given by
Wa = {(p,q) € U+ (0:p.q) € 2}

We are now ready to state and prove our main result concerning the T-periodic
solutions of (1.1).

Theorem 2.2. Let U C R¥ x R*® be open and connected, and let f : R x U — R* be
continuous and T-periodic in the first variable. Assume that g : U — R?® is C*° with
Dag(p, q) invertible for all (p,q) € U. Define F : U — R¥ x R® by (2.1). Given an
open set 2 C [0,00) x Cr(U), suppose that deg(F, Wq) is well-defined and nonzero.
Then, the equation (1.1) admits in Q a connected set I of nontrivial solution pairs

whose closure in € is not compact and meets the set
{(0;p,9) € 2: F(p,q) = (0,0)}.

Proof. Define the T-periodic tangent vector field ¥ on M as in (1.4). Then, as we
already pointed out, equation (1.1) is equivalent to (1.5) on M = ¢g~'(0). Moreover,
define ® as in (2.2). Since, by assumption, deg(F, Wq) is well defined and nonzero,

from Theorem 2.1 above we get
| deg(®, M N Wq)| = | deg(F, Wq)| # 0.
Denote by O the open subset of [0, 00) x Cp(M) given by
O =0n([0,00) x Cp(M)).

Recalling the notation introduced in Subsection 1.2, we have Vo = M N Wq. There-
fore, deg(®,Vp) = deg(®, M N Wg) # 0. Hence, Theorem 1.3 implies the existence
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of a connected subset ¥ of O of nontrivial solution pairs of (1.5), whose closure in O

is noncompact and meets the set
{(0;9,9) € O ®(p,q) = (0,0)}.

Now, since [0,00) x Cp(M) is contained in [0,00) x Cp(U), the equivalence of
equations (1.1) and (1.5) on M implies that each pair (A\;x,y) € ¥ can be also
thought as a nontrivial solution pair of (1.1). Moreover, since M is closed in U, it is
not difficult to prove that [0, 00) x Cp (M) is closed in [0, 00) x Cp(U). Consequently,
the closure of ¥ in ) coincides with the closure of ¥ in O. Thus, it is not compact.
Finally, observe that {(p, q) € M : ®(p,q) = (0,0)} coincides with {(p,q) € U :
F(p,q) = (0,0)}. Therefore, the set {(O;f), Gg) € O:®(p,q) = (0,0)} coincides with
{(0;p,4) € Q: F(p,q) = (0,0)}. Hence, the assertion holds with I' = X. O

Remark 2.3. Let I' C ) be a connected set as in the statement of Theorem 2.2.
Then, clearly, the assertion “the closure of I" in €2 is not compact” is equivalent to
the following: “the closure ' of T in the metric space [0, 00) x Cp(U) is not contained

in any compact subset of Q.

As an immediate consequence of our main result we get the following Continua-
tion Principle, namely, Corollary 2.4 below. We point out that in Corollary 2.4 the
manifold M = ¢g~1(0) is assumed to be a closed subset of R* x R* so that Cp(M) is

a complete metric space.

Corollary 2.4. Let U, f, g, F and ) be as in Theorem 2.2. Assume moreover that
M = g=1(0) is closed in R¥ x R*. Let deg(F,Wq) be nonzero. Then there exists a
connected component of the set of solution pairs of (1.1) that meets {(0;p,q) € Q :
F(p,q) = (0,0)} and cannot be both bounded and contained in §).

If, in particular, 2 is of the form [0, 00) x A, with A C Cr(U) open and bounded,
and such that there are no T-periodic solutions of (1.1) on the boundary Fr A of A
for A € [0,1], then equation

(2.3)

{izf@%w,
g(x,y) = 0.

admits a T-periodic solution in A.

Proof. As pointed out in Remark 2.3, from Theorem 2.2 we get the existence of a
connected set I' C € of nontrivial solution pairs of (1.1) whose closure, T', in the
space [0, 00) x Cp(U) is not contained in any compact subset of 2 and meets the set
{(0:9,9) € 2: F(p,q) = (0,0)}

Denote by Z the connected component of the set of all solution pairs that contains
T'. Since, by assumption, M is a closed subset of R¥ x R?, the metric space [0, c0) x

Cr(M) is complete. Moreover, the Ascoli-Arzela Theorem implies that any bounded
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set of T-periodic solutions of (1.5) is totally bounded. Thus, if Z is bounded, then
it is also compact. If, in addition, Z is contained in € then so is I' C Z, which is
impossible. This contradiction proves that Z cannot be both bounded and contained
in €.

To prove the last part of the assertion, let A C Cr(U) be open and bounded
and let 2 = [0,00) x A. Consider the subset [0,1] x A of Q. Since Z is connected,
contains some nontrivial pair (as I' C Z) and cannot be contained in [0, 1] x A, then

Z necessarily meets the boundary of (0,1] x A. Since there are no solution pairs of
(1.2) in [0,1] x Fr A, the set Z intersects {1} x A. This completes the proof. O

Remark 2.5. One can deduce an existence result from Corollary 2.4 as follows. Let

V be a relatively compact open subset of U, and assume that the following properties
hold:

e the set F71(0,0) NV is compact and deg(F, V) # 0;
e there are no T-periodic solutions of (1.1) whose image intersects the boundary
IV of V for X € (0,1].

In this situation, taking A = C7(V) C Cr(U) and Q = [0,00) x A, we have Wq =V,
and thus deg(F,Wq) = deg(F,V) # 0. Hence, Corollary 2.4 yields a T-periodic
solution of (2.3).

The following examples illustrate our results.

Example 2.6. Let k = s = 1 and let U = R?. Consider the following parametrized
DAE:

=Nz —y+sint), yP+y—2*=0. (2.4)
Clearly, M = {(p,q) € R*: ¢> + ¢ — p* = 0} is a C*™ closed submanifold of R?. With
the same notation as above, we have f(t,z,y) = x — y + sint, and

F(p,q) = (p—q,¢* + a1,
hence F~1(0,0) = {(0,0)} and deg(F,R?) = 1, so that our results apply to (2.4).
In particular, in view of Remark 2.5, we seek for a bounded open subset V of R?
containing (0,0) such that deg(F,V) = 1 and there are no T-periodic solutions of
(2.4) whose image intersects the boundary 0V of V for A € (0, 1]. In this case we get
that equation
T =x—y+sint, VY ry—22=0 (2.5)

admits a 2m-periodic solution. For this purpose, take V = {(z,y) € R? : |y — z| <
2, ly| < 3}. Then, clearly, deg(F,V) = 1. Observe that dV N M consists of two
points, one in each segment {(z,y) € R? : y —x = —2,|y| < 3} and {(z,y) € R? :
y—x =2, |y| < 3}. Moreover, we have f(t,z,y) < 0 forz —y < —2 and f(¢,z,y) > 0
if x —y > 2. Thus for any A € (0,1] no 2r-periodic solution of (2.4) intersects the
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boundary 0V of V. Therefore, Corollary 2.4 applies yielding a 27-periodic solution
of (2.5).

Example 2.7. Let k =1, s = 2 and let U = R3. Consider the DAE:
T = Ay +sint), g(z,y) =0, (2.6)
where y = (y1,¥2) and g : R x R? — R? is given by
9(T;y1,Y2) = (ey1 cosyy —x, et sinyy + x — 1).

Clearly Oog(x,y) is nonsingular for any (z,y) € R x R?. Indeed

eY! cos —eYl sin
det Oag(z,y) = det ' b2 V2] — e 5,
eYl'sinys €Yl cosys

We have

F(z;y1,92) = (ya, €¥' cos(yz) — x, ¥ sin(ya) + 2 — 1).
Thus F71(0,0,0) = {(1,0,0)} and a simple computation shows that deg(F, R?) = 1,
so Theorem 2.2 and Corollary 2.4 apply with = [0,00) x Cr(U), yielding the

existence of an unbounded branch of nontrivial solution pairs of (2.6).
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